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Revealing high-resolution structures of microtubule-associated
proteins (MAPs) is critical for understanding their fundamental
roles in various cellular activities, such as cell motility and in-
tracellular cargo transport. Nevertheless, large molecular mo-
tors that dynamically bind and release microtubule networks
are challenging for cryo-electron microscopy (cryo-EM). Tradi-
tional structure determination of MAPs bound to microtubules
needs alignment information from the reconstruction of micro-
tubules, which cannot be readily applied to large MAPs with-
out a fixed binding pattern. Here, we developed a compre-
hensive approach to estimate the microtubule networks (multi-
curve fitting), model the tubulin-lattice signals, and remove
them (tubulin-lattice subtraction) from the raw cryo-EM micro-
graphs. The approach does not require an ordered binding pat-
tern of MAPs on microtubules, nor does it need a reconstruction
of the microtubules. We demonstrated the capability of our ap-
proach using the reconstituted outer-arm dynein bound to mi-
crotubule doublets. In addition, we applied our multi-curve fit-
ting approach to other biological filaments and achieved accu-
rate estimations. Our work provides a new tool to determine
high-resolution structures of large MAPs bound to curved mi-
crotubule networks.

1. Introduction
The cryo-electron microscopy (cryo-EM) field has seen rapid
development in the past few years (1, 2). High-resolution
structure determination of rigid globular proteins and heli-
cal assemblies in solution has become readily achievable in
general cases (3–6). However, there are still numerous chal-
lenges ahead, which require considerable efforts on care-
ful sample preparation, optimization of data acquisition, or
improved image processing approaches. One major chal-
lenge is to determine high-resolution structures of intercon-
nected networks of cellular filaments decorated with intricate
protein complexes, such as microtubules and the numerous
microtubule-associated proteins (MAPs). Using in vitro re-
constituted samples and improved image processing meth-
ods (7, 8), high-resolution structures of several MAPs bound
to microtubules have been obtained (9–18). Moreover, a
protofilament refinement protocol has been developed to fur-
ther improve the reconstruction quality of each protofilament
and their binding partners (19).

Nevertheless, almost all currently reported structures
of MAPs in the microtubule-binding states require a pre-
reconstruction of the microtubule itself. Several key con-

ditions must be met for a successful reconstruction in such
cases. First, the MAPs must be small enough so that the
microtubule alignment is not severely affected and a high-
resolution reconstruction of the microtubule itself is achiev-
able. Second, the decoration of the MAPs on microtubules
must be specific, dense, and ordered to avoid insufficient sig-
nals of the targets after averaging. Finally, the bound MAPs
must have stable conformations, sufficient orientations, and
strong signals for convergent refinement. However, some
MAPs, especially motor proteins, exhibit large conforma-
tional changes on microtubules. This leads to a common phe-
nomenon that high-resolution features of MAPs can only be
observed near the microtubule surface (20–23).

Taking all these together, it is not straightforward to ob-
tain high-resolution structures of large MAPs bound to mi-
crotubules in a less ordered or symmetry mismatched way
using conventional single-particle approaches. Such limita-
tion has been a major bottleneck that prevents us from under-
standing the detailed interactions between large motors and
their tracks.

A well-established way to tackle symmetry mismatch
and flexibility is to subtract the dominant signals from the
raw particles after the three-dimensional (3D) reconstruction
(24–28). Similar approaches can be potentially applied to
less ordered large MAPs. However, successful application of
post-3D subtraction methods requires several key conditions,
such as (i) accurate 3D reconstruction of the dominant sig-
nals, (ii) successful pass of alignment information to target
signals, (iii) limited motion among different regions, and (iv)
relatively clean background. For many intricate filamentous
networks and their associated proteins, none of these condi-
tions can be straightforwardly satisfied. New approaches are
urgently needed to tackle those emerging challenges.

