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Abstract

Temperate  coastal  marine  waters  are  often  thermally  stratified  from spring  through  fall,  but  can  be

dynamic  and disrupted  by  tidal  currents  and  wind-driven  upwelling.  These  mixing  events  introduce

deeper,  cooler  water  with  a  higher  partial  pressure  of  CO2 (pCO2),  and  its  associated  microbial

communities to the surface. Anecdotally, there have been concerns that these changes in water quality as

well as in microbial composition and activity may be involved in mass mortality events of Pacific oysters

(Crassostrea  gigas)  on  the  East  Coast  of  Vancouver  Island,  British  Columbia.  Therefore,  improved

understanding of the composition and microbial activity of marine waters associated with seasons and

abiotic variables may be useful in managing these mortality events. To characterize both compositional

and functional changes associated with abiotic factors, here we generate a reference metatranscriptome

from the Strait of Georgia over the representative seasons and analyze metatranscriptomic profiles of the

microorganisms present within intake water containing different pCO2 levels at a shellfish hatchery in

British Columbia from June through October. Abiotic factors studied include pH, temperature, alkalinity,

aragonite, calcite and pCO2. Community composition changes were observed to occur at broad taxonomic

levels,  and  most  notably  to  vary  with  temperature  and  pCO2.  Functional  gene  expression  profiles

indicated a strong difference between early (June-July) and late summer (August-October)  associated

with viral activity. The taxonomic data suggests this could be due to the termination of cyanobacteria and

phytoplankton blooms by viral lysis in the late season. Functional analysis indicated fewer differentially

expressed  transcripts  associated  with  abiotic  variables  (e.g.,  pCO2)  than  with  the  temporal  effect.

Microbial composition and activity in these waters varies with both short-term effects observed alongside

abiotic variation as well as long-term effects observed across seasonal changes, as captured in the samples

analyzed here. The analysis of both taxonomy and functional gene expression simultaneously in the same

samples (i.e.,  metatranscriptomics) provided a more comprehensive view for monitoring water bodies

than either would in isolation. 

Keywords: metatranscriptome assembly; metatranscriptomics; microbial community, ocean acidification;

oyster; pCO2; seasonality; transcriptomics
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Introduction

Metatranscriptomics  characterizes  expressed  genes  (i.e.,  RNA  transcripts)  that  are  present  in  an

environmental  sample.  These transcripts  may be within the cell,  or  in  the extracellular  space.  While

metagenomics profiles the taxonomy of a sample, metatranscriptomics can profile the biological functions

that are present in the sample and are active or differentially accumulated in particular environments

(Aguiar-Pulido et al. 2016). Metatranscriptomics can also be used to deduce taxonomic information for

dominant taxa in communities (Shi et al. 2011; Neves et al. 2017; Marcelino et al. 2019), in particular

with longer transcriptome contigs, which are expected to produce correct taxonomic assignments (Shakya

et al. 2019). Metatranscriptomics is typically conducted through next-generational sequencing, which has

the benefit of identifying novel genes and functions not known to be used by the identified taxa (Gilbert

et al. 2008). Considering that millions of marine microorganisms and viruses occur within a millilitre of

seawater  (Wigington  et  al.  2016;  Finke  et  al.  2017),  these  assemblages  should  be  considered  as  a

collective in their generated functions rather than being restricted to the functions known to be provided

by a single cell or a single taxon (Moran 2015). For detecting an oyster parasite, eRNA was found to

detect a species substantially longer than when using eDNA (Merou et al. 2019). A large scale global

study found indications that the functional gene content in marine microbial samples is largely shaped by

taxonomic composition (Salazar et al. 2019). Due to these reasons, the environmental metatranscriptomic

approach has strong potential for profiling active processes and community composition under changing

conditions in marine molecular ecology (Moran et al. 2013; Cristescu 2019). 

Globally,  the  Pacific  oyster  Crassostrea  gigas aquaculture  industry  is  dependent  both  on

hatchery-reared  commercial  oysters  as  well  as  naturalized  oysters  that  can  be  moved  onto  farms

(Sutherland et al. 2020). This is a valuable industry that brings jobs to small communities; in British

Columbia, Canada, the Pacific oyster aquaculture industry was recently estimated to produce 14.8 M

CAD in  revenue  per  annum (Sun  and  Hallin  2018).  Pacific  oyster  hatcheries  and  farms  have  both

experienced large-scale mortality events globally in recent years, including in France (Soletchnik et al.

2005), Australia (Li et al. 2007), California (Burge et al. 2007) and British Columbia (Cassis et al. 2011).

Mass mortality events often occur at the spat lifestage (i.e., juveniles attached to substrate; Gomez-Leon

et al. 2005; Garcia et al. 2006). Mortalities of adult oysters nearly ready for harvest are also an issue

(Soletchnik et al. 2005; Solomieu et al. 2015; Green et al. 2019). The mortalities may be caused by a

variety of biotic and abiotic stressors. In many cases, the causes of mass mortality events remain elusive.

In some cases oyster mortalities have been linked to various disease causing agents (Renault et al.

2001; Gomez-Leon et al. 2005; Maloy et al. 2007;  Solomieu et al. 2015; Green et al. 2019), including

aquatic shellfish pathogens such as  Vibrio (Gomez-Leon et al. 2005; Paillard et al. 2008),  Roseovarius

(Maloy et  al.  2007),  and  Mikrocytos  (Carnegie  et  al.  2003).  Oyster  Herpes  Virus  (OsHV-1)-specific
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infections have been identified as contributing to massive mortality events in France (Renault et al. 2001;

Davison et al. 2009; Renault et al. 2014; Arzul et al. 2017; Martenot et al. 2017). Harmful algae blooms

have also been associated with oyster mortalities (Landsberg 2010; Cassis et al. 2011). By the nature of

their intertidal habitat and filter feeding lifestyle, oysters are exposed to varying environmental conditions

and microbial assemblages (De Schryver and Vadstein 2014; Lokmer et al. 2016; Cho 2019). It has also

been  recognized  that  the  oyster  microbiome  is  in  constant  exchange  with  the  pool  of  exogenous

environmental  microorganisms  (Wegner  et  al.  2013;  Lokmer  et  al.  2016;  Cho  A  and  Finke  JF,

unpublished), which has the potential to introduce pathogens to the oyster. The cause of oyster mortalities

may be polymicrobial, where stress leads to an initial infection by an agent such as a virus, and then

subsequent  bacterial  and  eukaryote  secondary  infections  can  occur.  Abiotic  correlates  to  the  above

microorganisms and environmental indicators associated with their presence may prove to be a useful tool

to monitor oyster populations on farms and hatcheries. 

