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ABSTRACT 

Genome-wide association studies (GWASs) have identified thousands of genetic variants 

associated with common polygenic traits. The candidate causal risk variants reside almost 

exclusively in noncoding regions of the genome and the underlying mechanisms remain elusive 

for most. Innovative approaches are necessary to understand their biological function. Multimarker 

analysis of genomic annotation (MAGMA) is a widely used program that nominates candidate risk 

genes by mapping single-nucleotide polymorphism (SNP) summary statistics from genome-wide 

association studies to gene bodies. We augmented MAGMA into chromatin-MAGMA 

(chromMAGMA), a novel method to nominate candidate risk genes based on the presence of risk 

variants within noncoding regulatory elements (REs). We applied chromMAGMA to a genetic 

susceptibility dataset for epithelial ovarian cancer (EOC), a rare gynecologic malignancy 

characterized by high mortality. Disease-specific RE landscapes were defined using H3K27ac 

chromatin immunoprecipitation-sequence data. This identified 155 unique candidate EOC risk 

genes across five EOC histotypes; 83% (105/127) of high-grade serous ovarian cancer risk genes 

had not previously been implicated in this EOC histotype. Risk genes nominated by 

chromMAGMA converged on mRNA splicing and transcriptional dysregulation pathways. 

chromMAGMA is a pipeline that nominates candidate risk genes through a gene regulation-

focused approach and helps interpret the biological mechanism of noncoding risk variants in 

complex diseases. 
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INTRODUCTION 

Multi-marker Analysis of Genomic Annotation, or MAGMA (de Leeuw et al. 2015) uses 

multiple regression to group raw or summary SNP statistics from GWASs to the level of genes 

while accounting for linkage disequilibrium (LD) between variants. Instead of testing millions of 

variants individually, MAGMA reduces the multiple testing burden by performing gene level 

analyses and has emerged as a powerful approach for the discovery of candidate genes and 

pathways associated with risk of complex traits (Wray et al. 2018; Demontis et al. 2019; Jansen et 

al. 2019). MAGMA captures SNPs positionally mapped to gene-bodies; however, many studies 

have now shown that noncoding tissue-specific REs (such as transcriptional enhancers marked by 

H3K27ac) are enriched for risk SNPs, and risk REs often interact with genes hundreds of kilobases 

away (Gerasimova et al. 2013, 2019; Jones et al. 2020; Nasser et al. 2021). Identifying candidate 

risk REs and the gene(s) they regulate remains a major bottleneck in the post-GWAS field. We 

therefore created a bioinformatic tool termed ‘chromatin-MAGMA’, or chromMAGMA, a 

pipeline that augments MAGMA to infer the target gene of noncoding risk variants based on user-

inputted disease-relevant REs and RE-to-gene maps.  

Here we tested chromMAGMA in epithelial ovarian cancer (EOC), a deadly disease with 

approximately 22,240 new cases and 14,070 annual deaths in the US (Torre et al. 2018). EOC can 

be stratified into five main histologic subtypes (histotypes) - high-grade serous (HGSOC), low-

grade serous (LGSOC), endometrioid (EnOC), clear cell (CCOC), and mucinous ovarian cancer 

(MOC) (Soslow 2008; Torre et al. 2018). Each histotype is characterized by distinct molecular 

drivers, clinicopathologic features, and distinct germline genetic risk variants (Jones et al. 2017; 

Nameki et al. 2021). Of the 39 known unique EOC susceptibility loci (P-value < 5x10-8) identified 

through GWASs, 9 are associated with risk of HGSOC, 5 with risk of LGSOC, 4 with risk of 
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MOC, and 1 with risk of EnOC. 20 loci are associated with all invasive disease, or a combination 

of one or more histotypes (Song et al. 2009; Bolton et al. 2010; Goode et al. 2010; Bojesen et al. 

2013; Pharoah et al. 2013; Kelemen et al. 2015; Kuchenbaecker et al. 2015; Lawrenson et al. 2015; 

Kar et al. 2016; Lawrenson et al. 2016; Jones et al. 2017; Phelan et al. 2017). These genome-wide 

significant risk loci represent a fraction of all narrow-sense heritability in EOC and it is predicted 

that additional SNPs also contribute to disease susceptibility (Manolio et al. 2009; Boyle et al. 

2017). Innovative approaches are needed to deconvolute additional true risk loci falling below 

genome-wide significance from false positives due to limited power, particularly for the rarer 

histotypes.  

We applied chromMAGMA to EOC, inputting histotype-specific GWAS summary 

statistics, REs identified by H3K27ac chromatin immunoprecipitation-sequencing (ChIP-Seq) of 

Müllerian tissues, and RE-to-gene maps from the GeneHancer database (Corona et al. 2019). 

