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Abstract 

Protein-protein interactions (PPIs) are involved in almost all essential cellular processes. 

Perturbation of PPI networks plays critical roles in tumorigenesis, cancer progression and 

metastasis. While numerous high-throughput experiments have produced a vast amount of data 

for PPIs, these datasets suffer from high false positive rates and exhibit a high degree of 

discrepancy. Coevolution of amino acid positions between protein pairs has proven to be useful 

in identifying interacting proteins and providing structural details of the interaction interfaces with 

the help of deep learning methods like AlphaFold (AF). In this study, we applied AF to investigate 

the cancer protein-protein interactome. We predicted 1,798 PPIs for cancer driver proteins 

involved in diverse cellular processes such as transcription regulation, signal transduction, DNA 

repair and cell cycle. We modeled the spatial structure for the predicted binary protein complexes, 

1,087 of which lacked previous 3D structure information. Our predictions offer novel structural 

insight into many cancer-related processes such as the MAP kinase cascade and Fanconi anemia 

pathway. We further investigated the cancer mutation landscape by mapping somatic missense 

mutations (SMMs) in cancer to the predicted PPI interfaces and performing enrichment and 

depletion analyses. Interfaces enriched or depleted with SMMs exhibit different preferences for 

functional categories. Interfaces enriched in mutations tend to function in pathways that are 

deregulated in cancers and they may help explain the molecular mechanisms of cancers in 

patients; interfaces lacking mutations appear to be essential for the survival of cancer cells and 

thus may be future targets for PPI modulating drugs.   

 

 

Introduction 

Cancer development and progression are characterized by the combined deregulation of multiple 

cellular processes resulting in unrestricted proliferation and replication potential, insensitivity and 

resistance to anti-growth signals and apoptosis, promotion of angiogenesis, and the ability to 
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invade and metastasize [1]. Protein–protein interactions (PPIs) are important in cancer biology as 

they are the foundations for correct formation of functional protein complexes and serve to relay 

cell growth and death signals between components in cancer-related signaling pathways [2]. PPIs 

are traditionally regarded as high-hanging fruits for drug development [3], but cancer-enabling 

PPIs are pursued as promising targets of developing drugs that aim to disrupt their interfaces in 

recent years [4]. For example, PPI modulators for PD-1/PD-L1 and Bcl-2/Bax are approved for 

cancer treatment, and even more candidates are in the clinical trials [5]. Large-scale high-

throughput experimental studies utilizing techniques such as affinity purification and chemical 

cross-linking have been used to detect PPIs in human and other organisms at the whole proteome 

level [6-8] or for cancer-related proteins [9, 10]. However, high-throughput PPI datasets often 

have high false positive and false negative rates and show considerable inconsistencies between 

studies [11, 12].  

Cancer genomics studies aim to identify genetic differences between cancer cells and normal 

cells by next-generation sequencing techniques [13]. Such studies have advanced our 

understanding of the molecular mechanisms of cancer growth, metastasis, and drug resistance 

in various cancer types and expanded the landscape of cancer-related genes and their genetic 

alterations [14-18]. Genome sequencing is also used to detect known disease-causing genetic 

variations that provide valuable information for making clinical decisions for cancer patients [19]. 

Cancer-causing genetic alterations lead to activation of oncogenes or deactivation of tumor 

suppressor genes, which can occur through structural changes of chromosomes, fusion of 

individual genes, as well as germline or somatic mutations at individual nucleotide positions [20].  

Somatic mutations in cancer have been continuously discovered in large-scale sequencing of 

genomes and exomes [14]. The landscape of somatic mutations in cancer provides a useful 

resource to identify recurrently mutated cancer driver genes in various cancer types [15, 21, 22]. 

Somatic mutations providing a selective growth advantage are classified as cancer driver 

mutations, including a small fraction of mutations with high occurrence frequencies (mutation 

hotspots) [23]. However, the majority of somatic mutations occur at low frequencies in cancers 

and belong to the category of unknown clinical significance. It remains a challenge to interpret 

their functional significance and to differentiate cancer driver mutations from the passenger 

somatic mutations. Mapping mutations on three dimensional structures can assist our 

interpretation of these mutations [24, 25]. A significant fraction of somatic mutations occurs at the 

interface of PPIs [26, 27]. As PPIs play crucial roles in diverse cellular processes, these somatic 

mutations could have significant functional and clinical consequences, e.g., by disrupting the 

correct formation of protein complexes and interrupting their function [19], or by improperly 

increasing the affinity between proteins and leading to deregulation signaling pathways [28-30]. 

Therefore, accurate prediction of PPI interfaces could help interpret the clinical significance of 

somatic mutations and provide targets for cancer drug development. 

Recent breakthroughs in deep learning (DL) methods for protein structure predictions have 

significantly expanded the capability of obtaining high-resolution protein structures [31] and 

interactions [32]. We recently found that the DL methods developed for monomeric protein 

structure prediction, i.e. RoseTTAFold [33] and AlphaFold (AF) [34], can be used to identify 

interacting protein pairs with an accuracy better than large-scale experimental studies in yeast 
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[35]. Application of these DL methods to candidate PPIs identified in large-scale studies not only 

allows us to identify a confident set of PPIs from noisy high-throughput experimental data, but 

also provides high-quality 3D structure models for the protein complexes. In this study, we applied 

AF to investigate the PPI network involving cancer driver proteins, a step towards building a 

structurally resolved cancer interactome (Fig. S1). We integrated the interactome with somatic 

missense mutations (SMMs) in cancer cells from 12,711 patients [36], and illustrated that the 

structural information of cancer interactome can help determine potential cancer driving mutations, 

explain their mechanistic consequences to protein complex function and signaling transduction, 

and provide targets for cancer treatment.  

 

 

Results and Discussions 

The protein-protein interaction network around cancer-driving proteins 

Recent cancer genomic studies identified 723 cancer-driving proteins that contain mutations 

causally implicated in cancer according to the Catalogue of Somatic Mutations in Cancer 

(COSMIC) Cancer Gene Census (CGC) database (Oct 5th, 2021) [37]. These cancer-driving 

proteins can be classified as the products of oncogenes, tumor suppressor genes (TSGs) and 

genes that contribute to cancer progression by fusion with other genes. We excluded the cancer-

driver genes functioning solely by gene fusion from this study because these genes mainly 

contribute to cancer through transcriptional regulations and not through mutations in their protein 

products that can disrupt their interaction with other molecules.  

We extracted the putative interacting human proteins for the remaining 587 CGC cancer driver 

proteins (Table S1) from various PPI databases [8, 38-40]. Out of 705,087 putative human PPIs 

from these databases, 103,756 involve cancer driver proteins. Cancer driver proteins tend to have 

significantly (P-value: 2.54e-72) more putative interacting partners than other human proteins (Fig. 

S2), consistent with the well-known fact that many cancer-drivers are hubs of PPIs [9, 41, 42]. 

Since most of these PPIs were identified from large-scale experiments that are prone to false 

positives [11, 12], we extracted 137,222 PPIs supported by multiple high-throughput experiments 

or at least one low-throughput study (see Methods). Among them, we focused on 26,947 PPIs 

involving at least one cancer driver protein (Table S2). We used AF to model the spatial structures 

for 24,152 of these candidate PPIs, and the remaining 2,795 (10%) were excluded from this study 

due to difficulty in obtaining multiple sequence alignments (MSAs) or limitation in GPU memory 

(details in methods).  

We previously showed that although AF was developed to model monomeric proteins, it can be 

extended to accurately model 3D structures of protein complexes [35]. In addition, the top AF 

contact probability between residues of a protein pair can be used to distinguish true PPIs from 

false ones in yeast [35]. This is still true for the set of cancer-related human PPIs. We computed 

the AF contact probabilities for 8,000 candidate PPIs involving cancer drivers and for 8,000 pairs 
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of cancer drivers and random proteins (Fig. 1A). Among the pairs with AF contact probability 

above 0.9, candidate PPIs are enriched by 18-fold compared to random pairs, and at a contact 

probability cutoff of 0.8, candidate PPIs are enriched by 5.5-fold. Among the 24,152 binary protein 

complexes we modeled, 1,459 have closely-related experimental structures, allowing us to 

estimate the accuracy of the predicted interface. The vast majority (96.4% for contact probability 

≥ 0.9 and 92.6% for contact probability ≥ 0.8) of the residue pairs showing high contact probability 

are less than 12Å away in experimental structures (Fig. 1B). When the predicted contacts are 

evaluated separately for each protein complex, the majority (≥ 60%) of the high-confidence 

(probability ≥  0.8) inter-protein contacts agree with the experimental structure for 93% AF 

complex models (Fig. 1C).  

