1 Novel orthonairovirus in rodents and shrews, Gabon

2

3 **Running Title: Novel orthonairovirus in Gabon.**

4

5 Authors:

- Takehiro Ozeki, Haruka Abe, Yuri Ushijima, Chiméne Nze-Nkogue, Etienne F Akomo-Okoue,
 Ghislain W.E Ella, Lilian B.M Koumba, Branly C.B.B Nzo, Rodrigue Mintsa-Nguema, Patrice
 Makouloutou-Nzassi, Boris K Makanga, Fred L.M Nguelet, Georgelin N Ondo, Marien J.V.M
 Mbadinga, Yui Igasaki, Sayaka Okada, Bertrand Lell, Laura C. Bonney, Roger Hewson, Yohei
 Kurosaki and Jiro Yasuda.
- 11

12	Author affiliations: Nagasaki University, Nagasaki, Japan (T. Ozeki, H. Abe, Y. Ushijima, Y. Igasaki, S
13	Okada, Y. Kurosaki, J. Yasuda); L'Institut de Recherche en Ecologie Tropicale (IRET), Libreville,
14	Gabon (C. Nze-Nkogue, E.F. Akomo-Okoue, G.W.E. Ella, L.B.M. Koumba, B.C.B.B. Nzo, R.
15	Mintsa-Nguema, P. Makouloutou-Nzassi, B.K. Makanga, F.L.M. Nguelet); Centre de Recherche
16	Médicales de Lambaréné (CERMEL), Lambaréné, Gabon (G.N. Ondo, M.J.V.M. Mbadinga, B. Lell);
17	University of Tübingen, Tübingen, Germany (B. Lell); and Medical University of Vienna, Vienna,
18	Austria (B. Lell); United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, UK
19	(L.C. Bonney, R. Hewson)

2	Δ
4	υ

21 Abstract

22	Small mammals harbor various zoonotic viruses and are natural reservoirs for emerging viruses.
23	Here, we identified a novel orthonairovirus, which is genetically close to the virus suggested the
24	association with human neural diseases. The virus was found in 24.6% of the small mammals captured
25	in Gabon, Central Africa.

26

27 **Text**

28 Small mammals, including rodents and shrews, are natural reservoirs of many zoonotic 29 pathogens. These animals host highly pathogenic human viruses such as Lassa, Machupo, Junin, hanta, 30 and Crimean-Congo hemorrhagic fever viruses, all of which belong to order Bunyavirales (1). 31 Rodent-borne viral diseases, such as Lassa fever, have emerged in sub-Saharan Africa. Thus, local 32 residents are at a potentially high risk of viral exposure under poor sanitary conditions, particularly in rural areas (2). Moreover, several viruses, including Tanganya virus of genus Orthohantavirus and 33 Thiafora virus (TFAV) of genus Orthonairovirus, both belonging to Bunyavirales, have been identified 34 in the musk shrews (Crocidura sp.) in Western Africa (3,4). Accordingly, small mammal populations 35 36 hosting numerous zoonotic viruses may pose a public health threat to humans in sub-Saharan Africa. 37 Due to high rate of annually reported Lassa fever cases in Western Africa, several investigations 38 of small mammal-borne viruses have been conducted in the region, thereby multiple zoonotic viruses

39	have been identified (5-8). In contrast, in Central Africa, no clinical cases of Lassa fever or other
40	rodent-borne human viral diseases have been reported which indicates that few small mammal-borne
41	viral surveillance studies have been conducted (5). Nonetheless, recent serological surveillance studies
42	have provided evidence of past infection of rodent-borne viruses among residents of Central African
43	countries (9,10). This suggested that unrecognized zoonotic viruses might be present in this region.
44	Therefore, to understand the potential risks of transmission of known and unknown zoonotic small
45	mammal borne viruses, we investigated the viruses present among small mammal populations in
46	Gabon, Central Africa.
47	
48	The Study
49	Between 2019 and 2020, 281 animals (152 rodents and 129 shrews) were captured using Sherman
50	and Tomahawk traps placed in a forest near the suburban area, and bushes around human dwellings in
51	Lambaréné, Central Gabon. After organ specimens were collected by dissection, tissue RNA was
52	extracted from kidney homogenates, as described previously (10). Virus screening was performed
53	using the PrimeScript II High Fidelity One Step RT-PCR Kit (Takara Bio, Shiga, Japan). We initially