ChromMAGMA highlighted mRNA splicing and transcriptional dysregulation in EOC risk. In 

addition, lineage-specifying transcription factors (TFs) marked by super-enhancers (large stretches 

of H3K27ac) were particularly enriched for EOC risk associations based on chromMAGMA 

analyses and are likely to represent the nexus of noncoding EOC risk and transcriptional 

dysregulation. Overall chromMAGMA offers a flexible, gene regulation-focused approach to 

nominate noncoding regulatory elements and target genes involved in risk of polygenic traits. 

RESULTS 

chromMAGMA maps risk-associated, active regulatory elements to target genes 

To identify candidate risk REs and associated genes for polygenic traits, we built the 

chromMAGMA pipeline by modifying the pre-processing and processing steps of conventional 

MAGMA and tested its performance using GWAS summary statistics and epigenome data for 
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epithelial ovarian cancer (Supplementary Table 1). First, the genome is trimmed to only include 

regions annotated as high-confidence active REs from the GeneHancer database (Fishilevich et al. 

2017). This reduces the genome from three billion base pairs (bp) to ~400 million bp (Figure 1a). 

Since GeneHancer includes data from 46 tissue types, for an EOC-specific analysis we further 

restricted the universe of GeneHancer REs to those regions marked by H3K27ac in normal and 

malignant Müllerian tissues and cell lines (Coetzee et al. 2015; Fishilevich et al. 2017; Corona et 

al. 2019). This created a final genome of ~200 million base pairs containing only regions of active 

chromatin identified in ovarian cancer-relevant tissues. GWAS SNP identifiers (reference SNP 

cluster identifiers, rsIDs) from 6 histotype-specific GWAS summary statistics (CCOC, EnOC, 

HGSOC, LGSOC, MOC, and NMOC – a dataset consisting of all samples except for MOC) 

(Coetzee et al. 2021) (Figure 1b) were then positionally mapped to the aforementioned RE dataset 

by applying the MAGMA annotation command (Methods). The SNP rsID-to-RE annotation was 

then processed for gene-level analysis using MAGMA (Methods) alongside EOC GWAS SNP 

summary statistics (P-values) and 1000 Genome European panel reference LD data (1000 

Genomes Project Consortium et al. 2015). As multiple REs can regulate one gene (Peng and Zhang 

2018), each gene was assigned the P-value of the most significant RE.  

Since REs marked by H3K27ac can identify both transcriptionally active promoters and 

enhancers, we stratified REs into promoters (defined as 1000bp upstream and 100bp downstream 

of a transcription start site) or candidate enhancers (all other regions of active chromatin) 

(Methods). This identified an average of 9,682 risk-associated REs for each histotype (range: 

9,624-9,713) assigned to 17,435 protein-coding genes, of which 38% of the REs (3,703/9,682; 

range: 3,669-3,731) were active promoters and 62% (5,979/9,682; range: 5,966-6,002) were 

enhancers. The enhancer-to-promoter distance varied widely, with an average distance of 187,647 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2022. ; https://doi.org/10.1101/2022.01.21.477270doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=4174468&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4174468&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4174468,1228189,6355727&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=4174468,1228189,6355727&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=12304444&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=790619&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=790619&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6758596&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6758596&pre=&suf=&sa=0
https://doi.org/10.1101/2022.01.21.477270
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

bp (range: 2 bp – 5 Mbp; SD +/- 230,272 bp) between enhancer start and transcription start sites 

(Supplementary Figure 1) 

 

 

 We ran conventional MAGMA alongside chromMAGMA to compare risk genes 

implicated by the two methods (Supplementary Table 2). In MAGMA and chromMAGMA, the 

P-value is calculated in a two-step process: first the SNP matrix is projected into a smaller set of 

principal components to remove the effects of highly correlated SNPs; second these principal 

components are used in a linear regression whose outputs (feature-wise enrichment for significant 

SNPs) are tested for statistical significance using an F-test (de Leeuw et al. 2015). Considering all 

protein coding genes, the average chromMAGMA P-value was significantly lower compared to 

MAGMA across EOC histotypes (P-value < 0.001 for all histotypes; Welch two-sample T-test), 

consistent with previous evidence that REs, but not protein coding exons, are enriched for risk-

Figure 1. Applying chromMAGMA to EOC risk. a) Overview of the chromMAGMA approach. The 

GeneHancer database of regulatory elements (and linked genes) was limited to REs detected in Müllerian tissues. 