Abiotic perturbations such as temperature, pCO2, and salinity, can alter oyster metabolism and

growth, can trigger mortality (Zhao et al. 2012; Dickinson et al. 2012; Wang et al. 2016; Kim et al. 2017)

and can  impact microbial assemblages (Ray and To 2012). Coastal water microbial communities form

under widely varying environmental  conditions,  including ranges of salinity  and pH, factors that  are

impacted by seasons, tides, or even biological activity (Salisbury et al. 2008; Joint et al. 2011; Lv et al.

2016; Lee et al. 2017). Microbes tolerate pH fluctuations under regular conditions and co-vary with water

bodies in the short-term (Joint et al. 2011), but adjust in the long term. Microbial, bacterial and protist

communities show significant responses to high pCO2 concentrations (Ray and To 2012; Zhang et al.

2015;  Thomson et  al.  2016).  Average pCO2 concentrations have increased from 280 ppm before the

industrialization (Friedlingstein et al.  2019) to currently 400 ppm (Blunden and Arndt  2020) and are

deemed to increase to an average of 1000 ppm by the end of this century, with an associated rise of sea

surface temperature by 1ºC and drop of pH by 0.29 (Kirtman 2013; Pachauri 2014; Bindoff 2019). The

impact of ocean acidification on overall microbial activity and assemblages is difficult to predict, but the

interactions between environmental variables, microbes, and oyster mortalities are important avenues of

research. 

Here we compare the microbial composition, active genes, and enriched functional categories of

differentially expressed genes within samples of intake water at a shellfish hatchery over a range of pCO2

levels, temperatures, and months. We apply comparative metatranscriptomics by first developing a  de

novo metatranscriptome assembly using the samples in the study. We take a taxonomic approach to view

the community composition of each sample. In parallel, we quantify the relative expression levels of each

transcript  among  the  samples  and  perform  differential  gene  expression  analysis  in  relation  to

environmental metadata. Collectively, this work profiles hatchery intake water across 20 dates over a
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two-year period. Using environmental metadata, multivariate clustering, differential expression analysis,

and functional enrichment analysis, we characterize these different sampling events in relation to date of

collection and water environmental parameters. 

Materials and Methods

Water collection, RNA extraction and environmental variables

Water samples were collected from the ocean water intake at a Pacific oyster hatchery in Qualicum Bay,

central  East  Coast  Vancouver Island,  British Columbia over a two year period,  with the majority of

samples collected in 2015 (Supplemental File S1). On each collection day, six litres of water were taken

and filtered through sterile 0.22 µm PVDF filters (Millipore, Burlington, MA). Filters were stored at -

80ºC. Temperature was measured by a mercury thermometer, salinity with a refractometer and pH with a

glass probe pH meter (Jenco, San Diego, CA). Alkalinity was measured with a HI901 titrator (Hanna

Instruments, Smithfield, RI), pCO2 was determined with a LI840A infrared gas analyzer (Li-Cor, Lincoln,

NB),  and  aragonite  and  calcite  were  calculated  with  the  CO2SYS.BAS  program

(https://github.com/jamesorr/CO2SYS-Excel/blob/master/CO2sys_mod.bas).  The filters  were then used

for  RNA  extraction  by  the  Power  Water  RNA  isolation  kit  (MoBio,  Carlsbad,  CA)  following

manufacturer’s  instructions,  including  the  alternate  lysis  step.  Output  total  RNA  was  depleted  for

ribosomal  RNA  and  prepped  for  RNA-seq using  the  Scriptseq  Complete  Gold  (Epidemiology)  kit

(Illumina,  San Diego,  CA).  A total  of  ~50 ng of  ribosomal  depleted RNA was used as  an input  to

transcriptome libraries.  Individual  libraries  were randomly pooled into groups of  four  samples  using

equimolar quantities and sequenced on a MiSeq v3 600 reagent kit (Illumina, San Diego, CA) to generate

paired-end 250 bp reads. Environmental variables were analyzed in a principal component analysis (PCA)

using the Vegan package (Oksanen et  al.  2016)  in the  R environment (R Core Team,  2022),  where

missing values were imputed with unit averages. 

Bioinformatics and metatranscriptome assembly

Raw and quality  trimmed sequence data  were inspected with FastQC (Andrews 2010)  and MultiQC

(Ewels et al.  2016). Quality trimming was conducted to remove low quality reads and adapters with

Cutadapt (Martin 2011) using flags -q 20 to remove < Q20 data from the 3’-end of the read and -m 50 to

remove reads shorter than 50 bp. Results were output as an interleaved fastq. Putative ribosomal RNA

(rRNA) reads were removed using SortMeRNA (Kopylova, Noé, and Touzet 2012) using all suggested

rRNA databases, and therefore enriching for putative messenger RNA (mRNA) in silico.

Two  different  approaches  were  taken  to  assemble  the  reference  metatranscriptome.  First,  a

reference metatranscriptome was assembled using the metatranscriptome-optimized assembler IDBA-tran
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(Peng 2012) with a  majority of the samples  (16 /  20 samples;  191,303,324 reads),  not  including all

samples due to computational constraints. Samples used for this approach comprised an equal number of

samples from both ends of the pCO2 range present in the collections. This assembly was conducted with

default  settings and run on 56 threads. Second, a reference metatranscriptome was generated by first

assembling each of the 20 libraries individually using IDBA-tran, and then merging these 20 assemblies

into a single assembly using CD-HIT-EST (Li and Godzik 2006). CD-HIT-EST merged contigs at 95%

similarity, and dedupe.sh of BBTools (Bushnell, Rood, and Singer 2017) was used to de-duplicate with

default parameters (i.e., the ‘merged assembly approach’). These assemblies were compared based on the

total number of contigs, total length,  multi-mapping proportions, and mapping percentages to select the

best assembly. 