These benchmarks suggest that AF contact probability can be used as a measure to select a set 

of confident PPIs involving cancer drivers among the large-scale experimental data that are prone 

to errors, and it can model the binary complexes between these proteins with high accuracy. In 

this study, we focused on 1,798 (Table S3) cancer-related PPIs with top AF contact probability 

above 0.8, and we visualized the network formed by these PPIs with Cytoscape [43]. These 

protein complexes are deposited to ModelArchive under accession ???. Since this PPI network 

centers around cancer drivers and many of these interactions may be related to oncogenesis or 

cancer progression, we term this network “cancer interactome” [44]. We performed clustering 

analysis [45] of the “cancer interactome” to partition the network into groups of functionally related 

proteins that are linked by direct physical interactions. The resulting clusters (Tables S4-S34), 

excluding small clusters with less than 10 proteins, are shown in Fig. 2, where proteins are 

represented as dots and interacting proteins are connected by edges.  

The most predominant clusters involve transcriptional regulators such as EP300 and CREBBP 

that regulate the expression of a wide range of genes through chromatin remodeling [46], 

signaling transduction such as the PI3K and the MAPK pathways, and the DNA repair pathways 

involving proteins like BRCA1 and BRCA2. Other processes involved in the cancer interactome 

include cell cycle, immunity, apoptosis, cell adhesion and transport. Although all of these 

processes are known to play vital roles in cancer [1], our study provides novel structural 

information for a significant fraction of these interactions. Only 711 out of the 1,798 confident 

complex models (39.5%) have homologous complex structures (BLAST e-value < 0.00001, green 

edges in Fig. 2) that were determined experimentally according to PDB. The remainder (60.5%) 

(orange edges in Fig. 2) are novel structures that could provide insights into the functional 

mechanisms of these proteins.  

 

Somatic mutational landscape of the cancer interactome 

We obtained SMMs in 12,711 cancer patients from the OncoVar database [36]. We assigned 

these SMMs to 17,515 reviewed human entries in UniProt that can be unambiguously and 

perfectly mapped to the reference genome GRCh38, and the average SMM rate for these proteins 

is 0.00146% per position per patient. The SMM rate in cancer driver proteins is 0.00181%, 
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significantly (P-value < 1e-320) higher than other genes, since many of these proteins harbor 

mutation hotspots.  

However, not all the cancer drivers are highly mutated in this pan-cancer dataset. We analyzed 

the SMM rate of proteins from each functional cluster in our cancer interactome (Fig. 2). While 

some pathways (labeled by red circles around the numbers), such as PI3K and MAPK pathways, 

are highly enriched in cancer SMMs, some are significantly depleted (labeled by green circles 

around the numbers) of such SMMs (Table S35). The seemingly paradox of SMM depletion of 

some cancer driver proteins can be explained by the complexity of oncogenesis, cancer 

progression, and cancer cell evolution during treatment. For example, the well-known Breast 

cancer type 2 susceptibility protein, BRCA2, indeed has a relatively low SMM rate both in the pan-

cancer dataset (0.00133%) and the breast cancer subset (0.00075%), consistent with previous 

findings [47]. Instead, most studied cancer-causing mutations of BRCA2 are germline (inherited) 

variations that can increase the chance for their carriers to develop cancer [48]. The same is true 

for proteins in the Fanconi anemia (FA) pathway involved in DNA repair, which also have low 

SMM rates, and genetic variants in them can predispose the carriers to higher risk of oncogenesis. 

DNA repair is an important process for cancer cells, especially for them to survive during 

radiotherapy and chemotherapy that kills cancer cells mostly by damaging their DNA [49]. 

Therefore, although mutations in them may contribute to carcinogenesis by increasing the rate of 

mutations in the genome, accumulating excessive SMMs in DNA repair proteins is likely not 

beneficial for most cancer types.  

The PPI interfaces in our cancer interactome contain a total of 46,472 amino acid residues. 11,726 

cancer SMMs mapped to these interface residues, indicating a SMM rate of 0.00199%, 

significantly (P-value = 1.2e-17) higher than the overall SMM rate for cancer drivers. SMMs on a 

PPI interface may disrupt or enhance the interaction between two proteins [4, 24]. While a 

considerable portion of SMMs might be passenger mutations, the enrichment or depletion of 

SMMs in a PPI interface could imply a role of this PPI in cancer development. Enrichment of 

SMMs in a PPI interface suggests that disturbing this PPI could facilitate oncogenesis and cancer 

progression [25, 50], and depletion of SMMs in a PPI interface indicates that maintaining this 

interaction is likely beneficial to cancer cells. 

We identified 176 PPI interfaces (Table S36) that are significantly enriched in SMMs, and 65 

interfaces that are significantly depleted (Table S37) of SMMs. We performed GO term 

enrichment analysis to reveal the functional difference of proteins with these two types of 

interfaces (Fig. 3A, Table S38, S39). The overrepresented biological processes by proteins with 

SMM-rich interfaces but not by proteins with SMM-depleted interfaces include signal transduction 

that controls cell proliferation and growth as represented by MAPK and PI3K cascades. 

Interacting proteins involved in cell differentiation or organ development also tend to accumulate 

SMMs in their interfaces. An interesting overrepresented functional category by SMM-rich PPI is 

antigen processing and presentation, a process that, if disturbed, may contribute to immune 

evasion by introducing SMMs to key interfaces.  

In contrast, a different set of functions are overrepresented by complexes with SMM-depleted 

interfaces (groups on the right of Fig. 3A), including DNA transcription, DNA repair, and responses 
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to drugs and hypoxia. All these processes are likely important for the survival and proliferation of 

cancer cells: SMMs in these interfaces are expected to have a negative impact on the fitness of 

cancer cells and are thus selected against in cancer cell evolution. Intriguingly, proteins involved 

in B-cell and monocyte differentiation also tend to avoid SMMs in their PPI interfaces. Both B-cell 

and monocyte have complicated roles in cancer, and they can display both pro-tumor and anti-

tumor functions depending on a number of factors such as the subtype of B-cell and monocyte, 

and the microenvironmental cues [51, 52]. Our result is more consistent with a pro-tumor effect 

of B-cell and monocyte, and cancer cells possibly could evade the anti-tumor effects of these 

immune cells through other strategies.  

Integration of our structurally resolved cancer interactome and the cancer SMM landscape can 

help explain how SMMs contribute to oncogenesis and cancer progression by affecting the 

interactions between proteins and the function of protein complexes. A deeper understanding of 

cancer SMMs may aid in the design of precision therapies. In addition, interfaces that are depleted 

of SMMs likely play a vital role for the survival of cancer cells, and some of them can be promising 

drug targets for cancer treatment if disruption of these interfaces do not drastically affect the 

survival of normal cells. In the following sections, we illustrate these points with carefully studied 

examples.  

 

Protein-protein interfaces enriched in mutations reveal mechanisms of cancer 

One leading cause of SMM enrichment in a PPI interface is the presence of a mutation hotspot 

in the interface. For example, the oncogene kinase CDK4 has a hotspot residue R24 [53] residing 

in the interface between CDK4 and the INK4 family of inhibitors such as CDKN2C (a tumor 

suppressor) [54, 55]. SMMs involving R24 of CDK4 may abolish the interaction between CDK4 

and its inhibitor [56], resulting in constitutive kinase activity (Fig. 3B, left) that promotes the 

progression of cell cycle and leads to transition from G1 to S phase. 

More interestingly, our models allowed us to identify interfaces where multiple cancer SMMs 

clustered: although SMMs do not occur to each residue as frequently as mutation hotspots, they 

collectively highlight the potential importance of this interface. One example is the interaction 

between the kinase ATM and one of its substrates, TOPBP1 (Fig. 3B, middle left), both of which 

are multidomain proteins functioning in DNA repair through homologous recombination [57, 58]. 

AF predicted the interaction between them to be mediated by the N-terminal -helical repeat 

domain of ATM (residues 1-400) and the fourth BRCT domain of TOPBP1 (residues 340-451). 

Enrichment of SMMs in this interface is highlighted by a loop region in ATM (residues 290-303) 

that harbors seven residues with cancer SMMs. One of the SMMs P292L has been found to be a 

likely pathogenic mutation associated with lymphoma [59, 60], suggesting the importance of this 

interface in cancer.  

