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Abstract 12 
 Alphaviruses are a diverse genus of arboviruses capable of infecting many vertebrates including 13 
humans. Human infection is common in equatorial and subtropical regions and is often accompanied by 14 
arthralgia or encephalitis depending on viral lineage. No antivirals or vaccines have been approved, and 15 
many alphavirus lineages have only recently been discovered and classified. Alphavirus nsP2 protease is 16 
an important virulence factor yet is commonly thought to be a simple papain-like protease which only 17 
cleaves viral polyproteins. Here, I reveal novel molecular mechanisms of these proteases via sequence 18 
and predicted structure alignment and propose novel cellular mechanisms for the pathogenesis of viral 19 
arthritis by predicting which human proteins are likely cleaved by these proteases. In addition to the 20 
known primary cysteine mechanism in all alphaviruses and a secondary serine mechanism documented 21 
in chikungunya virus (CHIKV), I discovered secondary cysteine and threonine mechanisms exist in many 22 
other alphaviruses and that these secondary mechanisms coevolve with their viral polyprotein 23 
cleavages. As for cleavage prediction, neural networks trained on 93 different putative viral polyprotein 24 
cleavages achieved a Matthews correlation coefficient of 0.965, and, when applied to the human 25 
proteome, predicted that hundreds of proteins may be vulnerable. Notable pathways likely affected by 26 
cleavages include the cytoskeleton and extracellular matrix, antiproteases, protein 27 
translation/folding/glycosylation/ubiquitination, cellular differentiation, inflammation, and vesicle 28 
trafficking, hinting that this viral protease is a more important virulence factor than previously believed. 29 
 30 
Introduction 31 

Alphavirus genomes contain two open reading frames encoding non-structural and structural 32 
polyproteins. Although the structural polyprotein is proteolytically processed by the capsid protein and 33 
host furin and signal peptidases, the non-structural polyprotein is processed typically by a cysteine 34 
protease contained within nsP2 (nsP2pro). A cleft for substrate binding exists between nsP2’s C-terminal 35 
protease and S-adenosyl-L-methionine-dependent methyltransferase (MTase)-like subdomains 36 
connected by a flexible linker, and long-range interactions with nsP2’s N-terminal helicase[1, 2] or any 37 
nsP3 domains before its separation are important for polyprotein processing and virulence yet remain 38 
poorly characterized.[3, 4] CHIKV nsP2pro has been found to not only contain a papain-like cysteine 39 
mechanism, but also an adjacent serine with similar activity.[5] This mechanism has not yet been found 40 
in any other alphaviruses, but it likely dramatically affects the stability, activity, and selectivity of 41 
nsP2pro. Additionally, a single mutation (N475A) near the N-terminus of the protease subdomain was 42 
found to cause the flexible N-terminal residues to occupy the cleft and inhibit catalysis.[6] This mutation 43 
does not, however, exist in any natural variants, and this study was not performed on full-length nsP2. 44 
The nuclear localization signal and RNA-binding helicase determining nuclear and virion localization of 45 
nsP2 likely also drive nsP2pro’s selective pressures and multiple activities.[7] In addition to these 46 
subdomain interactions, most alphaviruses contain a stop codon at the end of nsP3 which is read 47 
through in 5-20% of polyproteins.[7, 9] Depending on this termination suppression, nsP2pro cleaves 48 
either two or three sites within the non-structural polyprotein with kinetic rates varying up to 25 49 
fold[10, 11] and, as with many viral proteases, is expected to cleave many host factors. To my 50 
knowledge, the antiviral TRIM14 is the only host protein experimentally verified to be cleaved by an 51 
alphavirus nsP2pro (Venezuelan equine encephalitis virus (VEEV) and somewhat by other New World 52 
alphaviruses).[12] 53 