Here, we used the outer-arm dynein (OAD) from
Tetrahymena thermophila as a good example to develop a
comprehensive approach for high-resolution reconstruction
of large, flexible, and symmetry-mismatched MAPs bound
to the interwoven microtubule networks. OAD is a 1.8-MDa
molecular motor that can spontaneously form an array with
24-nm periodicity upon microtubule doublet (MT doublet)
binding (29, 30) (Fig. 1a). Nevertheless, multiple binding
sites on the MT doublet surface co-exist during the in-vitro
reconstitution assay (31), which leads to mismatched sym-
metries among different segments. As a result, OAD signals
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appear completely smeared in the reconstructed MT dou-
blet maps using conventional single-particle approaches (Fig.
1b). Furthermore, attempts to directly reconstruct OAD also
fail because particle picking, 2D classification, and alignment
are all severely influenced by the predominant signal from the
tubulin lattice (Fig. 1b). On the other hand, as OAD is rel-
atively large and multiple OAD units are densely arrayed on
MT doublet, obtaining a reliable initial model of MT doublet
itself is difficult possibly due to the severe signal interference
from OAD molecules (Fig. 1b). Therefore, the conventional
post-3D signal subtraction approach (24, 26–28) is not appli-
cable for high-resolution analysis of less ordered large motors
on microtubule networks.

Inspired by early studies on the statistical modeling and
removal of liposome signals (32, 33), we have developed a
comprehensive approach to estimate microtubule networks,
model the tubulin-lattice signals, and remove them from the
raw micrographs, which allows accurate 3D reconstruction
of OAD complexes in combination with a multiple-level lo-
cal refinement procedure. The binding protofilaments signals
and microtubule-OAD interactions can be accurately restored
by subsequent local refinement of the original images using
the alignment information from OAD. Our method fills an
important gap of current approaches for cryo-EM studies on
large MAPs and can be potentially applied to many other sim-
ilar biological systems.

2. Material and methods

2.1 A general model for MAPs bound to microtubule net-
works
We aim to obtain high-resolution cryo-EM reconstructions of
MAPs out of the datasets that meet the following challenging
conditions: (i) highly curved and intersecting sets of micro-
tubules, (ii) mismatched symmetries due to multiple binding
sites, less ordered and sparse decoration of microtubules, (iii)
large size and multi-level flexibility of the target MAPs. To
solve these challenges, we developed an iterative approach
to trace individual microtubules from the networks by fit-
ting multiple polynomials simultaneously and removing the
tubulin-lattice signals estimated from local 2D averages. The
large MAPs can be subsequently treated as a normal single-
particle target and refined using a multi-level local refinement
procedure to obtain high-resolution information of local re-
gions.

2.2 Theoretical basis of tubulin-lattice signal modeling and
subtraction
Microtubules are filamentous structures built by densely
packed α/β-tubulin heterodimers that form individual
protofilaments in a head-to-tail manner (34). Depending on
whether the path of each protofilament aligns with the ma-
jor axis of the tubular structure, microtubules can be divided
into straight or super-twisted classes (35). The common 13-
protofilament microtubule and MT doublet both belong to the
straight class and have repeating tubulin subunits along the
major axis per 8 nm. Considering the high structural simi-
larity between the α- and β-tubulin (36), tubulin-lattice sig-

nals repeat at approximately 4 nm intervals along the ma-
jor axis. Meanwhile, large microtubule-based motor proteins
may have different periodicities, such as OAD which repeats
every 24 nm, or may just randomly bind to the microtubule,
such as the dynein/dynactin/BICD2 complex.

Since the straight microtubule is a periodic 3D structure,
the 2D projection of microtubule is also periodic. We can
therefore treat the projection of each microtubule as an 1D
crystal. When the MAP has a periodicity that differs from
the microtubule, we can then perform signal decomposition
by utilizing this symmetry discrepancy of the 1D crystal. Af-
ter decomposition, the signal from microtubule can be sub-
tracted without doing a 3D reconstruction.