The interface between utrophin (UTRN) and the tumor suppressor VHL is also enriched with 

SMMs but without hotspot residues. UTRN mutations have been found in multiple cancers [61], 

and UTRN has been suggested to be a potential TSG as its decreased expression was associated 

with various cancers including lung cancer, colon cancer, and melanoma [61-63]. The predicted 
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interaction interface between UTRN and VHL involves an -helical hairpin of UTRN (residues 

2841-2876) and the C-terminal helical domain of VHL (residues: 156-213). The interaction 

between VHL and UTRN was identified in high-throughput experiments and detailed experimental 

characterization of the UTRN-VHL interaction is still lacking. Our model of the UTRN-VHL 

complex (Fig. 3B, middle right) may facilitate further experimental studies to validate this 

interaction and probe its potential role in cancer.  

The effect of SMMs at the PPI interfaces may be challenging to interpret even in the presence of 

high-quality structure models. One reason is that a protein can interact with multiple partners 

through the same interface. For example, the transcription factor MAX has a mutation hotspot 

residue R60 in its interface with multiple partners such as MYC, MNT, MXI1, and MXD1. Our 

models of MAX and its binding partners, in agreement with experimental structures, show that the 

protein pairs dimerize through their leucine zipper domains (Fig. 3B, right). MYC is a well 

characterized oncogene as the MYC-MAX complex activates the expression of genes to promote 

cell proliferation [64]. However, MAX has been classified as a tumor suppressor as it was found 

recurrently inactivated in several types of cancers [65-67]. It was proposed that the tumor 

suppressor function of MAX is not related to its interaction with MYC, but is dependent on the 

transcriptional repression complexes formed between MAX and other transcription factors such 

as MXD, MNT and MGA [68]. Thus, the functional impact of SMMs in MAX including those at the 

hotspot R60 should be interpreted with caution as MAX is involved in complexes with different 

roles in cancer. Cancer-causing SMMs in MAX likely exert their effect by disrupting the MAX 

complexes functioning as transcriptional repressors and not by disrupting the MYC-MAX complex. 

 

Protein-protein interfaces depleted in somatic mutations may serve as drug targets 

As shown in our function enrichment analysis, the interface between proteins in DNA repair 

pathways are often depleted of SMMs in cancers. One such example is the FANCC-FANCF 

complex (Fig. 3C, left), two subunits of the FA core complex. While these two proteins bind 

through a large interface, SMM rate in the interface is only half of the average.  

Another example of SMM-depleted interface is between CHD4 and CDK2AP1, core components 

of the nucleosome remodeling and deacetylase complex that plays an important role in epigenetic 

transcriptional repression during double-strand break DNA damage repair [69, 70]. CHD4 is 

classified as an oncogene product as its recruitment to the damage sites in hypermethylated CpG 

island promoter regions helps maintain the silencing of tumor suppressor genes [70]. A recent 

study using cross-linking mass spectrometry (CLMS) mapped the interaction site between CHD4 

and CDK2AP1 to the C-terminal region of CHD4 [71]. AF prediction of the CHD4-CDK2AP1 

interface is consistent with the CLMS experiments and yet provides structural details of this 

interaction, where both CHD4 and CDK2AP1 contribute an α-helix hairpin to form a 4-helical 

bundle domain (Fig. 3C, middle). Depletion of SMMs in this interface suggests that the CHD4-

CDK2AP1 interaction is crucial to maintain the oncogenic role of CHD4.   

We also found SMM-depletion in the AKT1-FOXO3 interface (Fig. 3C, right). The Ser/Thr kinase 

AKT1, encoded by an oncogene, promotes cell growth and proliferation  [72, 73]. FOXO3, in 
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contrast, is a transcription factor acting as a tumor suppressor [74]. AKT1 phosphorylation of 

FOXO3 promotes the transport and sequestration of FOXO3 in cytoplasm and eventual 

degradation [75]. The AKT1-FOXO3 interaction interface is mapped to the N-terminal segment 

(residues 14-36) of FOXO3 that does not have a single SMM in our pan-cancer datasets. Although 

there are a couple SMM in AKT1 mapping to its interface with FOXO3, not a single mutation 

hotspot locates in this interface. The depletion of SMMs at this interface suggests that the negative 

regulation of tumor suppressor FOXO3 through AKT1 is important for cancer cell survival, and 

drugs to disrupt this interface could offer a therapeutic opportunity in cancer treatment.  

 

Protein-protein interactions in the MAP kinase pathway 

MAP kinases are key components of evolutionarily conserved signaling networks involved in 

diverse cellular processes such as cell growth, proliferation and apoptosis [76]. The MAPK 

signaling networks involve sequential phosphorylation steps: MAPK kinase kinases (MAP3Ks, 

MEK kinases, or MKKKs) phosphorylate and activate MAPK kinases (MAP2Ks, MEK, or MKKs), 

MAPK kinases phosphorylate and activate MAPKs, and MAPKs phosphorylate downstream 

kinases and other substrates. Human genome encodes ~20 MAP3Ks, 7 MAP2Ks, and 11 MAPKs 

that are part of the integrated signaling networks to respond to diverse stimuli and to control critical 

functions in virtually all cells. 

Several members in the MAPK signaling networks are classified as cancer drivers, including the 

MAP kinase MAPK1, three MAP2Ks (MAP2K1, MAP2K2 and MAP2K4), and six MAP3Ks 

(MAP3K1, MAP3K1, MAP3K13, BRAF, ARAF, and RAF1). Gain-of-function SMMs in oncogene 

products such as BRAF and RAS [77, 78] are frequently observed in certain cancers as they 

promote cell growth through the RAS/RAF/ERK pathway. Our predictions capture many 

interactions between components of the consecutive steps in the MAPK cascades (Fig. 4). We 

also observed MAPK1’s involvement in many different complexes, suggesting that MAPK1 is a 

hub protein with a diverse range of substrates and other binding partners.  

Analysis of AF models suggests that interacting partners of MAPK1 mostly use a short linear 

sequence motif (docking site) to interact with a surface patch on the MAPK1 -helical subdomain 

called the common docking (CD) domain [79] (Fig. 4). These docking sites, distal to the target 

phosphorylation sites, have been characterized in many MAPK substrates and other binding 

proteins  [80-83]. One exception is that several phosphatases (DUS5/7/9) use a globular domain 

to interact with MAPK1 CD domain. The MAPK docking sites are also present in the N-terminal 

regions of upstream MAPK kinases (MAP2Ks or MEKs). In particular, the docking site in the N-

terminal region of MAP2K4 shows high contact probabilities (>0.98) with MAP2K4’s substrates 

MAPK8 (shown in Fig. 4) and MAPK9.  

The interfaces between MAPK1 and some of its binding partners (such as RPS6KA1, DUSP5 

and MKNK2) are enriched with SMMs in cancer. This is partially due to the presence of a mutation 

hotspot residue E322 in the CD domain of MAPK1. Enrichment of SMMs at PPI interfaces were 

also observed for several pairs of MAP3Ks and MAP2Ks, such as MAP2K4-MAP3K1. MAP2K4 

has a mutation hotspot residue R134 at its interface with MAP3K1 (Fig. 4). Oncogenic loss-of-
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function mutations in MAP2K4 and MAP3K1 have been identified in several types of cancers [21, 

84, 85]. MAP3K1 has the dual function of pro-survival signaling and promotion of apoptosis [86]. 

MAP3K1 regulates the JNK pathway that can induce apoptosis to inhibit cancer growth through 

the MAP3K1-MAP2K4-JNK phosphorylation cascade, and inactivation of MAP3K1 and MAP2K4 

was observed in certain cancers [86]. SMMs at the MAP3K1-MAP2K4 interface may disrupt the 

MAP3K1-MAP2K4-JNK signaling axis for apoptosis, antagonizing the tumor suppressor roles of 

MAP3K1 and MAP2K4. 

 

Structural insights into protein complexes in the Fanconi anemia pathway 

DNA repair pathways play important roles in cancers. On the one hand, a number of genes 

functioning in DNA repair pathways have been classified as TSGs, such as BRCA1, BRCA2 [87], 

and genes causing the Bloom’s syndrome and the FA disease [88, 89]. Loss-of-function germline 

mutations or natural variants in these genes cause genomic instability and elevated rate of SMMs, 

resulting in an increased risk of developing various types of cancer. On the other hand, cancer 

cells utilize DNA repair pathways to help survive DNA damage induced by chemotherapeutic 

treatments. Therefore, inhibition of DNA repair pathways by targeting certain DNA repair genes 

could enhance the effects of chemotherapy [90, 91]. Since cells of certain tumors can only rely 

on a reduced set of DNA repair pathways for survival, drugs targeting these pathways could also 

be used as single-agent therapies for such cancer types [90, 91]. 