Due to the few cleavages per polyprotein and the continually expanding taxonomy of 54 
alphaviruses, few viral proteases or their cleavages have been characterized.[13] Following the 55 
successful application of machine learning methods to other viral proteases for cleavage prediction in 56 
human proteins,[14-16] computational analysis of alphavirus proteases will likely be an important step 57 
toward discovering additional therapeutic targets. 58 
 59 
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Methods 60 
 Data Set Preparation 61 
 A complete, manually reviewed human proteome containing 20,350 sequences (not including 62 
alternative isoforms) was retrieved from UniProt/Swiss-Prot (proteome:up000005640 AND 63 
reviewed:yes).[17] All polyprotein sequences within the family Togaviridae were collected from 64 
GenBank,[18] and 93 different cleavages were manually discovered using the Clustal Omega multiple 65 
sequence alignment server.[19-21] Similar cleavages are discoverable in divergent species within the 66 
order Martellivirales but were not included here because none infect animals. The next closest species 67 
that can infect humans are rubella (RUBV) and hepatitis E (HEV) viruses within the broader class 68 
Alsuviricetes, but their non-structural proteases have drastically different structures and activities than 69 
those within Togaviridae and were therefore also omitted. All unbalanced positive cleavages were used 70 
for subsequent classifier training in addition to all other 5,461 uncleaved alphavirus sequence windows 71 
with glycines in the P2 position, totaling 5,554 samples. 72 

Protease Structure Prediction and Analysis 73 
AlphaFold was used to predict the structures of alphavirus nsP2 sequences (only the C-terminal 74 

protease and MTase-like subdomains).[22] Predicted backbones were nearly identical to experimental 75 
data, and predicted catalytic dyad side chain distances ranged from 4 to 8 Å. Although AlphaFold does 76 
not have the ability to accurately predict the impact of single missense mutations on protein 77 
structures,[23, 24] this set of predicted structures and simulations, albeit on often nearly identical 78 
sequences, serves as a starting point to understanding the diversity of mechanisms within alphaviruses. 79 
CABS-flex was used to predict alternate conformations and flexibilities,[25] and zinc binding prediction 80 
was performed with ZincBind.[26] Molecular graphics and analyses were performed using UCSF 81 
ChimeraX, developed by the Resource for Biocomputing, Visualization, and Informatics at the University 82 
of California, San Francisco, with support from National Institutes of Health R01-GM129325 and the 83 
Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious 84 
Diseases.[27] 85 
 Cleavage Prediction and Analysis 86 

As in my previous work on 3CLpro and PLpro,[14, 15] sequence logo-based logistic regression 87 
and naïve Bayes classification and physiochemical and one-hot encoded neural networks (NNs) were 88 
used for cleavage prediction.[28] To reduce any potential false positives, only proteins expressed in 89 
relevant cell types with cleavages with agreement between all five NN replicates and with total solvent-90 
accessible surface areas (SASAs) of more than 100 Å2 between positions P5 and P5’ were reported. 91 
SASAs were calculated from AlphaFold predicted human protein structures[22] with the FreeSASA 92 
package.[29] Multiple synovial fluid and associated cell type proteomes and transcriptomes were 93 
compiled and cross-referenced to remove cleavages irrelevant to arthritic pathogenesis.[30-35] 94 
Predictions of the effects of cleavage on subcellular localizations were performed using the DeepLoc 95 
server.[36] All training data, prediction methods, and results can be found on GitHub 96 
(https://github.com/Luke8472NN/NetProtease). 97 
 98 
Results 99 
 Although alphavirus proteases are diverse and not necessarily only papain-like, their cleavages 100 
resemble those of coronavirus papain-like protease (PLpro) but not of papain itself (Figure 1).[37] The 101 
repeated glycines and alanines in alphavirus cleavage positions P2, P1, and P1’ were, however, easier to 102 
align than coronavirus PLpro cleavages. Dimensionality reduction of putative cleavages clustered by 103 
order within the polyprotein much more than by lineage (except for previously discovered cleavages in 104 
tymoviruses[38]), indicating that all cleavages within Togaviridae but not Alsuviricetes can be combined 105 
into a single data set to train machine learning models to apply to human sequences (Figure 2). Although 106 
no cleavages from species outside Togaviridae were included for training here, it is noteworthy that 107 
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turnip yellow mosaic virus (TYMV) protease is but HEV and RUBV proteases are not structurally related 108 
to alphavirus nsP2pro. TYMV protease includes an equivalent catalytic cysteine helix and activity-tuning 109 
histidine flexible loop[39] yet does not contain an MTase-like domain to form a cleft as in alphaviruses. 110 
In addition to this more accessible active site, TYMV protease includes two hydrophobic patches 111 
required for interaction with ubiquitin for its deubiquitinating activity (Figure 3).[40] 112 
 113 