Reads  for  each  sample  were  aligned  against  the  reference  metatranscriptome  using  Bowtie2

(Langmead and Salzberg 2012) in end-to-end mode allowing for multi-mappings.  A maximum of 40

alignments were retained for each read. Alignments were then filtered to remove low quality mappings

(i.e.,  mapq ≥ 2).  Retained alignments  were quantified using eXpress (Roberts  et  al.  2013).  Effective

counts from eXpress were output into a table in R, and imported into edgeR (Robinson and Oshlack

2010). Filtering was conducted to only retain contigs against which at least five reads mapped in the

sample with the fewest reads (i.e.,  3.86 counts per million;  CPM), and requiring that the contig was

represented at this CPM level or higher in at least five samples. Retained transcripts were normalized for

library size using the TMM normalization method of edgeR v.3.28.1.

Taxonomic community analysis

The expressed transcripts of the metatranscriptome were annotated for taxonomic identity using BLASTn

(Camacho et al. 2009) against the nt database of NCBI, retaining a maximum of 100 alignments and

descriptions per record. Best annotations were selected based on the e-value and a minimum cut-off at E

< 10-5. Best match phylogenetic lineages of annotated transcripts were extracted with a custom python

tool (see data accessibility) based on the subject sequence id using the ranked lineage database (NCBI),

and exporting different levels of the taxonomy. The taxonomic overview and characterization used all

expressed genes, at the kingdom, phylum and order level, further analysis was conducted at the genus

level. A canonical correlation analysis (CCA) of genus abundances and environmental variables, as well

as  ANOVA tests  for  significance  of  regressions  were  performed  with  the  vegan  package  in  R.  To

compare community composition at different lineage levels, pairwise distances were calculated using the

Bray-Curtis dissimilarity measure in vegan, and Mantel tests were performed using the ade4 package

(Dray and Dufour 2007). Linear models of genus abundance versus pCO2 concentration were conducted

in R, where significant regressions were defined by p < 0.05. 
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Differential expression analysis

To  view  detailed  gene  expression  trends  among  samples,  log2  CPM  values  were  used  for

multidimensional scaling (MDS) plots. The plotMDS function of limma v.3.42.2 (Ritchie et al. 2015) was

used to generate MDS plots using both the leading log2-fold-change as well as a PCA (gene.selection =

common). Samples were grouped into binary groups for pCO2 (low/normal versus high) and season for

differential expression analysis. High pCO2 was considered when the value was greater than 700 ppm,

and low/normal was considered less than 700 ppm. Early summer was considered as June through July,

and late summer was considered for August through October (see Table 1). Expression levels for each

transcript were analyzed in a generalized linear model (i.e., glmFit and glmLRT) in edgeR to analyze the

effect of pCO2 and the effect of early vs. late summer, and their interaction. Genes with pairwise p ≤ 0.05

after Benjamini-Hochberg multiple test correction were considered differentially expressed. 

To annotate transcripts with functions, expressed transcripts were assigned UniProt descriptions

and  identifiers  by  using  BLASTx  (Altschul  1997)  to  align  contigs  against  the  Swiss-Prot  database

(UniProt 2017) using the pipeline go_enrichment (Eric Normandeau, see data accessibility), with flags --

max_target_seqs 1 in outfmt 6 format, and only retaining hits with E < 10 -5. The UniProt identifier was

used  as  an  input  for  Gene  Ontology  (GO)  enrichment  analysis  in  DAVID  bioinformatics  (Huang,

Sherman, and Lempicki 2009), using differentially expressed lists compared against all expressed genes

in the metatranscriptome for those transcripts annotated with UniProt identifiers. 

Results

Sampling and environmental conditions

Intake water at the commercial oyster hatchery on east coast Vancouver Island, BC was sampled on four

separate days in 2014 (June-August) and on 16 days in 2015 (June-November), with the total samples

collected  being  approximately  balanced between the early  summer  (i.e.,  June-July,  n  = 11)  and late

summer (i.e., August-October, n = 9).  Environmental variables were measured from the intake water,

including pH, temperature,  salinity,  alkalinity,  aragonite,  calcite and pCO2,  as shown in Table 1 (for

complete data see Supplemental File S1).

The focal variable of this study, pCO2, ranged from 81-1060 ppm (average = 588 +/- 290 ppm).

Following IPCC assessments (Gattuso 2014) we classify samples into low pCO2 < 400 ppm (n = 6),

medium pCO2 400-700 ppm (n = 4), and high pCO2 > 700 ppm (n = 10) samples. A two dimensional

PCA of environmental conditions shows variability among samples, separating them by low, medium and

high pCO2 conditions (Figure 1). Samples S25 and S35, having concentrations of 397 and 386 ppm pCO2

cluster  close  to  the  medium  pCO2 samples.  Samples  S22,  S26  and  S36  have  almost  identical
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environmental  conditions.  The  PCA  describes  77%  of  total  variation  in  the  first  two  principal

components, with 52% explained by PC1 and 25% by PC2. The most influential variables in the PCA are

pCO2 and pH,  separating the samples by their  pCO2 classes.  The contributions of pCO2 and pH are

inverse, as are salinity and temperature. Calcium carbonate (CaCO3), aragonite and calcite differ in their

variation from the main axes described by pH/pCO2 and salinity/temperature. Notably, the grouping of

samples by environmental variables does not display clustering by sampling months and the associated

early vs. late summer classification (Figure 1).

Sequencing and assembly

The  metatranscriptome  libraries  each  yielded  on  average  14.7  M  (s.d.  =  2.8  M)  paired-end  reads.