54 targeted partially conserved nucleotide sequences of three genera of viruses: Mammarenavirus,

55 Orthohantavirus, and Orthonairovirus, belonging to the order Bunyavirales. For the RT-PCR detection

of mammarenavirus and orthohantavirus, we employed the pan-viral family primer sets described

57 previously (8,11). For orthonairovirus, a primer set was designed based on an alignment of sequences

58	of a highly conserved region on the large segment (Appendix Table). All RT-PCR was performed
59	under the following conditions: 10 min at 45 °C, 2 min at 94 °C, 35 cycles each of 10 s at 98 °C, 15 s at
60	45 °C, and 10 s at 68 °C. All amplicons were confirmed by Sanger sequencing, and the obtained
61	sequences were identified by BLAST search (https://blast.ncbi.nlm.nih.gov).
62	The species of animals captured in this study were identified by analyzing their cytochrome b
63	gene nucleotide sequences, as described previously (10). The animal species were determined by
64	BLAST search after performing Sanger sequencing.
65	After initial screening, viral sequences of mammarenavirus and orthohantavirus were not
66	detected in any of the samples (Table 1). By contrast, novel orthonairovirus-like sequences were
67	detected in 69 out of the 281 sampled animals (24.6%). BLAST search revealed that the newly
68	identified sequences showed high similarity to Erve virus (ERVEV) or TFAV (62.8-74.4%). These
69	viruses were previously identified among the Crocidura sp. found in France and Senegal, respectively
70	(4,12). Notably, the virus prevalence in <i>Crocidura</i> sp. was significantly higher than that in all other
71	captured rodents (virus prevalence in <i>Crocidura</i> sp. vs. rodents: 34.1% (44/129), odds ratio: 2.63, 95%
72	CI: 1.50-4.62, <i>p</i> <0.001). This novel orthonairovirus was named Lamusara virus (LMSV), based on the
73	identified place (Lambaréné) and virus hosts ("musaraigne"; "shrew" in French and "ra"; "rodent" in
74	French).

Genus Orthonairovirus belongs to family Nairoviridae, which includes enveloped and
 negative-sense single-stranded RNA viruses (13). Its genome comprises large, medium, and small

77	segments encoding the RNA-dependent RNA polymerase (L), glycoprotein precursor (GPC), and
78	nucleoprotein (N), respectively (14).
79	To determine longer viral genome sequences, we performed RT-PCR using RNA samples positive
80	for the LMSV genome. To design the deduced primer sets, the nucleotide sequences of each genome
81	segment of ERVEV and TFAV were aligned (GenBank accession numbers: JF911697-JF911699,
82	KU925458-KU925460 (ERVEV), and NC_039220-NC_039222 (TFAV); Appendix Table). Once the
83	amplicons were confirmed as the LMSV genome, Sanger sequencing was repeatedly performed to
84	close sequence gaps.
85	Whole genome sequences of LMSV, consisting of three segments: large, medium, and small,
86	were successfully determined (DDBJ accession numbers: LC671712-LC671787) in accordance with
87	orthonairovirus genome organization. Each genome segment comprises a single open reading frame
88	(ORF) encoding the L (11,583 nt / 3,861 aa), GPC (3,819 nt / 1,273 aa), and N (2,016 nt / 672 aa)
89	proteins, respectively. Phylogenetic analysis was also performed among orthonairovirus
90	protein-coding region of nucleotide sequences using IQ-TREE (http://iqtree.cibiv.univie.ac.at/) to
91	genetically characterize LMSV. The results showed that all three LMSV encoding proteins were
92	phylogenetically close to ERVEV and TFAV, yet formed unique phylogenetic clusters that differed
93	from other orthonairovirus (Figure). Moreover, there were at least two distinct genotypes in the LMSV
94	cluster of each segment according to the constructed trees. Comparison of nucleotide and amino acid
95	sequences between two LMSV genotypes (strains CG002 vs. CG020) revealed that the sequences of