 114 
Figure 1: Sequence logo for all 93 putative cleavage sites.[41] 115 

 116 
Figure 2: One-hot encoded cleavage t-SNE colored by order within the polyprotein and by genus.[42] 117 

 118 
Figure 3: (A) Structural similarity between CHIKV and TYMV proteases near their active sites but (B) not 119 
in ubiquitin binding regions. Only TYMV protease binds ubiquitin’s I36 and I44 hydrophobic patches and 120 
its L8 loop. Tan ribbon is CHIKV, green ribbon is TYMV, red ribbon is ubiquitin (PDB code 6YPT).[27, 40] 121 

 122 
Alignment of all known alphavirus proteases (Figure 4) indicated that, in addition to a primary 123 

cysteine mechanism in all alphaviruses and a secondary serine mechanism found in at least CHIKV,[5] 124 
some proteases have secondary cysteine or threonine mechanisms. These secondary mechanisms may 125 
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restrict or extend the possible acidic residues aligning and polarizing the catalytic histidine,[43] and 126 
serine and threonine mechanisms may extend catalytic activity to higher pH.[44] By investigating how 127 
substrate sequences, particularly the P1 residue, coevolve with these different mechanisms, multiple 128 
functional hypotheses can be proposed: (1) cleavage after a P1 cysteine is most efficient when the 129 
secondary catalytic residue is another cysteine or serine, possible for an inert secondary alanine, and 130 
least efficient for a secondary threonine, (2) a secondary threonine is required for cleavage after a P1 131 
serine, and (3) an inert secondary alanine is required for cleavage after a P1 arginine. 132 
 133 

 134 
Figure 4: (A) Cladogram and multiple sequence alignment of the catalytic dyad and flexible loop of 135 

alphavirus and TYMV proteases and (B) their respective aligned cleavages. 136 
 137 

Near the catalytic histidine, other histidines or related positively charged amino acids in the 138 
longer flexible loops of Western equine encephalitis complex and related viruses are close enough in 139 
proximity with each other that they may bind ordered water molecules as in other proteases[45] or 140 
metal ions in multiple conformations.[26] Unlike RUBV cysteine protease[46] and hepatitis C virus (HCV) 141 
NS3 serine protease[47] which require metal ions in either a structural or catalytic (as in 142 
metalloprotease) role for activity, metal ions are known to inhibit CHIKV protease.[48] In these 143 
alphavirus proteases, metal binding may disrupt normal histidine alignment with aspartic acid[49] and 144 
aim its protonated side toward the catalytic cysteine, serine, or threonine, preventing the charge relay 145 
mechanism required for proteolysis (Figure 5A). Additionally, metal binding to another histidine in the 146 
center of the loop may aid its flexing backward to allow substrate loading. In some divergent, 147 
unclassified alphavirus proteases, the adjacent aspartic acid is replaced with serine, but in these cases 148 
there is always another nearby potential metal-binding residue (glutamic acid, aspartic acid, or another 149 
histidine)(Figure 5B). 150 
 151 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2022. ; https://doi.org/10.1101/2022.01.22.477317doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.22.477317
http://creativecommons.org/licenses/by/4.0/


6 
 

 152 
Figure 5: (A) Proposed metal binding histidines and adjacent aspartic acid guiding charge relaying in 153 

proteolysis. Tan ribbons are Eilat viruses, one of which includes five histidine residues,[50] purple ribbon 154 
is Agua Salud virus (ASALV), green ribbon is Tai Forest virus, and blue ribbon is Mwinilunga virus. (B) 155 

Proposed alternative metal binding residues in divergent proteases. Tan ribbon is Salmonid virus, purple 156 
ribbon is Wenling fish virus, and green ribbon is Comber virus).[27] 157 