A statistical model to deal with more general cases is
simplified as follows. Suppose there exist two different types
of signals S1(x,y) and S2(x,y), which repeat at periodicities
T1 and T2 (T2>T1) along the x direction (x, curve length
along the central major axis; y, distance to the central major
axis). At any given position (x,y), the total signal with noise
can be written as:

S(x,y) = S1 (x,y)+S2 (x,y)+N(x,y) (1)

where S1 is the dominant signal with the smaller periodicity
T1, while S2 is the signal of interest, of which the alignment
is affected by S1; N is the noise. For simplicity, we ignore
the background value here and will discuss it in detail later.
In addition, since the periodic signals are restricted to the x
direction in our model, we will ignore the y-axis in the fol-
lowing analyses:

S (x) = S1 (x)+S2 (x)+N (x) (2)

We estimate the averaged signal using K adjacent seg-
ments at T1 periodicity as follows:

SK (x) = 1
K

K∑
i=0

S (x− iT1) (3)

SK (x) = 1
K

K∑
i=0

[S1 (x− iT1)+S2 (x− iT1)+ N (x− iT1)]

(4)
SK (x) = S1,K (x)+S2,K (x)+NK (x) (5)

Here, the K-averaged value of signals at position x can
be decomposed into three parts: (i) S1,K (x), the contribu-
tion from the coherent average of the signal S1 at its own
periodicity T1, (ii) S2,K (x), the contribution from S2, which
has a periodicity of T2, but is incoherently averaged using
a smaller periodicity T1, (iii)NK , the noise after local aver-
age. Assume N ∼ N(0,σ2), NK is also Gaussian and NK ∼
N(0, 1

K σ2).
Since S1 (x) = S1 (x− iT1) , ∀i ∈ Z, the value of

S1,K(x) is ideally S1(x) itself under the assumption that all
other parameters are perfect. However, due to the imper-
fect estimation of T1 and positional parameters of each av-
eraged segment, there is an image blurring effect which can
be simply regarded as a convolution of S1 with a Gaussian
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Fig. 1. Outer-Arm Dynein (OAD) reconstruction is severely influenced by the signal from MT doublet. (A) Raw cryo-EM micrograph and schematic representation of
OAD binding modes. The OAD and tubulin signal repeat along the major aixs of microtubule(x direction). Scale bar: 50 nm. (B) Cryo-EM image processing of MT doublet and
OAD from the OAD-MT doublet reconstitution datasets. For MT doublet, the particle picking and 2D classification are little affected by the signal of OAD. 3D reconstruction
of MT doublet is only possible given a reference. For OAD, every step of image processing is largely influenced by tubulin lattice signal. 3D reconstruction of OAD in the
presence of MT doublet is not achievable. The OAD array and MT doublet are indicated by sky blue and blue arrows respectively.

kernel. This blurring effect does not significantly affect low-
frequency information.

S2,K (x) can be further decomposed into two parts, the
contribution from S2 (x), equivalents at the position (x −
iT1), where there exists an integer j (i, j ≤ K) such that
iT1 = jT2 , and signals from other non-equivalent positions.
For typical biological filaments and their associated proteins,
T2 is typically an integer multiple of T1 (e.g., 24-nm OAD
repeat versus ‘4-nm’ MT doublet repeat). Assume T2 = mT1
and K is sufficiently big (e.g., >10m), S2,K (x) can be ap-
proximate as:

S2,K (x) = 1
m

[
S2 (x)+

m−1∑
i=1

S2 (x− iT1)
]

(6)

The background of cryo-EM images can vary signifi-
cantly among different areas due to ice thickness or uneven
distribution of electron beam intensity. However, the effect
can be easily minimized by a high-pass filter (37) or real-
space background estimation approaches (33). Therefore, it

can be reduced to a constant function as long as the images
have been properly pre-processed, and its final effect can be
ignored.

Now, we estimate the ideal information at x after sub-
tracting SK from S based on the above assumptions and sim-
plification.