96	the GPC protein were highly conserved (82.5% and 92.6% at nucleotide and amino acid levels,
97	respectively), whereas the sequences of L and N proteins were relatively divergent between the two
98	genotypes (L: 68.6% and 66.9% at nucleotide and amino acid levels, respectively; N: 59.9% and
99	61.4% at nucleotide and amino acid levels, respectively) (Table 2).
100	LMSV showed the highest sequence similarity to TFAV compared to other orthonairovirus, at
101	nucleotide and amino acid levels in all three ORFs (LMSV CG002 vs. TFAV; L: 66.8% and 72.0% at
102	nucleotide and amino acid levels, respectively; GPC: 69.0% and 70.8% at nucleotide and amino acid
103	levels, respectively; N: 62.3% and 62.5% at nucleotide and amino acid levels, respectively) (Table 2).
104	According to the criteria described by Walker et al., LMSV should be grouped into the genogroup
105	Thiafora based on the amino acid sequence homology value (>52%) of the N protein between LMSV,
106	ERVEV, and TFAV (4).
107	
108	Conclusions

In this study, we identified a novel orthonairovirus, LMSV, drawn from small mammals captured in Gabon, Central Africa. According to our results, LMSV should be assigned to the genogroup *Thiafora*, based on its genetic relationship with ERVEV and TFAV. Further, we found that *Crocidura* sp. could be considered as the main host for LMSV. We also demonstrated that LMSVs have acquired significant sequence diversity. These results suggest the unique evolution and host adaptation of LMSV circulating among wildlife in Gabon.

115	A previous study suggested that ERVEV has a potential risk of causing neuropathogenic human
116	diseases including thunderclap headaches (15). Here, we demonstrated preliminary evidence for the
117	presence of possible causative agents of zoonotic diseases in Gabon. However, further studies are
118	needed to understand the biological characteristics of LMSV. Moreover, surveillance studies of the
119	seroprevalence of rodent-borne viruses, such as mammarenavirus and orthohantavirus, have
120	previously been conducted among local Gabonese residents (9,10). By contrast, there are no reports
121	specifically targeting seroprevalence of orthonairovirus. Taken together, our findings would provide
122	novel insight into small mammal borne virus related to public health issues in Gabon.

123

124 Acknowledgements

125	We thank Ms. Miku Takano (Nagasaki University) and Ms. Izumi Suzumori (Japan International
126	Cooperation Agency (JICA)) for the management of logistics, material transportation, and linguistic
127	support. We are also grateful to all staff in the Department of Emerging Infectious Diseases of
128	Nagasaki University, CERMEL, IRET, and JICA for their support and considerable encouragement.
129	We would like to thank Editage (www.editage.com) for English language editing. This work was
130	supported by the Science and Technology Research Partnership for Sustainable Development
131	(SATREPS) from the Japan International Cooperation Agency (JICA) and the Japan Agency for
132	Medical Research and Development (AMED), JP21jm0110013, AMED, JP21jm0210072, and the
133	Japan Society for the Promotion of Science (KAKENHI), JP17KK0170, and JP21K10415.
134	
135	Author's Bio
136	Mr. Takehiro Ozeki is a graduate student at Nagasaki University. His research interests include
137	emerging infectious diseases, virus discovery, and host innate immune defense.
138	
139	Address for Correspondence
140	Jiro Yasuda, Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki
141	University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan; Tel: +81-95-819-7848; Fax:
142	+81-95-819-7851; Email: j-yasuda@nagasaki-u.ac.jp

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.22.477371; this version posted January 23, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