 158 
To my knowledge, no P2 glycine substitutions have been discovered in alphavirus cleavages, so 159 

it is noteworthy that ASALV[51] nsP2/3 cleavage (DGVAS^APAYR in MK959114.1 and MK959115.1) 160 
contains an alanine in this position (Figure 4). No sequence features obviously correlated with this 161 
substitution, and ASALV protease’s predicted structure is extremely similar to those of related 162 
alphavirus proteases, indicating that other alphavirus proteases may also cleave alanine-containing 163 
substrates albeit possibly with suboptimal kinetics. Tryptophan is typically thought not to be directly 164 
involved in the active site, yet it appeared here to obstruct the secondary catalytic mechanism in some 165 
conformations (Figure 6A). In addition to the flexibility of the catalytic dyad, the size and flexibility of the 166 
variable loop between the protease domain β1 and β2 strands and its interaction with the MTase-like 167 
domain loop between β7 strand and α9 helix (Figures 6B and 6C) likely determine the rate of substrate 168 
loading into the cleft and therefore cleavage kinetics.[52] Deletion of the exposed and most proximal 169 
MTase-like domain residue (typically leucine, phenylalanine, or tryptophan) and sharper backbone 170 
twisting by subsequent prolines in divergent alphaviruses may also widen the gap between these two 171 
loops and affect substrate loading or may allow serine to better fit in the P1 pocket instead of the more 172 
common alanine (Figure 6D). Sodium[53, 54] or other salt binding within this cleft may affect structure 173 
and substrate binding, and these deep cleft residues are not conserved between alphaviruses. No 174 
matter the width of this cleft, the nsP2/3 site remained over 40 Å away from the active site, supporting 175 
this site’s proposed trans cleavage.[3] Even Salmonid virus’ large insertions at the C-terminus of its nsP2 176 
MTase-like domain and between its nsP3 macro and zinc-binding domains did not affect this distance. 177 
  178 
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 179 

 180 
Figure 6: (A) CABS-flex ensemble of CHIKV nsP2pro flexible catalytic core and (B) flexible loop between 181 
protease subdomain (tan ribbon) β1 and β2 strands interacting with loop between MTase-like domain 182 

(purple ribbon) β7 strand and α9 helix. (C) ASALV insertion within flexible loop.[25] (D) Similarity 183 
between interacting MTase-like domain loops with noteworthy deletions. Tan ribbon is Alaskan harbor 184 

porpoise virus, blue ribbon is Salmonid virus, purple ribbon is Wenling fish virus, green ribbon is Wenling 185 
hagfish virus, and red ribbon is Comber virus.[27] 186 

 187 
As with both coronavirus protease cleavage predictions, NNs outperformed all other classifiers 188 

(Figure 7). The optimized hyperparameters for NNs with one-hot encoding were Adam solver, rectifier 189 
(ReLU) activation, 1e-8 regularization, no oversampling, and 1 hidden layer with 10 neurons. Combining 190 
networks into ensembles again improved accuracy and stability, so the final results were generated with 191 
5 replicates of 10-fold cross-validated (CV) networks with an average Matthews correlation coefficient 192 
(MCC) of 0.965. Very few false positives existed for any prediction method, but two putative sites were 193 
somewhat conserved within the Semliki Forest (SF) complex nsP1 MTase-GTase core.[55] These two 194 
sites are predicted to be ordered and not solvent exposed and so are likely not biologically important. 195 
When applied to the human proteome, 714 of 20,350 proteins were predicted to be cleaved at least 196 
once. Enrichment analysis did not return useful results as for coronavirus protease predictions, so this 197 
large list was instead reduced as described in Methods to discuss only the most likely meaningful 198 
cleavages. 199 
 200 
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 201 
Figure 7: Train/test split fraction versus MCC demonstrating that the entire data set is not required for 202 

satisfactory accuracy. 203 
 204 
Discussion 205 

Similar biases and caveats exist for nsP2pro predictions as with previous viral protease 206 
predictions,[14, 15] yet many host pathways likely perturbed by nsP2pro are discoverable. Experimental 207 
validation is, however, required for all of the following hypotheses. Reviewing only predicted cleavages 208 
with the highest scores and sufficient SASAs and relevant tissue expression produced a more targeted 209 
list of cleavages for interpretation. This list contains many proteins involved in the cytoskeleton and 210 
extracellular matrix (ECM), protease inhibition, protein translation/folding/glycosylation/ubiquitination, 211 
cellular differentiation including the transforming growth factor beta (TGF-β) and tumor necrosis factor 212 
alpha (TNF-α) pathways, inflammation, and vesicle trafficking. 213 