S (x)new = S (x)−SK (x) (7)

S (x)new = m−1
m

S2 (x)− 1
m

[
m−1∑
i=1

S2 (x− iT1)
]

+Nnew (x)

(8)
From the equation, it is obvious that the contribution

from the signal S1 is gone in the ideal case. We linearly scale
Snew by a factor of m

m−1 :

S (x)new
′ = m

m−1 S (x)new (9)

= S2 (x)− 1
m−1

[
m−1∑
i=1

S2 (x− iT1)
]

+Nnew (x)′ (10)
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= S2 (x)− S2,b (x)+ Nnew (x)′ (11)

The information of the scaled image after SK subtrac-
tion contains three major parts: (i) the target signal S2 ,
(ii) S2,b (x) the bias imposed by averaging (m − 1) con-
secutively translated S2 signals, and (iii) the noise Nnew

′,
the new distribution of noise after subtraction, explicitly ex-
pressed as Nnew

′ ∼ N(0, m(K+1)
(m−1)K σ2). The noise Nnew

′ is
slightly higher than the original noise N from the raw micro-
graphs. When K and m are both sufficiently large, Nnew

′

is nearly the same as the original noise level. Thus, we con-
clude the additional noise imposed after subtraction is minor.
The term S2,b (x) can be regarded as a bias, which depends
on the specific targets and may vary in different cases. The
correlation between S2 and S2,b reflects how much the tar-
get structure resembles itself by translation. In general cases,
we assume S2 does not show any translational symmetries
of its own, which will result in a significantly low corre-
lation with S2,b, such that the normalized cross-correlation
NCC

(
S2,S2,b

)
<< 1, especially at high-frequency.

In the ideal case, the signal S1 is completely removed
from the raw micrographs, while the target signal S2 is
largely preserved except a minor addition of the bias S2,b

and slightly increased noise Nnew
′. In practice, other fac-

tors also affect the accuracy of Snew
′, such as background

estimation, curve fitting, periodicity, pseudo-symmetry (e.g.,
α- and β-tubulin), CTF variation, magnification distortion,
structural flexibility, and other unexpected signals. These
factors mostly affect the accuracy of high-frequency infor-
mation, as the effects on low-frequency information can be
easily approximated. A more accurate estimation of the final
subtracted image is described as below:

S (x)final = S2 (x)−S2,b (x)+Nnew (x)′ +Nhf +Bhf

(12)
where Nhf and Bhf are respectively the high-frequency
noise and bias imposed by the aforementioned factors. They
will not significantly affect the reconstruction of S2 as the
alignment is dominated by low-frequency signals.

In the case of sparse and random decoration, such as the
microtubules associated with dynein/dynactin/BICD2 com-
plexes, T2 and m are regarded as infinitely large, such that
the term S2,b is near zero. Therefore, the bias is not stronger
than that in the case of a finite T2.

Taking MT doublet projection signal as S1 and its re-
peating length 4 nm as T1, and OAD projection signal as
S2 and its repeating length 24 nm as T2, the workflow for
the local 2D averaging and subtraction of MT doublet signal
is shown in Fig. 2. Here the filaments are not completely
straight, so the averaging process needs to be modified to
take curvatures into account. The curvature is parameter-
ized through a process we call multi-curve fitting, which is
described in the next section. During the averaging step, a
soft-edged rectangle mask is applied for each microtubule to
avoid numerical artifacts (Fig. 2a and b). The background
is estimated using the data values outside the mask (Fig. 2b).
The width of this mask is dynamically changed according to
the projected microtubule width (Fig. 2c). Fig. 2d shows

a typical image after tubulin-lattice signal weakening. More
details about the parameters and usage are in our code docu-
mentation (https://github.com/PengxinChai).