143

144 **References**

- 145 1. Meerburg BG, Singleton GR, and Kijlstra A. Rodent-borne diseases and their risks for public
- 146 health. Crit Rev Microbiol. 2009; 35(3):221–70. <u>https://doi.org/10.1080/10408410902989837</u>
- 1472.WorldHealthOrganization.Lassafever.148https://www.who.int/news-room/fact-sheets/detail/lassa-fever]
- 149 3. Klempa B, Fichet-Calvet E, Lecompte E, Auste B, Aniskin V, Meisel H, et al. Novel Hantavirus
- 150 Sequences in Shrew, Guinea. Emerg Infect Dis. 2007, 13 (3), 520–522.
- 151 <u>https://doi.org/10.3201/eid1303.061198</u>.
- 4. Walker P. J, Widen S. G, Wood T. G, Guzman H, Tesh R. B, Vasilakis N. A. Global Genomic
- 153 Characterization of Nairoviruses Identifies Nine Discrete Genogroups with Distinctive Structural
- 154 Characteristics and Host-Vector Associations. Am J Trop Med Hyg. 2016, 94 (5), 1107–1122.
- 155 https://doi.org/10.4269/ajtmh.15-0917.
- 5. Kenmoe S, Tchatchouang S, Ebogo-Belobo J. T, Ka'e A. C, Mahamat G, Guiamdjo Simo R. E, et
- al. Systematic Review and Meta-Analysis of the Epidemiology of Lassa Virus in Humans,
- Rodents and Other Mammals in Sub-Saharan Africa. PLoS Negl Trop Dis. 2020, 14 (8), e0008589.
- 159 <u>https://doi.org/10.1371/journal.pntd.0008589</u>.
- 160 6. Mylne A. Q. N, Pigott D. M, Longbottom J, Shearer F, Duda K. A, Messina J. P, et al. Mapping the
- 161 Zoonotic Niche of Lassa Fever in Africa. Trans R Soc Trop Med Hyg. 2015, 109 (8), 483–492.

162 https://doi.org/10.1093/trstmh/trv047.

- 163 7. Klempa B, Koivogui L, Sylla O, Koulemou K, Auste B, Krüger D. H, et al. Serological Evidence
- 164 of Human Hantavirus Infections in Guinea, West Africa. J Infect Dis. 2010, 201 (7), 1031–1034.
- 165 https://doi.org/10.1086/651169.
- 166 8. Klempa B, Fichet-Calvet E, Lecompte E, Auste B, Aniskin V, Meisel H, et al. Hantavirus in
- 167 African Wood Mouse, Guinea. Emerg Infect Dis. 2006, 12 (5), 838–840.
- 168 <u>https://doi.org/10.3201/eid1205.051487</u>.
- 169 9. Heinemann P, Tia M, Alabi A, Anon J.-C, Auste B, Essbauer S, et al. Human Infections by
- 170 Non-Rodent-Associated Hantaviruses in Africa. J Infect Dis. 2016, 214 (10), 1507–1511.
- 171 <u>https://doi.org/10.1093/infdis/jiw401</u>.
- 172 10. Ushijima Y, Abe H, Ozeki T, Ondo G. N, Mbadinga M. J. V. M, Bikangui R, et al. Identification of
- 173 Potential Novel Hosts and the Risk of Infection with Lymphocytic Choriomeningitis Virus in
- Humans in Gabon, Central Africa. Int J Infect Dis. 2021, 105, 452–459.
- 175 https://doi.org/10.1016/j.ijid.2021.02.105.
- 176 11. Ishii A, Thomas Y, Moonga L, Nakamura I, Ohnuma A, Hang'ombe B, Takada A, Mweene A,
- 177 Sawa H. Novel Arenavirus, Zambia. Emerg Infect Dis. 2011, 17 (10), 1921–1924.
- 178 <u>https://doi.org/10.3201/eid1710.10452</u>.
- 179 12. Chastel C, Main AJ, Richard P, Le Lay G, Legrand-Quillien MC, Beaucournu JC. Erve virus, a
- 180 probable member of Bunyaviridae family isolated from shrews (*Crocidura russula*) in France.