FA is a clinically heterogeneous genetic disorder characterized by congenital abnormalities, 

progressive bone marrow failure, chromosome instability, and an increased risk of developing 

tumors in early adulthood [89]. The FA pathway includes 22 FA proteins [92] whose mutations 

can lead to the FA disease (underlined proteins in Fig. 5). 12 FA genes have been classified as 

TSGs, including FANCA, FANCC, FANCE, FANCF, FANCG, FANCD2, BRCA1 (FANCS), 

BRCA2 (FANCD1), BRIP1 (FANCJ), PALB2 (FANCN), ERCC4 (FANCQ), and RFDW3 (FANCW) 

(red boxes in Fig. 5). FA proteins together with their interaction partners form protein complexes 

that are involved in the repair of DNA damages. AF identified a number of PPIs for proteins in the 

FA pathway, and many of them were not structurally characterized before (Fig. 5). 

The FA core complex is a large E3 ubiquitin ligase responsible for the monoubiquitination of the 

FANCI-FANCD2 complex, which is a crucial step to recruit the latter to the DNA break site (Fig. 

5). The structures of the FA core complexes from chicken and human were recently solved [93, 

94]. FANCM forms a complex with FAAP24 and MHF1/2 to recruit the FA core complex to the 

DNA damage site. The interaction between FANCM and the FA core complex is through the 

FANCM-FANCF interaction. Despite previous efforts to map the interaction regions in FANCM 

and FANCF [95], the structure basis of this interaction is unknown. The AF model provides 

detailed information about the FANCM-FANCF interaction. Consistent with previous experimental 

results, the interface in FANCM is mapped to residues 960-1024, which forms three α-helices that 

wrap around the N-terminal α-helical domain of FANCF (residues 1-151) (Fig. 5). 

SLX4 is a scaffold protein that together with ERCC1 and the two nucleases, SLX1 and ERCC4, 

forms a nuclease complex [96]. SLX4 (FANCP) and ERCC4 (FANCQ) have been classified as 
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FA proteins as some of their mutations have the clinical features of the FA disease [97, 98]. AF 

predicted a highly confident model (contact probability > 0.99) of the SLX4-ERCC4 complex that 

lacks the experimental structure. In this model, SLX4 exploits several non-globular α-helices from 

residues 466-555 (green chain in Fig. 5) to interact with ERCC4, which is consistent with 

experimental studies that suggested that the interaction is mediated by the N-terminal region of 

SLX4, with residues 527-558 being critical [96, 99]. Conserved residues L530, F545, Y546 and 

L550 are directly involved in hydrophobic interactions in the interface in the AF model. Mutations 

in some of these positions such as L530Q and Y546C have been shown to enhance the degree 

of mitomycin C-induced chromosome aberrations [99].  

BRCA2 (FANCD1) is a major player in the DNA repair pathways. BRCA2 forms a complex (Fig. 

5) with BRCA1 (FANCS), PALB2 (FANCN) and BRIP1 (FANCJ) to mediate DNA repair through 

homologous recombination. A short N-terminal segment of BRCA2 (residues 24-37) has been 

shown to bind the beta-propeller domain of PALB2 by structural determination [100]. Mutations in 

this segment (G25R, W31R, W31C and F32L) were found to abolish the BRCA2-PALB2 

interaction [101, 102]. The same segment mediates the BRCA2-PALB2 interaction in the AF 

model, where it forms a short α-helix in the middle that docks on the surface groove at one end 

of the fourth and fifth beta-propeller. Moreover, AF extended beyond the experimentally 

characterized BRCA2-PALB2 interface to include residues 7-23 of BRCA2, which interact with 

the surface groove at one end of the fifth and sixth beta-propeller of PALB2. The N-terminal 

interaction site of BRCA2 thus consists of a tandem repeat of a short helix and a loop behind it, 

which is reflected by the sequence similarity between the two repeats: both of them have the 

Ex motif (: a large hydrophobic residue, FFEIF and WFEEL in human BRCA2).  

 

Cancer drivers serve as hubs of protein-protein interactions   

One prominent feature of the cancer interactome is the existence of proteins that interact with 

many other proteins, namely, PPI hubs (Table S40). Some of the PPI hubs, including the four 

largest hubs, EP300, BRCA1, CREBBP, and TRAPP, play central biological roles that require 

them to interact with many partners. However, some hubs stand out likely because the protein is 

prone to show false positive PPIs both in large-scale experiments and AF modeling. One example 

is EGFR, who had high AF contact probabilities with 32 proteins, but over half of them were 

mediated by its signal peptide that is expected to be cleaved. We hypothesized that the 

interactions mediated by this signal peptide represented false positives and removed them from 

our cancer interactome.  

BRCA1 is the most studied and most frequently mutated cancer-causing gene in hereditary breast 

cancer and ovarian cancer [103, 104]. BRCA1 has an N-terminal RING-type zinc finger domain 

(residues 1-103) with E3 ubiquitin ligase activity and two C-terminal BRCT domains (residues 

1645-1863). These N- and C-terminal globular domains harbor most of the pathogenic mutations 

in BRCA1 [105]. The N-terminal RING domain of BRCA1 interacts with E2 ubiquitin-conjugating 

enzymes such as UBE2D3 and UBE2E2 [106] and other regulators such as BARD1 that 

enhances BRCA1’s E3 ligase activity [107, 108]. AF models of the RING domain and these 

binding partners (Fig. 6) resemble the experimentally determined complex structures [109, 110].  
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Each C-terminal BRCT domain of BRCA1 consists of three α-helices surrounding four β-strands 

[111]. The relative positioning of the BRCT repeats allows them to recognize short sequence 

motifs containing phosphorylated Serine residues and aromatic residues (pSXXF motif) [112, 113]. 

AF models of BRCA1 BRCT domains with BRIP1, AURKA, and DCLER1C, respectively, closely 

mimic the experimentally determined complexes [113, 114], placing a Serine or Threonine residue 

(S990 of BRIP1, S51 of AURKA, and T557 of DCLER1C) to the location of phosphorylated Serine 

observed in experimental structures. Without knowing post-translational modifications, AF can 

correctly model such interactions mediated by phosphorylated peptides, possibly due to the 

coevolution between BRCT domains and residues in and around the pSXXF motifs. Interestingly, 

in the AF model, BLM does not utilize a pSXXF motif to interact with tandem BRCT domains, and 

it is questionable whether BLM has a pSXXF motif (Fig. S3). Instead, a loop from BLM occupies 

a location near the pSXXF-motif-binding site of the BRCT domains, and an α-helix to the N-

terminus of this loop also contributes to the BRCA1-BLM interaction. Whether this alternative 

interacting mode is biologically relevant remains to be validated experimentally.  

The majority of the middle region of BRCA1 is predicted to be disordered, but some segments 

have been found to interact with a number of key players in DNA repair, such as PALB2 and 

FANCA [115]. Experimental studies revealed that PALB2 interacts with BRCA1 using the N-

terminal α-helix of PALB2 and residues 1385-1430 of BRCA1 [116, 117]. While this interaction 

was predicted to involve the formation of coiled coils, experimental structure of the BRCA1-PALB2 

complex is absent. The AF model is consistent with this prediction and provides structural details 

of this coiled-coil interaction (Fig. 6). The BRCA1 segment interacting with PALB2 harbors three 

likely pathogenic mutations (Q1395H, Q1408H, and M1411H) classified in the ClinVar database 

[105], and PALB2 mutations in this interface such as L35P have been shown to compromise the 

BRCA1-PALB2 interaction and are associated with increased breast cancer risk [118]. 

The BRCA1-FANCA interaction has been experimentally mapped to the middle region of BRCA1 

(740-1083) and the N-terminal region of FANCA (1-589) [119]. AF prediction is consistent with 

the experimental result, showing a conserved segment (848-877) of BRCA1 involved in the 

interaction with FANCA (Fig. 6). The FANCA interface also has a number of SMMs in cancer, 

including consecutive residues 420-422 (ESC) and 475-477 (TFL). The clinical significance of 

these mutations remains to be elucidated. AF also predicted several other interactions mapped 

to the middle region of BRCA1, involving non-globular sequence motifs in BRCA1 and globular 

domains found in proteins such as PRKDC, REV1, TOPBP1, and SMARCA2 (Fig. 6). Further 

characterization of these interactions may allow a deeper understanding of BRCA1 and its role in 

DNA repair and cancer.  
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Materials and methods 

Identifying cancer-related protein-protein interactions from databases 

The list of cancer driver proteins was obtained from the COSMIC cancer gene census database 

(https://cancer.sanger.ac.uk/census) (Oct 5th, 2021) [37]. We excluded cancer drivers whose 

“roles in cancer” were labeled solely as “fusion” by the COSMIC database, and mapped the 

remaining 588 proteins to 587 UniProt entries [120] (H3F3A and H3F3B mapped to the same 

entry). We obtained human PPIs from BIOGRID [8], IntAct [38], DIP [40], and MINT [39] 

databases, and we mapped proteins involved in these PPIs to 20,371 reviewed human entries in 

UniProt. These databases link each PPI to a set of PubMed IDs that represent the experimental 

studies supporting this interaction. We collected the PubMed IDs associated with each PPI from 

all databases. We counted the number of associated PPIs for each PubMed ID and considered a 

study to be a low-throughput if this number was no more than 10.  