Depletion of rRNA in library preparation removed most of the rRNA from a majority of the samples,

although for six of the 20 samples, 30-65% of sequenced library remained as rRNA (Figure S1). Residual

rRNA was removed in silico, and is primarily comprised of bacterial 23s and eukaryotic 28s rRNA, but

also archaeal rRNA. 

The  reference  metatranscriptome  was  assembled  from  a  total  of  191,303,324  mRNA  reads

(33,050,961,278 bp) originating from pooling the non-rRNA data from 16 of the samples (n = 8 from

each of low pCO2 and high pCO2). This input produced a final assembly of 8,003,896 contigs (total length

= 2,468,090,451 bp; longest contig: 103,407 bp; N50 = 272 bp; number contigs > 500 bp = 600,691). This

assembly was compared to other assemblies that used fewer libraries, or those that were individually

assembled by sample then subsequently merged (i.e., ‘merged assembly’; see Methods). The collectively-

assembled contigs with the highest number of input samples show fewer multi-mapping reads than did the

merged assembly.   The  percentage  of  reads  aligning  a  single  time  increases  substantially  until  four

libraries were added, then tapers off to not increase notably with eight, 12, or 16 libraries. Although the

addition  of  more  libraries  after  four  libraries  did  not  substantially  increase  the  percentage  of  reads

mapping,  but  also  did  not  increase  redundancy  as  evaluated  by  multi-mapping.  The  16  library

collectively-assembled  assembly  also  has  a  similar  number  of  contigs  and  total  length  to  the  other

assemblies (see Supplemental Results; Figure S2). Therefore, this collectively-assembled assembly was

chosen to be used for all  downstream functional analyses (i.e.,  the  ‘final reference metatranscriptome

assembly’). 

Aligning reads from individual samples against the final reference metatranscriptome assembly

resulted in an average alignment rate per sample of 56% (median = 57%; min. = 37%; max = 68%), with

an average of 40% of the total alignments per sample with both read pairs aligning concordantly a single

time.  On average per sample,  12% of reads align concordantly more than once,  which may indicate
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remaining redundancy in the assembly. Applying low expression filters removed the majority of contigs

from the metatranscriptome, retaining 32,866 contigs with CPM ≥ 3.86 in at least 5 of 20 samples.

Taxonomic analysis

In order to infer the community compositions of samples, the taxonomic lineages for expressed transcripts

were analyzed.  Taxonomic assignment was successful  for 19,315 of the 32,866 expressed transcripts

(59%), but the taxonomic resolution varied among contigs. For example, 89% of the annotated transcripts

resolve to at least the phylum level, 80% to class, 79% to genus and only 30% to the species level. Some

occurring  taxa  are  non-microbial  or  suspected  false  taxonomic  assignment,  and  are  left  out  for  this

analysis. A total of 708 genera in 104 classes and 58 phyla are annotated, only 10 microbial phyla are

present at an abundance level of greater than 0.5% of the total reads. When combined, these 10 phyla

account  for  over  95%  of  all  reads,  yet  several  other  phyla  are  represented  in  the  data  as  well

(Supplemental  File  S2).  These 10  dominant  phyla  show an  abundance  of  reads  assigned to  bacteria

(~74%),  specifically  Proteobacteria,  Bacteriodetes,  Firmicutes,  Actinobacteria and  Cyanobacteria.

Overall, fewer reads are assigned to archaea (~11%), viruses (~9%) and eukaryotes (~1.6%). Archaea are

represented  by  Thaumarcheota and  Euryarcheota.  Viruses  are  largely  in  the  class  Caudovirales

(Uroviricota) which includes, for example, bacteriophages and cyanophages, and the Nucleocytoviricota

that  represent  the  nucleocytoplasmic  large  DNA  viruses  (NCLDV).  Eukaryotes  are  in  the  phylum

Bacillariophyta.  Figure  2  shows  the  variation  in  community  composition  of  these  ten  phyla  among

samples, Proteobacteria and Bacteroidetes are clearly dominating in most samples, especially in the early

season. Cyanobacteria and Bacillariophyta are also mostly present in early season samples. In late season

there is an increase in relative abundance for the Thaumarchaeota and Euryarchaeota, but especially the

Uroviricota and Nucleocytoviricota viruses.

The overall variation in community composition among samples was evaluated based on Bray-

Curtis similarity in a pairwise distance analysis. When compared at different taxonomic levels, variations

in community compositions are congruent, and this is true for comparisons of genus to class (R=0.97),

class to phylum (R=0.91) and genus to phylum (R=0.90), all showing significant congruence (Mantel test

p  ≤ 0.01).  A CCA of  taxa  composition  for  the  708 genera  and environmental  variables  produces  a

significant  model  (P=0.013),  explaining  56%  of  the  total  variation  in  taxon  composition  through

environmental variables (Figure 3). Of that variation the first dimension (CCA1) describes 39% and the

second dimension (CCA2) describes 27% of the variation. The relationship between sample composition

as indicated by the sample labels and the genera (dots) are shown, taxa are coloured according to the

corresponding four kingdoms. Generally, kingdoms are distributed across the CCA, but eukaryotes show

some grouping with samples S21, S15 and S13. Viruses show grouping with late summer samples S31,

9

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.21.477286doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.21.477286
http://creativecommons.org/licenses/by/4.0/


S34, S36 and S37.  The effect  and strength of environmental  variables on the sample composition is

indicated by vectors. Temperature and salinity, and pH and pCO2 describe the predominant dimensions of

variation.  A  stepwise  regression  determined  that  temperature  (p=0.001)  and  pCO2 (p=0.028)  are

significant  environmental  variables  affecting the composition of  samples.  Additionally,  early vs.  late

summer is  significant  (p=0.023) in separating samples by composition.  Correlating all  708 genera to

pCO2, our main environmental variable of interest, revealed 67 genera that have a significant (p<0.05)

linear correlation of their log10 transformed abundances to pCO2 concentrations (Supplemental File S3).