- 181 Acta Virol. 1989;33: 270–280.
- 182 13. Garrison A. R, Alkhovsky S. V, Avšič-Županc T, Bente D. A, Bergeron É, Burt F, et al. ICTV
- 183 Virus Taxonomy Profile: Nairoviridae. J Gen Virol. 2020; 101 (8), 798–799.
- 184 <u>https://doi.org/10.1099/jgv.0.001485</u>.
- 185 14. Kuhn J. H, Wiley M. R, Rodriguez S. E, Bào Y, Prieto K, Travassos da Rosa A. P. A, et al.
- 186 Genomic Characterization of the Genus Nairovirus (Family Bunyaviridae). Viruses. 2016, 8 (6).
- 187 https://doi.org/10.3390/v8060164.
- 188 15. Treib J, Dobler G, Haass A, Blohn W. von, Strittmatter M, Pindur G, et al. Thunderclap Headache
- 189 Caused by Erve Virus? Neurology. 1998; 50 (2), 509–511. <u>https://doi.org/10.1212/WNL.50.2.509</u>.

190

191 Table 1. Species of captured small mammals and results of virus screening

Mammal species	Common name	Mammarenavirus	Orthohantavirus	Orthonairovirus
Crocidura goliath	Goliath shrew	0/128*	0/128	44/ 128
Crocidura poensis	Fraser's musk shrew	0/1	0/1	0/1
Hybomys univittatus	Peter's striped mouse	0/3	0/3	0/3
Hylomyscus sp.	African wood mouse	0/2	0/2	0/2
Lemniscomys striatus	Typical striped grass mouse	0/3	0/3	1/3
Lophuromys sp.	Brush-furred mouse	0/7	0/7	0/7
Mus minutoides	African pygmy mouse	0/41	0/41	6 /41
Mus musculus	House mouse	0/3	0/3	0/3
Oenomys hypoxanthus	Common rufous-nosed rat	0/6	0/6	2 /6
Praomys misonnei	Misonne's soft-furred mouse	0/65	0/65	11/65
Rattus rattus	Black rat	0/16	0/16	5 /16
Stochomys longicaudatus	Target rat	0/6	0/6	0/6
		0/281	0/281	69/281