An EOC SNP rsID-to-RE-to-gene annotation list was created and used for gene-level analysis using the MAGMA 

model, along with EOC GWAS summary statistic P-values and reference linkage disequilibrium correlations from 

the European ancestry subset of the 1000 Genomes reference panel. Since multiple REs can be associated with 

one gene, the RE with the most significant P-value represents each gene. b) Study population of EOC GWAS 

dataset from Coetzee et al. 2021 CCOC, clear cell ovarian cancer; EnOC, endometrioid ovarian cancer; HGSOC, 

high-grade serous ovarian cancer; MOC, mucinous ovarian cancer; NMOC, all non-mucinous ovarian cancers 

(Coetzee et al. 2021).  
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associated SNPs (2019). After Bonferroni correction to account for the total number of genes tested 

in each histotype-specific analysis, we identified 68 unique significant genes in MAGMA and 155 

unique significant genes in chromMAGMA, with 56 genes identified by both methods (MAGMA 

Bonferroni corrected P-value < 2.70x10-6; chromMAGMA Bonferroni corrected P-value < 

2.87x10-6). The number of genes identified by histotype ranged from 0 (EnOC) to 53 (all non-

mucinous cancers, NMOC) significant genes in MAGMA and 0 (EnOC) to 131 (NMOC) 

significant genes using chromMAGMA (Figure 2a). Disparity in the number of significant genes 

by histotype is likely due to power, as HGSOC and NMOC represents a majority of the overall 

sample size in the EOC GWAS.  

Gene-dense GWAS loci at genome-wide significance account for many of the risk genes 

identified by MAGMA and chromMAGMA (Berisa and Pickrell 2016). For example, genes on 

chromosome 17 are overrepresented in MAGMA and chromMAGMA in EOC (26/68 and 52/155 

unique genes respectively) likely due to the presence of two genome-wide significant loci in this 

chromosome and the high degree of LD due to an inversion at 17q31 (Jones et al. 2017).We divided 

the genome into distinct bins based on LD to identify instances where chromMAGMA nominates 

candidate risk REs within novel LD bins, scenarios where the same candidate gene could not 

readily be identified through MAGMA. Using this approach, twenty-nine unique genes were 

identified as candidate risk genes only in chromMAGMA (Supplementary Table 3). Using 

chromMAGMA NMOC as an example, a significant promoter (P-value 4.3x10-8) at a known breast 

and ovarian cancer genome-wide significant risk locus at chromosome 9q31 is assigned to SMC2; 

whereas in MAGMA, SMC2 is not significant (P-value 1.9x10-3) (Kar et al. 2016) (Figure 2b). 

Other candidates not previously implicated in EOC risk such as PRSS23 (P-value 2.6x10-6), a 

serine-protease regulated by HGSOC biomarker PAX8 (Adler et al. 2017) were also identified 
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(Figure 2c). The same RE assigned to PRSS23 interacts across an LD boundary with the promoter 

of EED. EED is a component of the polycomb repressor complex involved in the pathogenesis of 

numerous cancer types (Kim et al. 2013).  

We next compared chromMAGMA risk genes with candidate susceptibility genes 

nominated by alternative approaches. This analysis was limited to HGSOC as it is the most 

common and well-studied EOC subtype. Chromosome conformation capture assays have 

identified candidate susceptibility genes previously undiscovered based on proximity to the nearest 

gene promoter. So far three GWAS significant loci at 11q31, 8q24, and 19p13 originally mapped 

by proximity to HOXD3, PVT1, and BABAM1 was found, via chromosome conformation capture 

assays to interact with HOXD9, MYC, and ABHD8 respectively (Grisanzio and Freedman 2010; 

Lawrenson et al. 2015, 2016). chromMAGMA nominated all three as candidate susceptibility 

genes in HGSOC (HOXD9, P-value 1.52x10-12; MYC, P-value 6.39x10-11 and ABHD8, P-value  

3.9x10-16). As chromMAGMA also identifies risk variants that may impact short-range enhancer-

promoter interactions, promoters, and intronic enhancers, we reasoned that it should also be able 

to capture susceptibility genes identified through traditional GWAS based on closest proximity. 

Indeed, 10 out of 12 (83 %) genes previously labeled as genome-wide significant based on 

proximity to a lead variant overlapped with chromMAGMA nominated genes (P-value < 5x10-8) 

(Figure 2d). Cis-expression quantitative trait loci (eQTL) and transcriptome-wide association 

studies (TWASs) integrate genotype data with gene expression to identify candidate genes 

associated with disease risk. To date, 26 candidate genes have been identified as HGSOC candidate 

risk genes using these methods (Lawrenson et al. 2015; Lu et al. 2018; Kar et al. 2020); 16 out of 

26 genes (62%) previously identified by HGSOC eQTL or TWAS analyses were also nominated 

by chromMAGMA (Figure 2d). chromMAGMA identified 105 additional genes previously not 
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implicated in HGSOC risk. 22/105 of these genes had long range interactions (> 500 kilobases) 

with the risk RE, highlighting how chromMAGMA can identify candidate genes transcriptionally 

impacted by noncoding risk SNPs that are hundreds of kilobases away. For example, the longest 

promoter-risk RE interaction identified in this analysis was between the GMPS gene (P-value 