2.3 Multi-curve fitting for tracing microtubules
To obtain a high-quality estimate of SK(x) in the aver-

aging process, the major axis of each filament needs to be
accurately traced with the sampling points well centered and
evenly spaced. We developed an iterative approach to fit and
refine multiple curves out of the filament networks from cryo-
EM micrographs (Fig. 3a and b). The flowchart contains
four main steps, (a) initial sampling, (b) coordinate optimiza-
tion, (c) multi-curve fitting, and (d) resampling. Using the
reconstituted MT doublet-OAD as a typical target, more de-
tails of these steps are explained below.

(a) Initial sampling
The goal is to obtain an initial set of coordinates as a

rough estimate of microtubule segment locations. This can
be done by automatic particle selection with or without tem-
plates using Gautomatch or other available programs (38–
40). Instead of trying to accurately detect all possible mi-
crotubule segments at the very beginning, our primary aim at
this step is to coarsely assign sufficient seeding coordinates
for subsequent optimization. Therefore, false positives can
be largely tolerated during the initial sampling step. In addi-
tion, the particles along the filament do not need to be densely
sampled (Fig. 3c).

(b) Coordinate optimization
The goal is to filter redundant or falsely picked particles,

add missing ones, center all effective coordinates on the mi-
crotubules, and extract useful orientational information such
as the in-plane rotation, which will minimize the errors due
to insufficient and inaccurate sampling points for subsequent
curve fitting. To achieve the goal, we perform 2D classifica-
tion in Relion (41) or cryoSPARC (42) by combining the mi-
crotubule segments from all available cryo-EM datasets un-
der the same condition, which allows improved signal-noise-
ratios (SNR) and accuracy of particle centers after averaging.
We subsequently extract the origin offsets of individual mi-
crotubule segments and re-center all of them. Falsely picked
or low-quality particles are removed from the dataset through
cycles of 2D classification. 3D reconstruction of the micro-
tubule is not required at this step but can further improve the
accuracy of particle centers and facilitate subsequent coordi-
nate extension if feasible.

We add missing particles by three independent ap-
proaches, (i) interpolation of new coordinates between adja-
cent particles depending on their distances (does not need ori-
entation information), (ii) coordinate extension towards both
directions of each microtubule segment (need the in-plane
rotation angle obtained from 2D classification or 3D recon-
struction), (iii) extrapolation of the two ends of a certain fil-
ament after curve fitting. The three approaches can be com-
bined in practice. Redundant coordinates are removed by a
certain distance cutoff (e.g., <8 nm) (Fig. 3d-f).

(c) Multi-curve fitting
Due to the complexity of real-world problems, there is

no single and simple solution to multi-curve fitting in gen-
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Fig. 2. Tubulin-lattice signal modeling and subtraction from raw cryo-EM micrograph. (A) Multi-curve fitting of MT doublet filaments. (B) 4-nm tubulin-lattice signal
modeling and subtraction. The major line of MT doublet was sampled at a 4 nm interval. Each 4 nm segment was extracted and aligned to generate an averaged image. A
soft-edge rectangle mask was then applied. The center region was used for subtraction. The background value was estimated using the data points outside the mask. Finally,
the subtraction between the original segment and 4 nm averaging results was performed. (C) The signal to be subtracted at the micrograph level. The white arrows indicated
that the filament width was dynamically determined during the subtraction process. (D) The cryo-EM image after tubulin-lattice signal subtraction. Scale bar: 50 nm.

eral cases (43, 44). We proposed the following approach
to specifically optimize the multi-curve fitting problem of
the microtubule networks from typical cryo-EM micrographs
(Fig. 3b). The approach requires the optimized coordinates
from step (b) as the input, under the assumption that our
targets meet several empirical conditions, such as relatively
small local curvatures (e.g., k < 1 µm−1), local smoothness,
limited curve lengths, and a small number of crossovers from
each micrograph. A summary of our approach is described
below.