The genera with significant linear correlations are predominantly in the Proteobacteria,  Cyanobacteria,

and Picornavirales and Caudovirales. Similarly, 93 genera show significant variation between the early

and late season samples, especially  Caudovirales and  Algavirales (Supplemental File S4). The top ten

genera for both models are summarized in Table 2.

Gene expression analysis

After the low expression filter was applied, in total 22,121 (67%) of the expressed contigs (n = 32,866)

were functionally annotated with UniProt identifiers (BLASTx E < 10-5). All gene expression analysis

was  conducted  using  both  the  annotated  and  unknown  transcripts  except  for  functional  enrichment

analysis, which depends on the UniProt identifier. 

Using the filtered expression data, an unsupervised multidimensional scaling plot (MDS plot) was

used to group samples by similarity in gene expression (Figure 4). Based on gene expression signatures

this plot indicates similarity among samples from a common season, where samples from June-July (early

summer) are separated from August-October (late summer/fall), with early season samples (blue) and late

season samples (red) separated on PC1 (Figure 4). One sample is an exception, S19, which groups outside

of its season. Notably, S19 was the only sample from 2014 that was collected in August or later (collected

Aug. 6Th, 2014; Supplemental File S1). No effect of year nor technical aspects of sample handling are

observed. 

Based on the observations of the effect of pCO2 as a key environmental variable on taxonomic

composition and a focal variable of the study, a differential expression analysis was conducted using

pCO2 separated into either high or  medium/low levels,  and early summer vs.  late  summer as binary

explanatory variables, as well as their interaction. There is a larger effect of early vs. late summer than of

pCO2, where 2,765 transcripts are found differentially expressed based on early vs. late, and 720 based on

pCO2. Of these, 45 are differentially expressed in both contrasts (Supplemental File S5). Of the transcripts

affected  by  season,  318  are  over-expressed  in  early  summer,  and  2447  are  over-expressed  in  late

summer/early fall. Of the transcripts affected by pCO2, 553 are over-expressed by high pCO2 and 167 are
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under-expressed. There are no transcripts showing a significant interaction effect of sampling period and

pCO2. 

Differentially  expressed  transcripts  were  used  for  Gene  Ontology  (GO)  enrichment  analysis

(Table 3). Annotated transcripts overexpressed in the early summer (n = 318) are enriched for metabolic

processes and biosynthesis (e.g., cellular macromolecule metabolic process; n = 32 genes; p = 0.01), and

those overexpressed in the late summer are most notably enriched with viral process (biological process;

n = 53; p << 0.0001) and virion (cellular component; n = 30; p << 0.0001). The viral process category is

mainly enriched with transcripts annotated from phage taxa (n = 40 of 53 transcripts; Supplemental File

S6). 

Genes overexpressed in high pCO2 include cobalamin biosynthetic process (n = 5, p = 0.003),

organic substance biosynthetic process (n = 81, p = 0.004), and DNA replication (n = 17, p =0.005).

Genes with lower expression at high pCO2 include protein maturation (n = 6, p << 0.001) and response to

abiotic stimulus (n = 6, p < 0.001). 

Discussion

Profiled characteristic conditions indicate short-term environmental fluctuations

The collected samples reflect typical intake water of oyster hatcheries from standard aquaculture practices

on East Coast Vancouver Island (Helm 2004), spanning over several months and two years. The variables

were analyzed in a PCA to understand the covariation of environmental variables and how they shape the

sampling conditions.  The variation in  environmental  data  describes  the characteristic  water flow and

carbon chemistry of intertidal oyster habitats and the region of sampling (Strait of Georgia) (Dickinson et

al. 2012; Ianson et al. 2016); salinity and temperature are inversely affected by influxes of cold seawater

with  relatively  high  salinity  and warmer  fresh  water  with  lower  salinities.  Water  with  higher  pCO 2

concentrations are characterized by lower pH values and the combined effect of pH, pCO 2, and salinity is

reflected in the CaCO3 concentrations, with calcium being one of the salts in seawater. This relationship

shows  in  the  sample  separation  by  low,  medium  and  high  pCO2 values  and  the  force  loadings  of

environmental variables. Calcite and aragonite are both derivatives of CaCO3, varying based on the pCO2

and the pH of water (Doney 2010), and their influence is thus mediated between these two variables. The

clustering of samples observed when considering environmental data highlights the impact of pCO2 and

salinity and suggests that variations in environmental conditions observed in the scale of the present study

(two years) are driven by short term influxes of fresh or marine waters through tidal cycles and upwelling

of deep waters.
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Taxonomic composition varies with abiotic factors and early and late summer

The microbial community analysis here is based on sequences with taxonomic assignment. However, we

expect this to be a representative description, with the possible exception of largely uncharacterized taxa

in reference databases. Derived from taxonomic assignments of contigs and their respective expression

levels, community similarity among samples proved to be congruent across different taxonomic levels.

This supports the approach of using taxonomic assignments down to the genus level. Importantly, it also

indicates that shifts in community composition happen at higher taxonomic levels and not just at  the

genus or species level. Contigs assigned to non-microbial taxa or terrestrial taxa are expected to be either

the  product  of  dispersed  tissue  or  cells  in  the  water  column  or  alternatively  incorrect  taxonomic

assignment. 

Across  samples  the  microbial  communities  are  clearly  dominated  by  Proteobacteria,

Bacteriodetes,  Firmicutes,  Actinobacteria and  Cyanobacteria.  Both  eukaryote  and  archaea

microorganisms are notably less represented, and even matched in abundance by viral sequences. The

described bacterial phyla are commonly found to be dominant in marine (Sunagawa et al.  2015) and

coastal waters (Yung et al. 2016; Yu et al. 2018), and constitute the microbiome of oysters themselves

(Trabal et al.  2012; Lokmer et al.  2015; Lokmer et al.  2016; Dubé et al.  2019; Stevick et al.  2019).