 

Generation of protein sequence alignments 

The eukaryotic proteomes were downloaded from the NCBI genome database. It consists of 

49,102,568 proteins from 2,568 representative or reference proteomes (one proteome per 

species). We attempted to find orthologs from these proteomes for each reviewed human entry 

in the UniProt database [120]. For each human protein (referred to as the target protein below), 

the corresponding orthologous group at the eukaryotes level in OrthoDB [121] was identified. 

Human proteins that were not classified in OrthoDB or belonged to the Zinc finger C2H2-type 

group (OrthoDB group: 1318335at2759), the Reverse transcriptase, RNase H-like domain group 

(OrthoDB group: 583605at2759) and the Pentatricopeptide repeat group (Orthodb group: 

1344243at2759) were ignored as these groups contain a large number (over 58000) of 

paralogous sequences from gene duplications. The set of OrthoDB orthologous proteins for any 

target protein were clustered by CD-HIT [122] at 40% identity level. For each CD-HIT cluster, we 

selected one representative sequence that showed the lowest BLAST [123] e-value to the target 

protein. The representative sequences were then used as queries to search against the 

eukaryotic proteomes to identify homologous proteins to the target protein (e-value cutoff: 0.001). 

For each target protein, we identified a single best hit from each organism, if available, that 

satisfies two criteria: (1) its sequence identity to the target protein is above 35%; (2) it shows the 

highest sequence similarity to the target protein among the combined BLAST hits found by 

multiple representative sequences. These best hits together with the target protein were aligned 

by MAFFT (with the --auto option) [124]. We labeled each protein by the organism it belongs in 

the resulting multiple sequence alignments (MSAs) and removed positions that are gaps in the 

human proteins. To construct the joint MSA for any two human proteins, we concatenated the 

aligned sequences of the same organism from two MSAs. In cases where a sequence is missing 

from an organism, we used gaps to replace that sequence and added these cases at the end of 

the joint MSA.  
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Modeling protein complexes with AlphaFold 

One limitation of AF modeling is that large protein complexes cannot fit in the memory of our 

GPUs (≤ 48GB). To solve this problem, we parsed proteins into domains based on DeepMind’s 

models of monomeric human proteins (https://alphafold.ebi.ac.uk/). In addition to the predicted 

3D structure, DeepMind also provided the predicted aligned error (PAE) for each residue pair in 

a protein. PAE reflects AF’s confidence in the distance between two residues, and it is suggested 

to be useful in defining domains of a protein [125]. Residues within the same domain are tightly 

packed together to form a globular and rigid 3D structure, and thus PAEs between them are 

expected to be low. In contrast, since the relative orientation and distance between different 

domains can be variable, a pair of residues from different domains frequently shows high PAE. 

We wrote an in-house script (details in supplemental materials) to iterate the following procedure 

to split proteins into segments until all segments are shorter than 500 amino acids or cannot be 

further split. We split a protein or a segment into two segments if (1) it had more than 500 residues 

and (2) the density of residue pairs showing low PAE (≤12Å) within each segment (Dintra) was 

much higher than the density of residue pairs showing low PAE (≤12Å) between two segments 

(Dinter). We found the split site that maximize the Dintra / Dinter ratio, and we required this ratio to be 

at least 10 for proteins or segments larger than 1000 residues and at least 20 for proteins or 

segments with 500-1000 residues.  

As described previously, we deployed AF to model protein complexes by feeding it with joint 

MSAs of two proteins and introducing a gap of 200 residues in between. Protein pairs with 

combined length ≤  1500 were directly modeled. Larger proteins were split into domains as 

described above and all pairs of domains were modeled if none of them has combined length > 

1500. AF produces probabilities for the Cß – Cß distances of residue pairs to fall into a series of 

distance bins. Residue-residue contact probability was calculated as the sum of the probabilities 

for the distance bins under 12Å. For a pair of proteins, the matrix (𝑚) of contact probability is of 

the shape (𝐿1 + 𝐿2) by (𝐿1 + 𝐿2), where 𝐿1 and 𝐿2 are the length of the first and second proteins, 

respectively. To investigate the inter protein contacts, we extracted the submatrix 𝑚′ =

𝑚[: 𝐿1][𝐿1: 𝐿1 + 𝐿2]  as shown in the red box of Fig. S4. The highest residue-residue contact 

probability in this matrix 𝑚′ is used as the contact probability for a pair of proteins.  

 

Performance evaluation 

On the one hand, we sampled 8,000 pairs of candidate PPIs as positive control by two criteria: 

(1) at least one protein of each pair is a cancer driver, (2) the PPI is supported by at least one 

low-throughput study (associated with ≤ 10 PPIs in databases) or two high-throughput studies. 

On the other hand, we sampled 8,000 protein pairs as negative control, and each pair consisted 

of a cancer driver and a randomly selected protein that was not shown to interact with the cancer 

driver according to PPI databases. We applied AF to both the positive and negative control sets 

and compared the distribution of AF contact probabilities over these two sets. 

To evaluate the accuracy of our 3D models of binary protein complexes, we used the protein 

complexes with closely related PDB templates. We considered a PDB entry to be a closely related 

template for a complex if both proteins are close homologs to different chains in this entry. We 
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defined close homologs by the following criteria: (1) BLAST e-value < 0.00001, (2) sequence 

identity > 60%, and (3) query coverage > 50% or hit coverage > 50%. For each interacting residue 

pair predicted by AF with contact probability ≥ 0.2, we calculated the distance between their 

corresponding residues in the homologous templates. We used the minimal distance in templates 

as the observed distance for a residue pair. We considered a predicted contact to be correct if 

the observed distance is less than 12Å. The percentage of correctly predicted contacts in a AF 

model of protein complex was used as contact prediction accuracy for this model.  

 

Analysis of cancer interactome 

We loaded 1798 interacting protein pairs with AF contact probability above 0.8 to the Cytoscape 

software [43], where proteins were represented as nodes and two nodes were connected by an 

edge if they interact. We used the community cluster method, Glay [45], to cluster the network 

formed by these PPIs assuming undirected edges. We performed functional enrichment analysis 

for clusters with ≥ 10 proteins using the “Database for Annotation, Visualization and Integrated 

Discovery” (DAVID) web server [126]. We annotated each cluster by the predominantly enriched 

functional group or the name of the protein involving in the largest number of PPIs within this 

cluster. In addition, we counted the number of SMMs in the pan-cancer genomic data for the 

cancer driver proteins in each cluster and tested whether they are enriched or depleted of SMMs 

using binomial tests (details below). Interesting biological examples from the cancer interactome 

were studied manually with the help of Pymol and literature.  

 

Mapping of somatic missense mutations in cancer on cancer interactome 

We used the OncoVar database [36] that summarized the pan-cancer SMMs from The Cancer 

Genome Atlas (TCGA, 10,769 cases) and the International Cancer Genome Consortium (ICGC, 

1,942 cases) projects. These SMMs were mapped to the human reference genome GRCh38. We 

mapped the 20,371 reviewed human UniProt entries to GRCh38 using genome annotation tracks 

provided by UniProt (https://www.uniprot.org/downloads) [120], and we focused on the 17,515 

proteins that can be unambiguously mapped. These proteins contain 10,272,489 residue 

positions. A total of 1,901,488 SMMs were observed in these positions from the 12,711 cancer 

patients, indicating an average SMM rate of 0.00146% per position per patient.  