192

193 Table 2. Pairwise comparisons of nucleotide and amino acid sequences among representative orthonairoviruses

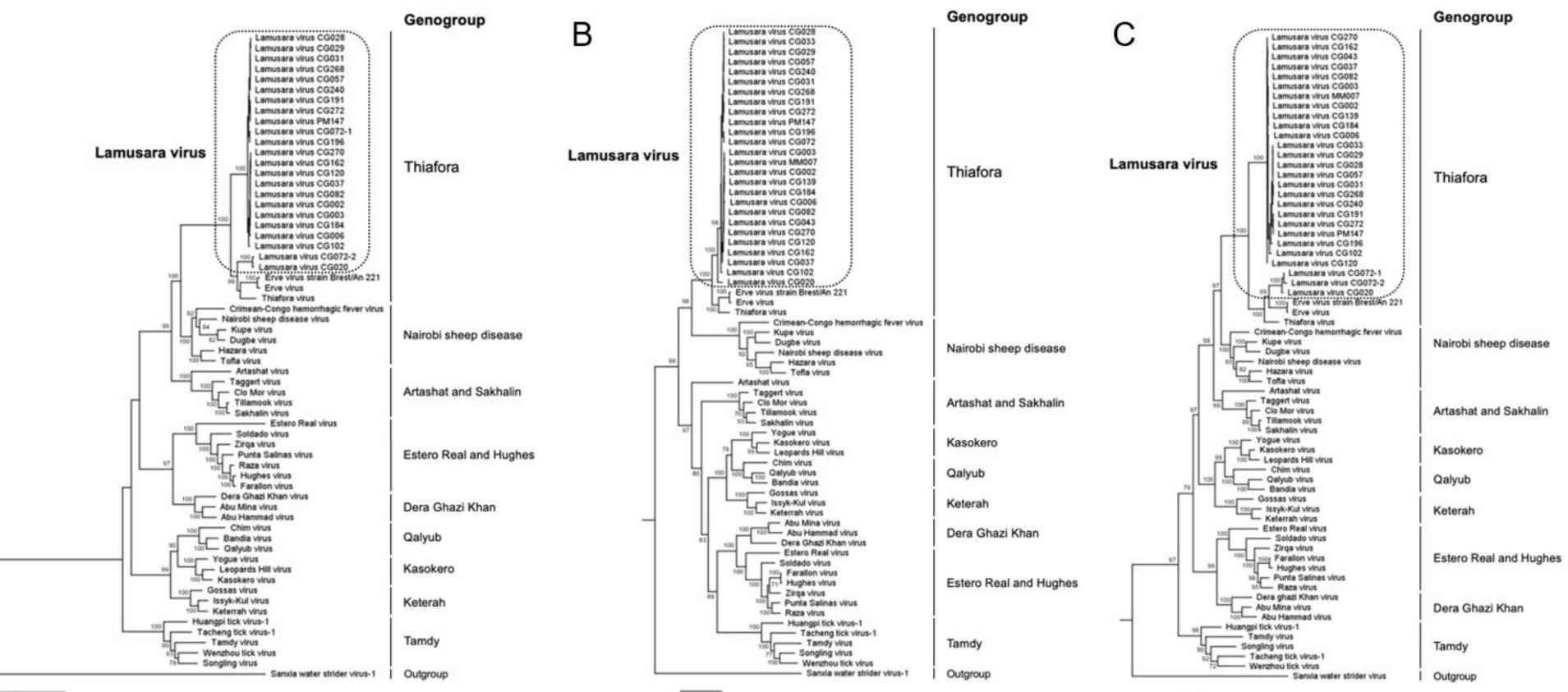
	Nucleotide (%)							
	LMSV CG002	LMSV CG020	ERVEV	TFAV	CCHFV	HAZV	NSDV	DUG
L								
LMSV CG002		68.6	65.0	66.8	53.5	52.0	52.7	54.1
LMSV CG020	66.9		67.1	68.4	53.0	53.1	53.3	55.3
ERVEV	69.6	67.9		68.8	52.4	51.3	51.5	53.1
TFAV	72.0	69.0	73.9		52.2	51.2	52.3	52.6
CCHFV	47.7	45.6	47.9	49.1		63.4	64.5	62.9
HAZV	48.7	47.4	49.7	49.9	66.8		65.4	63.8
NSDV	48.1	46.7	48.9	50.8	67.5	71.2		66.3
DUGV	48.7	47.2	48.7	49.8	65.2	67.8	70.2	
GPC								
LMSV CG002		82.5	67.9	69.0	43.8	44.8	43.5	45.3
LMSV CG020	92.6		66.7	67.7	43.6	44.6	43.4	45.1
ERVEV	68.5	68.3		70.0	43.5	44.9	45.0	45.1
TFAV	70.8	70.4	73.0		42.9	44.2	43.1	44.7
CCHFV	35.1	35.4	37.4	35.6		49.7	53.6	53.4
HAZV	39.5	39.2	39.7	39.5	41.6		59.1	54.7
NSDV	37.2	37.2	37.6	37.2	45.8	44.4		58.8
DUGV	37.0	36.9	37.2	35.9	44.1	50.4	55.6	
N								
LMSV CG002		59.9	60.9	62.3	53.3	52.9	54.7	40.6
LMSV CG020	61.4		68.9	70.9	52.4	51.2	52.3	51.4
ERVEV	61.2	72.9		67.9	51.7	51.2	51.5	51.4
TFAV	62.5	76.2	60.8		52.6	50.2	51.7	51.7
CCHFV	45.5	42.9	42.2	44.9		61.1	63.1	60.4
HAZV	44.7	41.6	42.1	42.7	60.3		63.2	59.9
NSDV	46.0	43.1	43.8	45.3	62.2	64.0		63.5
DUGV	41.8	42.3	44.2	44.2	57.7	56.2	60.5	
				Amino	acid (%)			