(c1) Seeding by line segments
A small subset of neighboring data points (typically ∼ 5)

is randomly assigned. Based on the assumption that the local
curvature is small, a line segment is locally fitted by the least
square minimization. Due to the random assignment, the lo-

cal data points may come from single or multiple curves. If
they belong to multiple microtubules, the line fitting error is
normally extremely large and can be used as a criterion to re-
ject the currently failed attempt. Once failed, new locations
are attempted, while the failed points are marked to avoid re-
attempt.

(c2) Curve growth and evaluation
Once a seed of the local line segment is successfully

found, it will start growing by absorbing the nearest neigh-
bors from both ends. Distances and fitting errors between the
absorbed points and the current seed are used as criteria to
accept or reject the seed growth. Subsequently, a low-order
(e.g., 2-3) polynomial function is locally fitted by the least
square minimization on every successful seed. Each fitted
curve then grows at both ends by taking in the neighbors that

Pengxin Chai et al. | bioRχiv | 5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 23, 2022. ; https://doi.org/10.1101/2022.01.22.477366doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.22.477366


meet the cutoff criteria.
Two additional factors are considered to minimize the fit-

ting errors. First, each polynomial function gets updated dur-
ing the growth. Also, the abscissa and ordinate are swapped
to make sure the deviation of the Y-coordinates from each
micrograph is smaller than that of the X-coordinates, which
is particularly helpful when a microtubule is nearly vertical
in the cryo-EM micrograph.

(c3) Curve merging and re-assignment
For long microtubules, multiple seeds can likely be gen-

erated at different regions along with multiple polynomials
fitted on a single filament. Two curves are merged into one if
the difference between them is small and no significant gaps
among the data points are detected. To reduce the possibil-
ity that some data points at the crossovers between two or
more filaments are inaccurately assigned, we reassign each
data point to the curve that results in a minimum fitting error.
If there exists a significant subset of points (e.g., >5) that do
not match any of the fitted curves. A new seed is generated
out of those points for another cycle of multi-curve fitting
and evaluation. Otherwise, the points that lead to large fitting
errors are discarded. In practice, we manually check those
abnormal micrographs.

(d) Resampling
With a polynomial function fitted, it is straightforward to

generate a new set of well-centered and evenly spaced data
points on each microtubule. We use the resampled coordi-
nates to perform another cycle of 2D classification and/or 3D
refinement. The optimized coordinates can be further utilized
to re-perform the multi-curve fitting. In principle, the whole
process can be iterated multiple times to potentially improve
the accuracy of microtubule signal subtraction as described
in Section 2.2. However, in practice, one additional cycle is
sufficient, and more cycles do not significantly improve.

3. Results

3.1 Multi-curve fitting of microtubule networks
A representative result is shown in Fig. 3c-g. To evaluate the
fitting accuracy of our methods, we randomly selected 200
micrographs and divided them into three groups based on the
filament number. Then we compared the fitted curves and the
actual filaments and assigned each of the filaments into one
of the four categories: good, moderate, bad, and none fitted
(Fig. 3h and Figure S1). Overall, the fitting accuracy of our
approach is affected by the number of microtubules per mi-
crograph. When the filament number per micrograph is less
than 9, the result is sufficiently accurate (>89%). When it is
over 10, the number of non-fitted and falsely fitted filaments
increases (Fig. 3h). Among all the bad or non-fitting cases,
only 1.2% of the filaments belong to the micrographs that
contain no more than 5 microtubules each.

3.2 Tubulin-lattice signal subtraction substantially im-
proves the alignment of OAD
The alignment of OAD after tubulin-lattice subtraction was
substantially improved, as demonstrated by the new 2D class
averages of OAD (Fig. 4a). The approach also allowed