Proteobacteria (Vibrionales) and  Bacteriodetes  (Flavobacteria) in particular represent common marine

microbes and pathogens (Gomez-Leon et al. 2005; Schulze et al. 2006; Paillard et al. 2008; Chen et al.

2017).  Observations by Stevick and co-workers (Stevick et  al.  2019) found that  Cyanobacteria were

among the dominant phyla in the oyster rearing water communities and  Synechococcus is a ubiquitous

cyanobacterial genus in coastal environments (Partensky et al. 1999; Tai and Palenik 2009). Similarly, the

abundant  eukaryote  Bacillariophyta and  Chlorophyta,  both  present  in  the  samples  taken  here,  are

common phytoplankton in coastal waters (Worden, Nolan, and Palenik 2004; Armbrust 2009). 

Matching the microbial community, the dominant Caudovirales includes general bacteriophages

and  specifically  cyanophages  (Weinbauer  and  Rassoulzadegan  2004).  The  present  results  are  thus

mirroring  the  general  ubiquity  of  heterotrophic  bacteria,  but  also  indicating  their  lysis.  The

Nucleocytoviricota include giant viruses commonly infecting protists (Fischer et al. 2010; VanEtten et al.

2010),  but  also  phycodnaviruses  infecting  eukaryote  phytoplankton  (e.g.  Chlorophyta),  both  being

abundantly present in coastal waters (VanEtten et al. 1982, 2002). Taken together, the observation of a

low presence of cyanobacteria sequences and  Bacillariophyta sequences alongside high abundance of

plankton viruses and phages in some late season samples, may indicate the lysis of cyanobacteria and

algae blooms later in the season. This observation would match phytoplankton bloom patterns described

for the northern Strait of Georgia where diatoms (Bacillariophyta) and prasinophytes (Chlorophyta) are

mostly dominant with only periodic cyanobacteria blooms (Del Bel Belluz et al. 2021). Additionally, the

12

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.21.477286doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.21.477286
http://creativecommons.org/licenses/by/4.0/


general decrease in Proteobacteria in the late season samples is observed alongside increased presence of

phage (Uroviricota) activity, which also fits with the understanding that bacterial blooms are terminated

by viral lysis. As well, viruses show a correlation to late summer samples in the canonical correspondence

analysis and the T-test.

The 67 taxa showing significant linear correlations to pCO2, our main environmental variable of

interest, can be considered characteristic for changes in pCO2 due to water influx. Several of these taxa,

including Proteobacteria, Bacteroidetes, Cyanobacteria, Firmicutes and Deferribacteres match bacterial

taxa with abundances that are associated with tidal cycles and salinity (Lee et al. 2017; Chen et al. 2019).

There  remains  a  large  portion  of  unexplained  variation  in  the  taxonomic  data  when  all  taxa  are

considered. The CCA shows that only about 50% of the variation among microbial communities could be

explained  by  the  combined  environmental  variables.  The  effect  of  environmental  variables  on  the

taxonomic community data in the CCA matches their interplay in the PCA based on environmental data

(Figure 1). The CCA also confirms that early vs. late summer sampling time has a significant effect on

the community composition, although to a lesser effect than observed in the functional gene expression

results (see below). We could not identify the abiotic variables responsible for the early vs. late summer

effect,  which  indicates  other  variables  may be  involved in  community  differences  are  missing  (e.g.

nutrients or irradiance levels, among others). 

In  any  case,  the  observed  effect  and  explanatory  levels  of  environmental  variables  matches

previous studies,  where  temperature  has  been shown to be a  main variable  correlated to  community

composition of coastal marine bacterioplankton (El-Swais et al. 2015; Yung et al. 2016; Yu et al. 2018).

Further, Yu and co-workers also established the effect of pH that corresponds to our observations on the

influence of pCO2  on community composition. Therefore, although some abiotic or biotic variables may

be missing from the study,  the  results  fit  with other  studies on abiotic  factors influencing microbial

communities. 

Overall,  the data show that the microbial communities confronting oysters in hatchery intake

water  vary  at  high  taxonomic  levels  with  season.  The  communities  further  vary  alongside  with

environmental variables that are driven by tidal cycles and currents in coastal waters. As demonstrated,

metatranscriptome data can be used to monitor the presence of a wide range of microbes and putative

pathogens in seawater, expanding on the use of specific microbe probing (e.g. Merou et al. 2019).

Differential RNA transcript abundance reveals functional variation between early and late summer

Environmental variables are not only expected to alter microbial community composition, but also to

influence the function of cells on the transcriptomic level. Further, a change in community composition

does not always indicate a change in functions within the community if one taxon is replaced by a similar
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taxon  with  similar  functions.  A  study  comparing  taxonomic  and  functional  composition  in  marine

microbial samples revealed a disconnect between taxonomy and functions (Louca et al. 2016). In the

functional transcriptome analysis of the present study, early and late summer sampling shows a clear

effect on overall transcriptome expression, but environmental variables including pCO2 do not show clear

groupings of samples in the gene expression data. Consequently, similar to the community composition

results, here functional variation is expected to have been influenced by factors outside of the measured

environmental  variables  (e.g.,  nutrients  and  irradiance  levels,  among others).  The  lack  of  an  annual

pattern in gene expression suggests some stability to this temporal trend over the two years analyzed,

however, the grouping of the only August sample (S19) from 2014 not with the late summer but rather

with the early summer unlike the August samples in 2015 may indicate a difference in the exact timing of

the shift in composition observed in each year.  