Cleavage of many cytoskeletal proteins likely contributes to altered virus and host component 214 
trafficking, yet cytoskeletal drugs have remained mostly ineffective against alphaviruses. These drugs 215 
may help prevent initial endocytosis,[56, 57] internalization of replication complexes in spherules into 216 
cytopathic vacuoles,[58] and virion release, yet alphaviruses are known to still replicate in their 217 
presence.[59, 60] 218 

In the extracellular matrix, the most obviously affected region in arthritis, nsP2pro likely cleaves 219 
many structural proteins. In particular, cleavage of lubricin’s hemopexin-like domain, similar to its 220 
normal cleavage by a human subtilisin-like proprotein convertase (SPC), may disrupt its ability to bind 221 
other proteins at the cartilage surface, reducing lubrication and promoting inflammation.[61] Cleavage 222 
of collagen alpha-1(XII) may disrupt normal shock-absorbing function.[62] In addition to the general 223 
matrix disruption likely resulting from cleavage of perlecan, elastin, von Willebrand factor A domain-224 
containing protein 1 (WARP),[63] laminin, nidogen-1,[64] and thrombospondin-3 and -4,[65] 225 
degradation products of elastin and perlecan (laminin-like globular domain (LG3) of endorepellin) are 226 
documented to promote joint inflammation[66] and prevent angiogenesis in avascular cartilage,[67] 227 
respectively. Cleavage of specifically laminin subunit gamma-1 would not disrupt laminin binding 228 
membrane-bound integrins and dystrophins or extracellular collagen, but it may disrupt gamma subunit 229 
binding to nidogen and polymerization,[68, 69] freeing it up to be a more accessible alphavirus 230 
receptor.[70, 71] Similarly extracellularly secreted although not structural, nsP2pro has predicted 231 
cleavages near and within the bait regions of the serum and synovial fluid antiproteases alpha-2-232 
macroglubulin (A2M) and pregnancy zone protein (PZP).[72, 73] 233 

Noteworthy cleaved proteins involved in translation include signal recognition particle receptor 234 
subunit alpha (SRPRA), eukaryotic peptide chain release factor GTP-binding subunits (ERF3A/B), and La-235 
related protein 1 (LARP1). Cleavage of SRPRA between its N-terminal SRX domain and its C-terminal 236 
targeting complex may reduce translocation of many proteins into the endoplasmic reticulum (ER). Only 237 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2022. ; https://doi.org/10.1101/2022.01.22.477317doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.22.477317
http://creativecommons.org/licenses/by/4.0/


9 
 

the viral structural polyprotein contains a signal peptide, so this cleavage may also relate the kinetics of 238 
its N-terminal capsid protein autocleavage to its subsequent SRP association.[74, 75] Cleavage of release 239 
factors ERF3A/B expressed in osteoblasts and osteoclasts may promote stop codon readthrough critical 240 
to alphavirus infection.[76, 77] Cleavage of LARP1 may have effects similar to its documented inhibition 241 
by alphavirus capsid protein or by mTOR often activated early in infection.[78] This mechanism of 242 
inhibiting host translation differs between mosquito and vertebrate cells, is not required for viral 243 
production, but may be required for internalization of the replication complex.[79] Unlike viruses 244 
requiring eukaryotic initiation factor 2 (eIF2) for translation, alphavirus downstream hairpin loop (DLP)-245 
mediated translation does not benefit from amino acid starvation, so the effects of alphaviruses on 246 
mTOR are more straightforward than those of picornaviruses, flaviviruses, etc. For example, cleavage of 247 
the E3 ubiquitin ligase tetratricopeptide repeat protein 3 (TTC3) may help activate AKT and downstream 248 
protein synthesis similar to its direct interaction with nsP3,[79, 80] and cleavage of TRIM63 may stabilize 249 
many proteins against amino acid starvation-associated degradation. 250 

Also after translation, cleavage of the immunophilins peptidyl-prolyl cis-trans isomerases (PPI) H 251 
and FKBP10 may affect folding of many relevant proteins. These may (1) have immunosuppressive 252 
effects similar to inhibition by tacrolimus, (2) modulate calcineurin, ribonuclease A, and some 253 
interleukins with cis-prolines in their native states, (3) affect proline- and hydroxyproline-rich collagen 254 
structure (supported by nsP2pro’s cleavage of prolyl 4-hydroxylase subunit alpha-1 and by documented 255 
excretion of proline and hydroxyproline in the urine of CHIKV-infected patients),[81] and (4) modulate 256 
alphavirus nsP3 proline-rich domain binding to amphiphysins involved in membrane bending of 257 
alphavirus-induced membrane organelles.[82, 83] 258 