Enrichment of SMMs in a position was assessed using a binomial test implemented by the 

scipy.stats module. The parameters given to the binomial test are: 𝑋 = the total number of SMMs 

in this position, 𝑛 = 12,711, i.e. total number of cancer patients, and 𝑝 = 0.00146%, the average 

SMM rate. We corrected the statistical significance for multiple statistical tests by computing the 

false discovery rate (FDR) [127]. The corrected P-values (Q-values) are 0.0044 and 0.052 if there 

are 5 and 4 patients carrying mutations in this position, respectively, and we thus considered 

positions with ≥ 5 SMMs to be mutation hotspots. Similarly, we computed the enrichment of 

SMMs in sets of proteins using binomial tests, where 𝑋 = the total number of mutations observed 

in these proteins, 𝑛 = 12,711 x total number of positions in these proteins, and 𝑝 = 0.00146%.  
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Analysis of somatic missense mutation distribution in PPI interfaces 

We considered AF-predicted contacts between proteins as residue pairs satisfying the following 

criteria: (1) the protein pair or domain pair that was modeled by AF has top contact probability ≥ 

0.8; (2) this pair of residues has AF contact probability ≥ 0.2; (3) the distance between this residue 

pair in the AF 3D structure model is below 8Å. We considered residues that participated in any of 

the AF-predicted contacts as interface residues. We evaluated if an interface was enriched in or 

depleted of SMMs using a binomial test, where 𝑋 = the total number of SMMs observed in the 

interface residues among all 12,711 patients, 𝑛 = 12,711 x total number of interface residues, and 

𝑝 = 0.00146%. We corrected the statistical significance for multiple tests by computing FDR. We 

analyzed the functional preference for proteins contributing to the 177 interfaces that were 

enriched (P-value < 0.01, FDR < 0.1) in SMMs and proteins contributing to the 70 interfaces that 

were depleted (P-value < 0.01, FDR < 0.2) of SMMs using the DAVID web server. We used all 

proteins involved in our cancer interactome as the background for both functional enrichment 

analyses. 
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Figures and Figure legends 

 

Figure 1. Benchmark for the performance of complex modeling by AlphaFold. (A) AF top contact 

probability can distinguish interacting proteins from random pairs. 8,000 pairs of cancer driver and its 

candidate interacting partner and 8,000 pairs of cancer driver and a random protein were modeled by AF. 

These pairs are partitioned to bins by the top contact probability, and the number of pairs in each bin is 

shown. (B) Distribution of residue-residue distances in closely related experimental structures for AF-

predicted contacts in 1,459 protein pairs with close homologous structures in PDB. The predicted contacts 

are binned according to the AF contact probability. (C) Distribution of contact prediction accuracy for 1,459 

AF models with close templates in PDB. The contact prediction accuracy for an AF model was calculated 

as the percentage of correctly predicted contacts and a predicted contact was considered correct if the two 

residues forming this contact were less than 12Å in closely-related experimental structures.  
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Figure 2. Clusters of proteins in the cancer interactome. Dots represent proteins and edges connect 

proteins that are predicted to interact (AF contact probability ≥ 0.8). Clusters are labeled by its predominant 

functional category or the hub protein which forms the largest number of interactions within the cluster. 

Cancer driver proteins are colored red and their interacting patterns are colored blue. Edges representing 

predicted interactions without experimentally determined 3D structures are colored orange and interactions 

with homologous templates in PDB are colored green. Edge width is positively correlated with AF contact 

probability. A number inside a circle is used to label each cluster, and information about proteins in each 

cluster is in supplemental Tables S4-S34. We color this label red or green if cancer drivers in this cluster 

are enriched in or depleted of SMMs in cancer, respectively. Pathways that are discussed in details, i.e. 

MAPK cascade and FA pathway, are placed in red boxes.  
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Figure 3. Protein-protein interaction interfaces that are enriched in or depleted of somatic missense 

mutations in cancer. (A) Gene Ontology (GO) terms that are significantly overrepresented by proteins 

with SMM-rich or SMM-depleted interfaces. For each GO term, we show its fold enrichment among two 

sets of proteins as bar plots: (1) proteins with SMM-rich interfaces (SMM-rich set, orange bars) and (2) 

proteins with SMM-depleted interfaces (SMM-depleted set, green bars). Fold enrichment is defined as the 

fraction of proteins associated with this GO term in the target set (either SMM-rich set of SMM-depleted set) 

divided by the fraction of proteins with this GO term among all proteins in our cancer interactome. Two bars 

are expected for each GO term: one orange bar for its fold enrichment in the SMM-rich set and one green 

bar for its fold enrichment in the SMM-depleted set. However, a bar can be missing if the fold enrichment 

of a GO term in one set is 0, and we marked such cases as “0” above the x-axis instead of a bar. Annotation 

of the GO terms are labeled below the bar plot and they are manually partitioned to larger functional groups 

(separated by black lines) as indicated by the color of the dots before labels and the texts above the bar 

plot. (B) Examples of PPI interfaces that are enriched in SMMs. (C) Examples of PPI interfaces that are 

depleted of SMMs. For both (B) and (C), positions with SMMs are colored in magenta, and mutation 

hotspots are shown as red balls. Predicted contacts are shown in sticks (yellow: probability score ≥ 0.9; 

orange: 0.5 ≤ probability score < 0.9). Names of the proteins are labeled below the complex structure. 

Protein pairs without homologous complex structures in PDB are placed inside orange boxes.  
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Figure 4. Interactions in the MAP kinase network captured by AlphaFold. This diagram shows the 

predicted interactions between members of the MAP kinase pathway. The MAP kinase cascades are 

arranged in four main layers: MAP3Ks (such as BRAF and MAP3K1), MAP2Ks (such as MAP2K1), MAPKs 

(such as MAPK1), and downstream targets and binding partners of MAPK1 (such as MKNK1). Cancer 

driving proteins are represented by red boxes, and their binding partners are represented by blue boxes. 

Lines connect protein pairs that are predicted to interact by AF, and pairs with and without known 

experimental structures are connected by green lines and orange lines, respectively. Structural models for 

some complexes, including MAP2K4-MAP3K1, MAPK8-MAP2K4, and MAPK1 (green) and some of its 

binding partners (cyan), are shown. In these models, predicted contacts are shown in sticks (yellow: 

probability score ≥ 0.9; orange: 0.5 ≤ probability score < 0.9). Positions with SMMs in cancers are shown 

in magenta. 
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Figure 5. Structural insights into the proteins in the Fanconi anemia pathway. The FA pathway was 

adapted from KEGG and a review article [92]. Cancer drivers are represented as red boxes and other 

proteins are shown as blue boxes. Proteins forming complexes are arranged next to each other and 

additional interactions between components of different complexes are linked by black lines. FA proteins 

are underlined, and proteins classified as FA proteins but have other commonly used names are denoted 

by the FA name code after the slash (for example, BRCA1/S denote BRCA1 as FA proteins with name 

FANCS). AF predicted structural complexes without experimental structures are denoted by orange arrows 

between the interaction partners, and the AF structural models are shown for these pairs. In the shown 

structure models, positions with SMMs are colored in magenta. Predicted contacts are shown in sticks 

(yellow: probability score ≥ 0.9; orange: 0.5 ≤ probability score < 0.9). 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 23, 2022. ; https://doi.org/10.1101/2022.01.21.477304doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.21.477304


 

Figure 6. Examples of AlphaFold models of BRCA1 and its interacting partners. The BRCA1 protein 

is shown in the middle with a ruler to label the residue number (unit: 100 residues). The interaction regions 

in BRCA1 are shown as boxes above and below the BRCA1 protein. Purple boxes denote globular domains 

at the N- and C-terminal regions of BRCA1, and green boxes are from the middle region of BRCA1 without 

globular domains. Each arrow links a segment of BRCA1 to the structural model of the complex formed by 

this BRCA1 segment and its interaction partners. Green and orange arrows denote experimentally solved 

and unsolved structures, respectively. In all these AF models, BRCA1 is shown in green and its interaction 

partner is shown in cyan. Positions with SMMs are shown in purple. Predicted contacts are shown in sticks 

(yellow: probability score ≥ 0.9; orange: 0.5 ≤ probability score < 0.9). 
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Supplemental Figures and Figure Legends 
 

  
Figure S1. Procedure for us to construct the cancer interactome. 
 
 
 

 
Figure S2. Distribution of the number of putative interacting partners from PPI databases for cancer 
driving protein (red bars) versus the distribution for other proteins (blue bars).  
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Figure S3. Sequence of the Bloom syndrome protein (BLM), an interacting partner of BRCA1. In the 
AlphaFold model of BLM-BRCA1 complex, the motif highlighted in yellow is interacting with the C-terminal 
tandem BRCT domains of BRCA1 in a non-canonical fashion. A classic motif to interact with the BRCA1 
BRCT domains is pSXXF, where a phosphorylated serine and a phenylalanine are separated by two other 
residues. We highlighted every possible SXXF or TXXF motif from this sequence in cyan, and every 
phosphorylated serine or threonine residue according to uniport in green. Based on current knowledge, 
there is no SXXF or TXXF motif that is phosphorylated at the first serine or threonine residue.  
 