The early vs. late summer effect is most notably enriched for transcripts involved in phage viral

activity. Viral dynamics are an underappreciated component of the global ocean carbon cycle. However,

in the North Pacific Ocean it has been observed that viral productivity and abundance is higher in summer

(July) than in winter (Jan-Feb) (Gainer et al. 2017), leading these researchers to conclude that seasonality

is an important consideration to understand viral dynamics (Jiang and Paul 1994; Tsai et al. 2013). A

study within a Korean bay over different seasons found that the number of reads and unique species of

viruses identified differed depending on month; the most viral reads were found in March and December

and the  fewest  reads  in  June  and September  (Hwang  2017).  It  is  recognized  that  viral  composition

changes  depend  seasonally  on  a  range  of  factors  including  temperature,  salinity,  dissolved  oxygen,

primary production and nutrient concentrations (Brum et al. 2015; Fuhrman et al. 2015). Generally, viral

abundance, specifically for dsDNA viruses, has been found to correlate with nutrient concentration, as

well as heterotrophic bacteria abundance (Wigington et al. 2016; Finke et al. 2017). Viruses infecting

bacteria (i.e., bacteriophages) are typically considered among the dominant group of viruses in marine

environments (Breitbart et al. 2002; Steward et al. 2013). In the Korean bay study, 73% of the viral reads

were from bacteriophage, and 26% were from algal viruses, with only 1% involving other viruses (Hwang

et al. 2017). 

Marine microbial communities are often comprised of a few dominant species and many rare

ones,  and results  from the Tara  Oceans Expedition found approximately 37 k bacterial  and archaeal

species, 100 k protist groups and 5.5 k double-stranded bacterial and archaeal virus populations (Moran

2015). The present study found a high degree of variation in gene expression profiles among samples.

Variation could also be expected in the community data as well as the functional expression data. Some

apparent randomness could be expected, but overall the communities are expected to be predictable at

given  times,  depths  and  composition  of  organic  matter  (Moran  2015).  As  is  suggested  from  the
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community composition and transcript activity of the present study, previous metatranscriptome studies

have also found a substantial increase in viral transcripts after a phytoplankton bloom, presumably due to

infected cells in lytic stage (Gilbert et al. 2008). 

The effect of pCO2 was also investigated in the differential expression analysis, but this had a

lesser effect than that the temporal effect observed. Interestingly, in the present study, overexpression of

protein chaperones was observed at low pCO2, which is the opposite to previous observations in high

pCO2 mesocosms,  where  metatranscriptomic  responses  of  overexpressed  chaperonin  transcripts  was

observed (Gilbert et al. 2008). 

Overall, taxonomic and transcriptomic profiling complemented each other and when combined

provided a comprehensive view of the changes observed in this study. This matches the observation by

Salazar et al. (2019) that the correlation between taxonomic composition and functional composition is

variable. The community composition analysis provided more information on taxa associated with abiotic

factors, and the functional analysis highlighted the large effect of viral activity that differed over time

during the summer months. 

Conclusions

Increased knowledge on the potential for biotic influences into mortality events in oyster aquaculture,

associated with abiotic factors, is an important objective to facilitate monitoring or mitigation of losses.

Changing environmental conditions may occur over short time scales through upwelling or changing of

currents,  or may have large, structured changes that occur temporally. In the present study, microbial

communities  were  derived  from  metatranscriptome  data,  which  avoided  primer  bias  that  occurs  in

amplicon-based approaches, and captures data from all kingdoms of life. The observed variability among

microbial communities was found to be associated with both temperature and pCO2,  as well as other

changes that occurred between early and late summer. These temporal and abiotic factors appeared to be

disconnected and were two different trends occurring in the marine environment. The functional gene

expression analysis pointed to a strong difference in viral activity moving into the late season, and a much

lesser effect of abiotic factors such as pCO2, temperature and salinity. Together, these analyses provide

community composition and functional gene differences associated with abiotic factors and time, and

likely  captured  viral  termination  of  bacterial,  cyanobacterial  and  algal  blooms  later  in  the  season.

Metatranscriptomics allowed the characterization of both community changes as well as gene expression

activity  changes  within  these  communities  simultaneously,  providing  a  comprehensive  view  of  the

changes occurring in these water bodies.  
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Tables

Table 1. Summary statistics of ocean chemistry variables. pCO2 was the target abiotic variable of the

study,  but  the  effect  of  the  other  variables  was  also considered in  the  context  of  metatranscriptome

profiles. For calcite and aragonite, the saturation states are shown. 

Min Max Mean Median Std. dev.

pH 7.56 8.35 7.8 7.78 0.22

Temperature (ºC) 11.4 16.7 14.4 14 1.5

Salinity (‰) 28 29 28.2 28 0.41

Alkalinity (µmol/kg) 795.1 2634.2 1501.1 1400 465.1

Aragonite (Ω) 0.34 2.72 0.93 0.65 0.69

Calcite (Ω) 0.54 3.15 1.39 1.04 0.86

pCO2 (ppm) 81.2 1059.9 588.3 606.6 289.9
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Table  2.  Top  ten  significant  genera  of  linear  models  against  low,  medium,  and  high  pCO2

concentration and T-test of early vs. late summer. P-values express the model significance, slope and

statistic values indicate positive and negative correlations.

Linear model genus vs. pCO2

R2
P-

value
Intercept Slope Genus Order Phylum Superkingdom

0.718 <0.001 0.582 0.001 Methyloceanibacter Rhizobiales Proteobacteria Bacteria

0.597 <0.001 2.157 -0.002 Deferribacter Deferribacterales Deferribacteres Bacteria