us to observe high-quality 2D class averages of residual ra-
dial spokes (RS) even if the most had been washed away
by high salt treatment during MT doublet purification (Fig.
4a). Compared to the 2D class averages from original micro-
graphs (Fig. 1b), the new results clearly show the features
of dynein, such as the motor domain, tail region, and stalks.
Most importantly, the top views of OAD were observed, sug-
gesting that our approach can specifically weaken the tubulin-
lattice signals and preserve the dynein signals. After exten-
sive 2D and 3D classification, the final 288, 224 high-quality
particles were used for 3D reconstruction, which yielded an
overall 8.96 Å resolution map of OAD array bound to four
protofilaments after global refinement (Fig. 4b). The res-
olution of the alpha-motor domain was improved to 3.19 Å
after multi-level focused refinement (Fig. 4b) (31). By con-
trast, no reliable 3D reconstruction could be achieved without
multi-curve fitting and tubulin-lattice subtraction.
3.3 Application in other filamentous structures and 3D to-
mograms
Despite the original purpose to deal with the microtubule-
based motors, our methods can be generalized to trace other
biological filaments in both 2D micrographs and 3D tomo-
grams. Singlet microtubules are more common than doublet
microtubules during in-vitro reconstitution experiments, and
our results demonstrate that our approaches could trace ev-
ery single microtubule at high accuracy, including the chal-
lenging cases (Figure S2A). We also tested another filament,
the cytochrome OmcS nanowire (45). OmcS monomer from
G. sulfurreducens polymerizes to form OmcS nanowires for
electron conductivity. We started with automatic particle
picking with a low cross-correlation threshold to have a good
initial sampling of filaments despite some false positive par-
ticles. After 3 rounds of coordinates extension, filtering, and
classification, nearly all the filament segments were well-
centered and evenly spaced (Figure S2B). Our multi-curve
fitting result shows that those filaments are accurately traced.

We also tested our multi-curve fitting algorithm in the
case of 3D tomograms of the axoneme from T. thermophila.
The seeding coordinates of MT doublet segments were first
generated by template-based 3D particle picking in EMAN2
(46). To extend our approach to 3D, we decompose the 3D
coordinates into two sets of 2D coordinates from each tomo-
gram, in the X-Y and X-Z planes respectively, and then per-
formed multi-curve fitting separately as described in the case
of 2D. We then compose a curve in 3D space from the two
fitted curves in 2D. Finally, we evenly resample the (X, Y,
Z) coordinates in 3D space using the fitted curve. The fitting
results in 3D are sufficiently accurate (Figure S2C), which
allows precise localization of the axonemal components such
as the outer-arm dynein.

4. Discussion and conclusions
Microtubule reconstruction-based approaches have been de-
veloped and used to obtain several high-resolution structures
of MAPs. This requires that MAPs be small or have defined
binding sites such as proteins natively bound to MT doublet
(21, 22, 48) to avoid the problem of symmetry mismatch.
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Fig. 3. Coordinate sampling pipeline and multi-curve fitting algorithm. (A) Flowchart of coordinate sampling. (B) Flowchart of multi-curve fitting. (C-F) Representative
results of coordinate sampling. (G) Representative result of multi-curve fitting. Images with coordinates were visualized using IMOD (47). Scale bar: 50nm. (H) Statistical
analysis of multi-curve fitting. Good fitting means the observed MT doublet filament matches well to the fitted curve. Moderate fitting applies to the situation where one MT
doublet filament is cut into several segments. Bad fitting means the curve doesn’t overlap with the centerline of the filament. None fitting means the filament is not fitted with
any curve. 1-4, n=162; 5-8, n=790; 9-13, n=368. See Figure. S1 for examples.
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Fig. 4. OAD reconstruction after tubulin-lattice signal subtraction. (A) Selected 2D class averages of OAD and radial spoke (RS). The averages clearly showed the
features of dynein such as stalk, tail domain, and motor ring. (B) 3D reconstruction of the entire OAD bound to four protofilaments yielded an 8.96 Å resolution map.
Subsequent local refinement on the alpha-motor region improved the resolution to 3.19 Å. Fourier Shell Correlation (FSC) curves were generated in Cryosparc (42).