Enzymes involved in glycosylation also have predicted cleavages, although the differential 259 
effects this would have on viral versus host protein glycosylation remain unknown. Cleavage of 260 
mannosyl-oligosaccharide glucosidase (MOGS) may broadly disrupt viral protein glycosylation as in 261 
congenital disorders of this enzyme,[84] and cleavage of beta-1,4-galactosyltransferase 3 (B4GALT3) 262 
may disrupt complex N-linked glycans on immunoglobulins as in RA.[85] Cleavage of ER degradation-263 
enhancing alpha-mannosidase-like protein 2 (EDEM2)[86] may disrupt host ERAD of viral 264 
glycoproteins[87] or redirect viral glycoproteins away from the cell membrane for internal budding as in 265 
SINV-infected mosquito cells.[88, 89] Cleavage of phosphoacetylglucosamine mutase (PAGM) may 266 
contribute to disruption of glycosaminoglycan polymers in cartilage and contribute to arthritic 267 
symptoms,[90] however N-acetylglucosamine (GlcNAc) supplementation sometimes used to treat 268 
osteoarthritis (OA) may be counterproductive given (1) it makes up some alphavirus glycans,[91] (2) it 269 
promotes replication of many other viruses in vitro and in vivo,[92] and (3) O-linked GlcNAc glycosylation 270 
of p65 aggravates TNF-α-mediated inflammation in rheumatoid arthritis (RA).[93] 271 

Other predicted cleavages involved in protein degradation include the SUMO-specific E1 enzyme 272 
SAE1, the E2 enzyme UBE2Q1, the E3 enzyme UBR4, ubiquitin-1, and tripeptidyl peptidase 2 (TPP2). As 273 
with other viruses, modulation of SUMOylation is nontrivial and likely time-dependent; depletion of the 274 
only E2 for SUMO, UBC9, protects against CHIKV infection in mice,[94] yet depletion of SUMOylation 275 
enhances SFV replication in mosquito cells.[95] Cleavage of UBE2Q1 in muscle may disrupt B4GALT1-276 
mediated cell adhesion to laminin and promote myoblast and satellite cell differentiation and syncytia 277 
formation[96, 97] to allow infection of myofibers without virion egress.[98-100] This is supported by the 278 
ability of alphaviruses to form filopodia-like protrusions mediating cell-to-cell transmission[101] and 279 
possibly to shield the virus from antibodies, making effective vaccination more difficult.[102] Cleavage of 280 
UBR4 may disrupt the N-end rule[103] to stabilize an inhibitor of apoptosis as with a picorna-like 281 
virus[104] or to stabilize cleaved viral functional proteins with less stable N-termini.[105] Cleavage of 282 
ubiquilin-1 between its ubiquitin-associated (UBA) and ubiquitin-like (UBL) domains may disrupt its 283 
trafficking ubiquitinated proteins to the proteasome[106] or its targeting of transmembrane 284 
proteins.[107, 108] Cleavage of the proteolytic TPP2 downstream of the 26S proteasome may promote 285 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2022. ; https://doi.org/10.1101/2022.01.22.477317doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.22.477317
http://creativecommons.org/licenses/by/4.0/


10 
 

viral susceptibility as in TRIANGLE disease[109] and may affect the pool of short peptides available for 286 
MHC class I presentation.[110] 287 