 
 

 
Figure S4. Diagram of distance matrices output by AlphaFold. AlphaFold produces distance prediction as 
a 3D matrix of dimension L1 + L2 by L1 + L2 (L1 and L2 are the sizes of the first and second proteins, 
respectively) by number of distance bins. (B) The summed 2D matrix (d < 12Å) from panel A. The submatrix 
inside the red dashed line contains the contact probability for residues between two proteins.  
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Supplemental Methods 
Repurposing AlphaFold for protein complex modeling 

We deployed AlphaFold to predict protein-protein complex structures. Instead of multiple sequence 
alignments of single proteins, we provided concatenated multiple sequence alignments of protein pairs 
to the AlphaFold network. We needed to introduce a break between the two sequences so that the C-
terminus of the first protein is not connected to the N-terminus of the second protein during the modeling 
process. The relative positional encoding calculated based on residue numbers is the only input that 
encodes chain connectivity, and we added 200 to the residue numbers of the following subunits to let the 
AlphaFold network know that there is no chain connection between each subunit. To reduce the 
computational cost to run AlphaFold, we generated only one model (model 3) per complex. The script we 
used to run AlphaFold is below. 

#!/usr/bin/env python 
 
import os 
import numpy as np 
import scipy 
import sys 
from alphafold.common import protein 
from alphafold.data import pipeline 
from alphafold.data import templates 
from alphafold.model import data 
from alphafold.model import config 
from alphafold.model import model 
 
 
# Global variable 
ALPHAFOLD_PARAM = "/path/to/alphafold" # where params/ folder is 
 
# loading model params in memory 
def load_models(num_recycle): 
    model_runner = {} 
    model_name = "model_3_ptm" 
    if model_name not in model_runner: 
        model_config = config.model_config(model_name) 
        model_config.data.eval.num_ensemble = 1 
        model_config.model.num_recycle = num_recycle 
        model_config.data.common.num_recycle = num_recycle 
        model_params = data.get_model_haiku_params(model_name=model_name, data_dir=ALPHAFOLD_PARAM) 
        model_runner[model_name] = model.RunModel(model_config, model_params) 
    return model_runner 
 
 
# generate fake template features 
def mk_mock_template(query_sequence): 
  # mock template features 
  output_templates_sequence = [] 
  output_confidence_scores = [] 
  templates_all_atom_positions = [] 
  templates_all_atom_masks = [] 
 
  for _ in query_sequence: 
      templates_all_atom_positions.append(np.zeros((templates.residue_constants.atom_type_num, 3))) 
      templates_all_atom_masks.append(np.zeros(templates.residue_constants.atom_type_num)) 
      output_templates_sequence.append('-') 
      output_confidence_scores.append(-1) 
  output_templates_sequence = ''.join(output_templates_sequence) 
  templates_aatype = templates.residue_constants.sequence_to_onehot(output_templates_sequence, 
                                                   templates.residue_constants.HHBLITS_AA_TO_ID) 
 
  template_features = {'template_all_atom_positions': np.array(templates_all_atom_positions)[None], 
        'template_all_atom_masks': np.array(templates_all_atom_masks)[None], 
        'template_sequence': [f'none'.encode()], 
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        'template_aatype': np.array(templates_aatype)[None], 
        'template_confidence_scores': np.array(output_confidence_scores)[None], 
        'template_domain_names': [f'none'.encode()], 
        'template_release_date': [f'none'.encode()]} 
 
  return template_features 
 
 
def predict_structure(model_name, prefix, processed_feature_dict, model_runner, random_seed=0): 
    prediction_result = model_runner.predict(processed_feature_dict) 
    unrelaxed_protein_raw = protein.from_prediction(processed_feature_dict, prediction_result) 
    unrelaxed_protein = protein.Protein( 
            atom_positions=unrelaxed_protein_raw.atom_positions, 
            atom_mask=unrelaxed_protein_raw.atom_mask, 
            aatype=unrelaxed_protein_raw.aatype, 
            residue_index=unrelaxed_protein_raw.residue_index, 
            b_factors=unrelaxed_protein_raw.b_factors) 
 
    unrelaxed_pdb_lines = protein.to_pdb(unrelaxed_protein) 
    unrelaxed_pdb_path = f'{prefix}_unrelaxed_{model_name}.pdb' 
    with open(unrelaxed_pdb_path, 'wt') as fp: 
        fp.write(unrelaxed_pdb_lines) 
 
    # write distogram / error estimation for future use 
    pred_saving = {} 
    pdist = prediction_result['distogram']['logits'] 
    pdist = scipy.special.softmax(pdist, axis=-1) 
    prob12 = np.sum(pdist[:,:,:32], axis=-1) 
    pred_saving['contact_prob'] = prob12.astype(np.float16) 
    pred_saving['predicted_aligned_error'] = prediction_result['predicted_aligned_error'].astype(np.float16) 
    pred_saving['plddt'] = prediction_result['plddt'] 
    np.savez_compressed(f'{prefix}_info_{model_name}.npz', **pred_saving) 
    return pred_saving['plddt'].mean(), pred_saving['predicted_aligned_error'].mean() 
 
 
def process_features(a3m_fn, Ls): 
    # Read query sequence and number of residues for each chain 
    query_sequence = open(a3m_fn, 'r').readlines()[1].strip() 
    a3m_lines = "".join(open(a3m_fn,"r").readlines()) 
    msa, deletion_matrix = pipeline.parsers.parse_a3m(a3m_lines) 
 
    # gather features 
    feature_dict = { 
        **pipeline.make_sequence_features(sequence=query_sequence, 
description="none",num_res=len(query_sequence)), 
        **pipeline.make_msa_features(msas=[msa],deletion_matrices=[deletion_matrix]), 
        **mk_mock_template(query_sequence) 
    } 
    # add big enough number to residue index to indicate chain breaks 
    idx_res = feature_dict['residue_index'] 
    L_prev = 0 
    # Ls: number of residues in each chain 
    for L_i in Ls[:-1]: 
      idx_res[L_prev+L_i:] += 200 
      L_prev += L_i 
    feature_dict['residue_index'] = idx_res 
 
    return feature_dict 
 
 
def get_args(): 
    import argparse 
    parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) 
    parser.add_argument("-n_recycle", type=int, default=3, help="number of recycles to use [3]") 
    parser.add_argument("-a3m_fn", required=True, help="paired MSA in a3m format") 
    parser.add_argument("-Ls", type=int, nargs="+", required=True, help="The number of residues in each 
subunit") 
    parser.add_argument("-prefix", default="AF_pred",help="Prefix for output files") 
    args = parser.parse_args() 
    return args 
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args = get_args() 
model_runner = load_models(args.n_recycle) # Load alphafold models 
feature_dict = process_features(args.a3m_fn, args.Ls) # Processing input features 
 
for model_name in model_runner: 
    AF_model = model_runner[model_name]  
    inputs = AF_model.process_features(feature_dict, random_seed=0) 
    lddt, pair_error = predict_structure(model_name, args.prefix, inputs, AF_model) 
    print (f"Running {model_name}. Outputs having LDDT {lddt} and maximum pairwise error {pair_error}.") 

 

Splitting proteins into domains according to AlphaFold models of human proteins 

We utilized the AlphaFold models of human proteins deposited by DeepMind to split large proteins to 
domains (https://alphafold.ebi.ac.uk/). Along with coordinates of the predicted 3D structure, DeepMind 
provided the predicted aligned error (PAE) for each residue pair in a protein. We wrote the following script 
to detect disordered residues and parse a protein into domains. The basic ideas are: (1) residues in a 
disordered region should show high PAE with residues from the rest of the protein; (2) the average PAEs 
for residues within a domain should be much higher than the average PAEs for residues from different 
domains.  
#!/usr/bin/python 
import sys, json 
 
# below is the function to find out if we should split a segment / domain and where is the best site to split. 
def find_cut(residues, bond_pairs): 
    seglen = len(residues) 
    set0 = set(residues) 
    if seglen <= 200: 
        return [] 
    else: 
        values = [] 
        for m in range(100, seglen-99): 
            if m % 5 == 0: 
                set1 = set(residues[:m]) 
                set2 = set(residues[m:]) 
                length1 = len(set1) 
                length2 = len(set2) 
                if length1 >= 100 and length2 >= 100: 
                    Dintra1 = 0 
                    Dintra2 = 0 
                    Dinter = 0 
                    for item in bond_pairs: 
                        i = item[0] 
                        j = item[1] 
                        if i in set0 and j in set0: 
                            if i in set1 and j in set1: 
                                Dintra1 += 2 / length1**2 
                            elif i in set2 and j in set2: 
                                Dintra2 += 2 / length2**2 
                            else: 
                                Dinter += 1 / (length1*length2) 
                    if Dintra1 >= 0.1 and Dintra2 >= 0.1: 
                        values.append([residues[:m],residues[m:], Dinter/min(Dintra1, Dintra2)]) 
 
        if values: 
            values.sort(key=lambda x:x[2]) 
            bestcut = values[0] 
            if bestcut[2] <= 0.05: 
                if seglen >= 500: 
                    return [bestcut[0], bestcut[1], bestcut[2]] 
                else: 
                    return [] 
            elif bestcut[2] <= 0.1: 
                if seglen >= 1000: 
                    return [bestcut[0], bestcut[1], bestcut[2]] 
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                else: 
                    return [] 
            else: 
                return [] 
        else: 
            return [] 
 