Partial sequence of L protein at position 6,913-11,471 nt on LMSV L-segment (DDBJ accession numbers LC671712 for CG002 and LC671780 for CG020) and complete nucleotide and amino acid sequences of GPC and N protein were analyzed by MEGA7 software (https://www.megasoftware.net/). Percent values of nucleotide and amino acid sequence identities are indicated in the upper right half and lower left half, respectively. LMSV, Lamusara virus (DDBJ accession numbers: LC671712-LC671714 for CG002 and LC671780-LC671782 for CG020); ERVEV, Erve virus (GenBank accession numbers: JF911697-JF911699); TFAV, Thiafora virus (GenBank: NC_039220-NC_039222); CCHFV, Crimean-Congo hemorrhagic fever virus (GenBank: NC_005300-NC_005302); HAZV, Hazara virus (GenBank: NC_038709-NC_038711); NSDV, Nairobi sheep disease virus (GenBank: EU697950, EU697951 and AF504294); DUGV, Dugbe virus (GenBank: NC_004157-NC_004159).

194

195 Appendix Table. Primers used for virus screening and amplification of Lamusara virus genome

Primer name	Description	Sequence (5'-3')
Primers used f	or virus screening	
Arena-F*	Forward primer for mammarenavirus detection	CACATAGTTGGGCCCCACTTGCTGTGATC
Arena-R*	Reverse primer for mammarenavirus detection	AGGATAAGTGAAAGAGAGAGTAATTC
HAN-L-F2*	Forward primer for orthohantavirus detection	TGCWGATGCHACIAARTGGTC
HAN-L-R2*	Reverse primer for orthohantavirus detection	GCRTCRTCWGARTGRTGDGCAA
Nairo-F	Forward primer for orthonairovirus detection	AARTGGGGYCCIATICACTGYTGYTC
Nairo-R	Reverse primer for orthonairovirus detection	GGRACACTRTTRTACATISCYTGTTG
Primers used f	or amplification of Lamusara virus genome	
LMSV-L-F1	Forward primer for L protein at position 1-4,809 nt	CGAGTATCTCAAAGAAAGCAATCCC
LMSV-L-R1	Reverse primer for L protein at position 1-4,809 nt	CTCCCAGTTCATATGTCTMTCTGCAG
LMSV-L-F2	Forward primer for L protein at position 4,390-7,013 nt	AATGGCATAAGCAGATTRTCCTG
LMSV-L-R2	Reverse primer for L protein at position 4,390-7,013 nt	GCAGGRATTTCAATTTGTCGAC
LMSV-L-F3	Forward primer for L protein at position 7,404-11,583 nt	TAACTCATGCTGGCAGTTCAGATG
LMSV-L-R3	Reverse primer for L protein at position 7,404-11,583 nt	TTTCTCAAAGATAGTATTCCCCCCTACC
LMSV-M-F1	Forward primer for GPC at position 1-3,011 nt	TCTCAAAGAAAGWCTAGCGGCAAACTCGTC
LMSV-M-R1	Reverse primer for GPC at position 1-3,011 nt	CCAGCTTCCTGTGGTGCAGTAGTAGTC
LMSV-M-F2	Forward primer for GPC at position 2,505-3,810 nt	ACTTGGTGYTGGGGAGTTGGWACAG
LMSV-M-R2	Reverse primer for GPC at position 2,505-3,810 nt	TCTCAAAGATATAGGAGCGGCATACTCG
LMSV-S-F	Forward primer for N protein at position 1-2,016 nt	TCTCAAAGAAAGYTGTGCTGYATACTG
LMSV-S-R	Reverse primer for N protein at position 1-2,016 nt	TCTCAGAAGATAGTGTTGCTGCATACTG


196

197 Figure Legend

Maximum-likelihood phylogenetic trees of LMSV were constructed based on L protein partial nucleotide sequences (at position 6,913-11,471 nt on LMSV large-segment (DDBJ accession number: LC671712)) (A), GPC complete nucleotide sequences (B) and N protein complete nucleotide sequences (C) using IQ-tree (http://iqtree.cibiv.univie.ac.at/) with 1,000 bootstraps. Bootstrap values of \geq 70% are shown at the nodes of the trees. Nine genogroups of genus *Orthonairovirus* are shown on

- 203 the right of the trees (4) and LMSV clusters in each segment were circled by broken line. The scale bar
- 204 indicates nucleotide substitutions per site.