0.552 <0.001 2.229 -0.001 Gossypium Malvales Streptophyta Eukaryota

0.614 0.001 1.956 -0.002 Thioalkalivibrio Chromatiales Proteobacteria Bacteria

0.694 0.001 2.902 -0.002 Mitrocomella Leptothecata Cnidaria Eukaryota

0.466 0.001 2.234 -0.002 Sogarnavirus Picornavirales Pisuviricota Viruses

0.460 0.001 2.320 -0.001 Methylovorus Nitrosomonadales Proteobacteria Bacteria

0.447 0.001 2.644 -0.001 Methylophilus Nitrosomonadales Proteobacteria Bacteria

0.462 0.001 1.712 -0.001 Aeromonas Aeromonadales Proteobacteria Bacteria

0.470 0.002 0.525 0.001 Steinhofvirus Caudovirales Uroviricota Viruses

T-test genus vs. early and late summer

Statistic
P-

value
Parameter Stderr Genus Order Phylum Superkingdom

7.053 0.000 13.653 0.121 Coregonus Salmoniformes Chordata Eukaryota

6.884 0.000 11.777 0.118 Biomphalaria Mollusca Eukaryota

4.129 0.001 15.288 0.169 Leucotheavirus Caudovirales Uroviricota Viruses

3.759 0.004 9.647 0.207 Nesterenkonia Micrococcales Actinobacteria Bacteria

3.713 0.002 16.922 0.217 Glaciecola Alteromonadales Proteobacteria Bacteria

3.693 0.002 13.866 0.164 Emcibacter Emcibacterales Proteobacteria Bacteria

3.614 0.002 15.826 0.125 Glaesserella Pasteurellales Proteobacteria Bacteria

3.566 0.004 10.998 0.217 Nephromyces Nephromycida Apicomplexa Eukaryota

3.560 0.006 9.414 0.194 Tannerella Bacteroidales Bacteroidetes Bacteria

3.221 0.006 14.866 0.112 Borrelia Spirochaetales Spirochaetes Bacteria
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Table 3. Gene Ontology (GO) enrichment for pCO2 and season. GO enrichment analysis indicates the

effect of pCO2  and season on several biological processes, most notably a highly significant enrichment

for viral processes in the late season. Columns shown are the GO Term, count in gene list, p-value for

enrichment test, count in background list, and fold enrichment. Full GO enrichment results are presented

in Supplemental Materials. 

GO Term Count P-value
Count 
(background)

Fold 
Enrich.

Overexpr. in 
high pCO2

GO:0009236~cobalamin 
biosynthetic process 5 0.0030 18 7.9
GO:0006260~DNA replication 17 0.0048 226 2.1
GO:0019058~viral life cycle 8 0.015 75 3.0

GO:0039693~viral DNA 
genome replication 4 0.020 17 6.7

Overexpr. in 
low pCO2

GO:0051604~protein 
maturation 6 6.1E-06 30 21.0

GO:0006950~response to 
stress 10 0.0032 344 3.1
GO:0006457~protein folding 5 0.0067 83 6.3

Overexpr. in
early season

GO:0003735~structural 
constituent of ribosome 8 0.0059 134 3.6

Overexpr. in 
late season

GO:0016032~viral process 53 7.3E-42 91 9.7
GO:0006260~DNA replication 55 1.8E-20 226 4.1

GO:0051701~interaction with 
host 23 5.1E-16 45 8.5

GO:0046718~viral entry into 
host cell 17 1.2E-13 27 10.5
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Figures

Figure 1.  Principal  Components Analysis (PCA) of samples based on environmental  conditions.

Samples are indicated as labels, their corresponding pCO2 classification is indicated by colour (blue=low,

violet=medium,  red=high).  Arrow  direction  and  length  indicate  the  relative  effect  and  strength  of

environmental variables. Here the positions of samples are entirely from environmental conditions, not

based on taxonomic or gene expression data. 
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Figure 2. Community composition of the top 10 phyla across samples. Stacked bar-plot of the relative

abundance (total number of alignments to taxa) across samples for microbial phyla above 0.5% total

abundance, phyla are indicated by color coding in legend, samples are arranged by early season vs. late

season. 
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Figure 3. Canonical correspondence analysis (CCA) showing the effect of environmental variables

on the variation in relative abundance of genera among samples. Samples are shown as labels and the

relative  association  of  genera  is  shown  as  crosses.  Crosses  for  genera  are  color  coded  by  their

corresponding superkingdom. The effect of environmental variables on the composition of genera in the

samples is indicated by grey arrows, the arrow length corresponds to scaled effect strength. The effect of

early and late summer is indicated in grey labels.
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Figure 4. Unsupervised multidimensional scaling (MDS) plot on samples based on gene expression.

Dimension 1 explains  the  most  variation,  separating the late  and early season samples.  Samples  are

labeled by sample number and the pCO2 level measured during the sampling. Samples S13, S15, S16, and

S19 are from 2014, and the rest are from 2015. Full details on samples can be viewed in Supplemental

File S1. 
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Supplementary Materials

Supplemental Figure 1. Proportion of non-rRNA and rRNA reads per sample. Results indicate that

for a majority of the samples, the rRNA depletion was successful, enriching the amount of messenger

RNA for analysis. 
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Supplemental  Figure 2.  Assessment of reference metatranscriptome assemblies.  (A) Total  contig

numbers (red) increase with input data size linearly, and so does total length of output assembly (black).

The individual assembly of eight libraries that were subsequently merged together (shown to the right of

the  hatched  line)  has  a  similar  number  of  contigs  and  length  as  the  eight  libraries  assembled

simultaneously. (B) The percentage of unaligned reads decreases as more libraries are added, initially

with a rapid decrease until  four libraries are added,  and then with a more gentle slope as additional

libraries are added. The benefit of increasing from eight to 16 libraries is not as evident in the percentage

of reads aligned, suggesting that once four or eight libraries are assembled together, not much benefit is

added by increasing the number of libraries in this dataset. Interestingly, the merged assembly has slightly

fewer unaligned reads,  but  double the number of multi-mapping reads (align > 1, grey), indicating a

strong amount of redundancy is still present in the merged assembly that is not present in the 16 library

simultaneous assembly.
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Supplemental Data

Supplemental File S1. Complete environmental and metadata for all samples.

Supplemental File S2. Overview of lineage data assigned to contigs.

Supplemental File S3. Full list of genera with significant linear models to pCO2 concentrations.

Supplemental File S4.  Full list of genera with significant different abundances between early and late

summer samples.

Supplemental File S5. Full differential gene expression analysis including genes differentially expressed 

between pCO2 levels and between seasons, as well as genes found in both comparisons. 

Supplemental File S6. Full Gene Ontology analysis including GO enrichment for each differentially 

expressed gene list for Biological Process (BP), Cellular Component (CC), and Molecular Function (MF).

Viral transcripts identified in BP in the season differential analysis are also included. 
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