TGF-β is known to be elevated in RA and during alphavirus infection,[111] and its inhibition can 288 
reduce joint swelling yet does not reduce viral titer[112] and can even promote CHIKV-mediated cell 289 
death in vitro.[113] Cleavage of latent TGF-β binding protein 3 (LTBP3) near its ECM-binding C-terminus 290 
may be one mechanism alphaviruses employ to encourage release of TGF-β from latency-associated 291 
peptide (LAP) when combined with normal cleavage by host proteases in its N-terminal hinge and C-292 
terminus regions.[114, 115] These pathways are counterintuitive due to the many differential effects of 293 
TGF-β and bone morphogenetic proteins (BMPs) on different cell types and their interactions 294 
throughout their differentiation.[116] In the mesenchymal (MSC) lineage, TGF-β stimulates proliferation 295 
and differentiation of MSCs into chondrocytes and osteoblast progenitors into osteoblasts with 296 
downregulated RANKL. The closely related BMPs, however, can oppose TGF-β and are required for late 297 
stage osteoblast differentiation through their different SMAD signal transducers.[117] In the 298 
hematopoietic (HSC) lineage, TGF-β keeps HSCs in hibernation and prevents osteoclast progenitor 299 
differentiation into mature osteoclasts at least partially due to disrupted RANKL/OPG ratio.[118] 300 
Alphavirus infection is, however, more complex than elevated TGF-β alone and is associated with 301 
increased RANKL/OPG ratio and therefore osteoclastogenesis[119, 120] likely via upregulated IL-6 302 
positive feedback[121, 122] and disrupted osteoblastogenesis via reduced RUNX2.[123] This TGF-β 303 
disruption may direct stem cells toward differentiated lineages more susceptible to infection, yet 304 
disruption of other pathways may be able to prevent apoptosis in these differentiated cells. For 305 
example, cleavage of TNFR2 may prevent TNF-α transduction and even shed soluble TNFR2 which can, 306 
like its alternately spliced products, antagonize its full-length activity and downstream apoptosis of 307 
infected cells.[124] 308 

Likely also in an attempt to prevent inflammation and death of infected cells, cleavage of 309 
PYCARD between its pyrin domain (PYD) and caspase recruitment domain (CARD) may disrupt normal 310 
inflammasome formation and act like host CARD only proteins (COPs) or pyrin only proteins (POPs), 311 
inhibiting caspase 1 and its target cytokines.[125] As for other inflammatory molecular classes likely 312 
affected, polyamines are generally required by RNA viruses,[126, 127] and exogenous polyamines can 313 
restore inflammation and immune dysregulation in RA and OA.[128-130] Cleavage of diamine 314 
acetyltransferase 1 (SAT1) would increase intracellular polyamine concentration by preventing export 315 
and may (1) promote DNA methylation and reduce host transcription via S-adenosyl methionine (SAM) 316 
metabolism,[131] (2) downregulate IL-2 in PBMCs and contribute to decreased T cell effector function as 317 
in RA,[132] (3) enhance translation of polyproline motifs such as collagen and alphavirus nsP3 proline-318 
rich domain,[133] (4) speed up peptidyl-tRNA hydrolysis by termination factor eRF1 via its hypusine 319 
modification,[134] and (5) promote stop codon readthrough by altering tRNA conformation.[135] 320 
Cleavage of histidine decarboxylase (HDC), glutathione hydrolase 5 (GGT5), and phospholipase A and 321 
acyltransferase 3 (PLAAT3) would, however, oppose typical inflammation in RA (where histamine[136] 322 
and lysophospholipids[137] are elevated and glutathione[138] is depleted), serving as a reminder that 323 
viral arthritis is caused more by the immune response to infection than by the virus or nsP2pro. 324 

Lastly, the effects of predicted cleavages in vesicle transporting proteins are difficult to interpret 325 
because both retrograde and anterograde pathways are affected. Major differences exist between 326 
alphavirus-induced mammalian and mosquito membrane rearrangements, so experimental 327 
characterization is required to understand the relevance of these cleavages in each host.[139, 140] 328 
 329 
Conclusion 330 
 These predicted cleavages hint at many expected and novel mechanisms and indicate that 331 
nsP2pro is a much more important virulence factor than previously believed. Substrate docking and 332 
molecular dynamics may provide additional information about molecular mechanisms of these 333 
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proteases, and protease-specific kinetics and biological significance of these cleavages require 334 
experimental verification. Expansion of this data set to include all of Martellivirales or Alsuviricetes may 335 
also provide insight into how these molecular mechanisms evolved, but their inclusion into a cleavage 336 
prediction training data set would likely worsen the trained model’s accuracy for the human viruses 337 
discussed here. Even though many caveats exist without experimentation, similar prediction and 338 
interpretation should be performed for all other viral proteases. 339 
 340 
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