Our study provides a new tool to study the high-resolution
structures of large MAPs bound to the microtubule with any
possible pattern, no matter it is dense, sparse, ordered, or ran-
dom, as long as the periodicity is not identical to that of the
tubulins. The curvature estimation and local averaging of
filaments in 2D avoids the difficulty of 3D modeling of the
helical (or near-helical) structure. In the case of the recon-
stituted OAD arrays bound to MT doublets, we can also ob-
serve 2D class averages of radial spokes after tubulin-lattice
subtraction (Fig. 4), suggesting that our method can be used
for other protein complexes, especially for large proteins or
protein complexes having a less ordered or sparse decoration
on microtubules. In addition to microtubule surface-binding
proteins, our approach can potentially be applied to the pro-
teins in the microtubule lumen, such as recently published
MAP6 that binds to the microtubule lumen at a periodicity
of 31 nm (49) and actin filaments inside the microtubule lu-
men (50). In addition, our approach provides a promising so-
lution to high-resolution structure determination of dynein-
dynactin-adaptor complexes bound to microtubules. More-
over, the same principle applies to many other biological sys-
tems other than microtubules, such as the host factors bound
to viral capsid tubes.

In our study, we also developed a tool to iteratively trace
filamentous objects by assembling several standard steps of
signal-particle cryo-EM data processing. This is different
from previously described filament tracing methods that at-
tempt to segment filaments in the first place (39, 40). We

find the goal is normally infeasible in practice due to many
unexpected factors that may affect the results. By contrast,
our solution essentially regards the filaments as normal sin-
gle particles and avoids extensive efforts to optimize the trac-
ing parameters at the very beginning, but resorts to the in-
formation accumulated in the later steps and refines the trac-
ing iteratively. After an initial selection of seeding particles,
the positional and qualitative information of those particles
can be optimized over cycles of iteration, which allows more
neighboring particles of high quality to be identified. The-
oretically, for a straight filament, one particle along the fil-
ament followed by one round of refinement and coordinate
extension is sufficient to trace the entire filament. In the case
of severely curved and overlapped filaments, the goal is more
challenging but can be mitigated by more cycles of multi-
curve fitting, classification, and particle optimization as de-
scribed in Section 2.2.

We have demonstrated that the capability of our
approach using the microtubule networks and bacterial
nanowire OmcS and expect to expand the approach to other
filamentous objects. For special filaments whose curvature
cannot be approximated by polynomial functions, further op-
timization is needed to make the algorithm applicable. For
example, a possible solution is to divide a very complicated
curve into several short segments with sufficient overlaps,
perform the multi-curve fitting and coordinate extension on
these short curves, and finally smoothly ‘stitch’ them to-
gether.
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Figure	S1.	Representative	results	of	multi-curve	fitting	in	different	situations.	A:	Good	

fit.	The	fitted	curve	traces	the	centerline	of	MT	doublet	well.	B:	Moderate	fit	shown	in	white	

rectangle	boxes.	Due	to	the	crossover	of	filaments	or	the	curvature,	some	filaments	are	

fitted	with	more	than	one	curve.	C:	Bad	fit	shown	in	a	white	rectangle	box.	The	fitted	curve	

doesn’t	trace	the	centerline	of	the	filament	due	to	multiple	crossovers.	D:	White	rectangle	

box	shows	that	some	filaments	are	not	fitted	due	to	a	combination	effect	from	crossover	

and	short	length	of	filaments.		
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Figure	S2.	Application	of	coordinate	sampling	and	multi-curve	fitting.	A:	

Representative	results	for	microtubule	singlets.	Microtubule	singlets	dataset	is	

downloaded	from	EMPIAR	(EMPIAR-10300).	B:	Representative	results	for	OmcS	nanowire.	

C:	3D	multi-curve	fitting	for	the	densely	packed	MT	doublets	in	axonemes.	After	curve	

fitting,	particle	positions	along	with	two	Euler	angles	were	extracted	and	imposed	during	

subsequent	sub-tomogram	averaging	analysis.		
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