 
# reading information from the *.json file with predicted aligned error. 
# Get long-range residue pairs with low (< 12) predicted aligned errors (PAE), 
# and such residue pairs likely belong to the same domain. 
def read_json(prot): 
    fp = open("AF2_jsons/" + prot + "_error.json","r") 
    text = fp.read()[1:-1] 
    fp.close() 
    json_dict = json.loads(text) 
    resids1 = json_dict['residue1'] 
    resids2 = json_dict['residue2'] 
    length = max(resids1) 
    errors = json_dict['distance'] 
    size = len(errors) 
 
    bond_pairs = [] 
    for i in range(size): 
        res1 = resids1[i] 
        res2 = resids2[i] 
        err = errors[i] 
        if err <= 12 and res1 + 30 <= res2: 
            bond_pairs.append([res1,res2]) 
 
    res2bond = {} 
    for item in bond_pairs: 
        res1 = item[0] 
        res2 = item[1] 
        try: 
            res2bond[res1].append(res2) 
        except KeyError: 
            res2bond[res1] = [res2] 
        try: 
            res2bond[res2].append(res1) 
        except KeyError: 
            res2bond[res2] = [res1] 
    return [bond_pairs, res2bond, length] 
 
 
# Get residues that are likely disordered. 
# A 10aa window is used. 
# If a window of 10 residues show low PAE (< 12) with less than 2 residues outside the window ON AVERAGE,  
# we considered residues in this window to be disorders. 
# Disordered regions of >= 20 residues were excluded from domain parsing initially. 
def get_disorder(res2bond, length): 
    diso_resids = set([]) 
    for i in range(1, length - 8): 
        segstart = i 
        segend = i + 9 
        segbond = 0 
        for j in range(segstart, segend + 1): 
            try: 
                segbond += len(res2bond[j]) 
            except KeyError: 
                pass 
        if segbond <= 20: 
            for j in range(segstart, segend + 1): 
                diso_resids.add(j) 
 
    diso_resids = list(diso_resids) 
    diso_resids.sort() 
    diso_segs = [] 
    for res in diso_resids: 
        if not diso_segs: 
            diso_segs.append([res]) 
        elif res > diso_segs[-1][-1] + 1: 
            diso_segs.append([res]) 
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        else: 
            diso_segs[-1].append(res) 
 
    good_diso_resids = set([]) 
    for diso_seg in diso_segs: 
        if len(diso_seg) >= 20: 
            for diso_res in diso_seg: 
                good_diso_resids.add(diso_res) 
    return good_diso_resids 
 
 
# Parsing the ordered residues into domains using the "find_cut" function defined at the beginning. 
def parse_domain_step1(good_diso_resids, bond_pairs, length): 
    domain = [] 
    for i in range(1, length + 1): 
        if not i in good_diso_resids: 
            domain.append(i) 
    domains = [domain] 
 
    while 1: 
        new_domains = [] 
        for domain in domains: 
            judge1 = 1 
            judge2 = 1 
            newjudge1 = 1 
            newjudge2 = 1 
            domain11 = [] 
            domain12 = [] 
            cutsite1 = find_cut(domain, bond_pairs) 
            if cutsite1: 
                domain11 = cutsite1[0] 
                domain12 = cutsite1[1] 
                new_domains.append(domain11) 
                new_domains.append(domain12) 
            else: 
                new_domains.append(domain) 
 
        if len(domains) == len(new_domains): 
            break 
        else: 
            domains = [] 
            for domain in new_domains: 
                domain.sort() 
                domains.append(domain) 
    return domains 
 
 
# Refine domain definition. 
# If there are some relatively short disordered segments inside a domain,  
# add these disordered residues back to the protein domain. 
def parse_domain_step2(domains_v0, good_diso_resids): 
    domains_v1 = [] 
    for domain in domains_v0: 
        if len(domain) >= 30: 
            segs = [] 
            for res in domain: 
                if not segs: 
                    segs.append([res]) 
                elif res == segs[-1][-1] + 1: 
                    segs[-1].append(res) 
                else: 
                    segs.append([res]) 
 
            if len(segs) > 1: 
                newdomain = [] 
                for counts, seg in enumerate(segs): 
                    if not counts: 
                        for residue in seg: 
                            newdomain.append(residue) 
                    else: 
                        lastseg = segs[counts - 1] 
                        count_miss = 0 
                        count_all = 0 
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                        interseg = range(lastseg[-1] + 1, seg[0]) 
                        for residue in interseg: 
                            if residue in good_diso_resids: 
                                count_miss += 1 
                            count_all += 1 
                        if count_all == count_miss: 
                            if len(interseg)<=30 or len(interseg)<=len(seg)/5 or len(interseg)<=len(lastseg)/5: 
                                for residue in interseg: 
                                    newdomain.append(residue) 
                            for residue in seg: 
                                newdomain.append(residue) 
                        else: 
                            for residue in seg: 
                                newdomain.append(residue) 
                domains_v1.append(newdomain) 
            else: 
                domains_v1.append(segs[0]) 
    return domains_v1 
 
 
# Refine domain definition. 
# If a domain contains segments separated by long disordered region,  
# try to see split them if inter-segment "bond" is relatively rare. 
def parse_domain_step3(domains_v1, res2bond): 
    domains_v2 = [] 
    reassign_segs = [] 
    for domain in domains_v1: 
        segs = [] 
        for res in domain: 
            if not segs: 
                segs.append([res]) 
            elif res == segs[-1][-1] + 1: 
                segs[-1].append(res) 
            else: 
                segs.append([res]) 
        if len(segs) > 1: 
            newsegs = [] 
            for seg in segs: 
                newsegs.append([seg,len(seg)]) 
            newsegs.sort(key=lambda x:x[1],reverse=True) 
            domains_v2.append(set(newsegs[0][0])) 
            for item in newsegs[1:]: 
                reassign_segs.append([set(item[0]),len(item[0])]) 
        else: 
            domains_v2.append(set(segs[0])) 
 
    reassign_segs.sort(key=lambda x:x[1], reverse=True) 
    for item in reassign_segs: 
        seg = item[0] 
        bond_info = [] 
        for countd, domain in enumerate(domains_v2): 
            bond_count = 0 
            for res1 in seg: 
                try: 
                    for res2 in res2bond[res1]: 
                        if res2 in domain: 
                            bond_count += 1 
                except KeyError: 
                    pass 
            bond_info.append([countd, bond_count]) 
        bond_info.sort(key=lambda x:x[1],reverse=True) 
        best_domain = bond_info[0][0] 
        best_count = bond_info[0][1] 
        intra_count = 0 
        for res1 in seg: 
            try: 
                for res2 in res2bond[res1]: 
                    if res2 in seg: 
                        intra_count += 0.5 
            except KeyError: 
                pass 
        if best_count < intra_count * 0.2 and len(seg) >= 50: 
            domains_v2.append(seg) 
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        else: 
            domains_v2[best_domain] = domains_v2[best_domain].union(seg) 
    return domains_v2 
 
 
def write_file(domains_v2, prot): 
    rp = open("domains/" + prot + ".domains", "w") 
    for domain in domains_v2: 
        segs = [] 
        newdomain = list(domain) 
        newdomain.sort() 
        for res in newdomain: 
            if not segs: 
                segs.append([res]) 
            elif res == segs[-1][-1] + 1: 
                segs[-1].append(res) 
            else: 
                segs.append([res]) 
        segstrings = [] 
        for seg in segs: 
            if len(seg) >= 10: # if a segment in a domain is less than 10 aa, discard it. 
                segstring = str(seg[0]) + "~" + str(seg[-1]) 
                segstrings.append(segstring) 
        rp.write(",".join(segstrings) + "\n") 
    rp.close() 
 
 
prot = sys.argv[1] 
[bond_pairs, res2bond, length] = read_json(prot) 
good_diso_resids = get_disorder(res2bond, length) 
domains_v0 = parse_domain_step1(good_diso_resids, bond_pairs, length) 
domains_v1 = parse_domain_step2(domains_v0, good_diso_resids) 
domains_v2 = parse_domain_step3(domains_v1, res2bond) 
write_file(domains_v2, prot) 
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