5x10-10) and an associated RE 9.4 kilobases away in linear genomic distance. Overall, 

chromMAGMA nominates candidate risk genes that are consistent with alternate methods, but 

also implicates additional genes in HGSOC susceptibility through risk SNPs with their upstream 

active regulatory elements.   
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chromMAGMA implicates splicing and gene regulation in EOC risk 

To identify pathways regulated by risk-associated regulatory elements, we conducted gene 

set enrichment analysis to ask whether any gene sets from the Gene Ontology (GO) database were 

enriched in ranked gene-level associations (based on descending order of -log10(P-value)) from 

MAGMA and chromMAGMA. This approach allows for the investigation of sets of genes without 

the need to assign arbitrary P-value cutoffs. Since one RE can be assigned to multiple genes in the 

chromMAGMA gene-level association, gene ranks were weighted using a mRNA expression 

dataset comprised of disease-relevant primary tissue samples (Corona et al. 2019)  to generate a 

ranked list in which highly expressed genes are ranked higher than relatively lower expressed 

genes associated with the same RE (Methods). Pathway enrichment analysis with the 

chromMAGMA-derived gene list identified 140 common pathways across all histotypes, of which 

7 were related to mRNA splicing and processing (considering only pathways with positive 

normalized enrichment scores and adjusted P-value < 0.05) (Figure 3a, Supplementary Table 4). 

Spliceosome factors CHERP and EFTUD2 were the top 2 (out of 349) most significant genes 

related to mRNA splicing in the weighted chromMAGMA gene list. In addition, 20 of the common 

pathways were terms related to transcription or chromatin, including RNA polymerase II activity 

and transcription factor activities (Figure 3a). DNA-binding Transcription Factors SIN3B and 

NFE2L1 were the top 2 most significant genes (out of 1746) in the weighted chromMAGMA gene 

Figure 2. ChromMAGMA identifies risk genes for epithelial ovarian cancer through risk SNPs coinciding 

with regulatory elements. a) Candidate risk genes identified by conventional MAGMA and chromMAGMA 

across EOC histotypes (adjusted P-value < 0.05). b) Locus view displaying the NMOC chromMAGMA RE-to-

gene association for SMC2. LD boundaries and GWAS SNP associations (-log10(P-value)) are shown. c) Locus 

view displaying the NMOC chromMAGMA RE-to-gene association for PRSS23 and EED. d) UpSet plot of 

chromMAGMA genome-wide significant genes in HGSOC and alternate approaches to nominate candidate risk 

genes. Proximity, lead variants labeled as genome-wide significant (P < 5x10-8) assigned to genes based on nearest 

transcription start site; eQTL, cis-expression quantitative trait loci; TWAS, transcriptome-wide association 

studies; CCOC, clear cell ovarian cancer; EnOC, endometrioid ovarian cancer; HGSOC, high-grade serous ovarian 

cancer; LGSOC, low-grade serous ovarian cancer; MOC, mucinous ovarian cancer; NMOC, all non-mucinous 

ovarian cancers.   
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list and the transcription mediator complex coactivator MED26 ranked 3rd. Histotype-specific 

pathways were also observed for CCOC (195 pathways), EnOC (58 pathways), HGSOC (17 

pathways), LGSOC (30 pathways) and MOC (70 pathways) (Figure 3b). In contrast, pathway gene 

set enrichment with conventional MAGMA had no enriched pathways that passed the P <0.05 

(after adjustment for multiple comparisons) threshold across all histotypes.  
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Super-enhancer-associated transcription factors are associated with EOC risk  

Cancer cells are often dependent on lineage-specifying TFs whose expression is propelled 

by large clusters of enhancers termed super-enhancers or stretch enhancers (Bradner et al. 2017). 

Of 1,671 known human TFs, 257, 220, 202, and 247 TFs are associated with super-enhancers in 

CCOC, EnOC, HGSOC, and MOC respectively (Supplementary Table 5). Using chromMAGMA 

we identified super-enhancer-associated TFs as enriched for association with risk at P-value < 

0.05; FDR (q-value) < 0.25 for all histotypes except LGSOC, as LGSOC tissue H3K27ac ChIP-

seq data were not available (Figure 4a) (Hnisz et al. 2013; Whyte et al. 2013; Corona et al. 2019). 

By contrast, super-enhancer associated TFs were only significantly enriched for HGSOC risk (P-

value < 0.05; FDR q-value < 0.25) when using gene-level statistics derived from conventional 

MAGMA. Leading-edge analysis was performed to identify the super-enhancer associated TFs 

overrepresented in the top ranks of chromMAGMA gene-level associations. TFs previously 

implicated in epithelial ovarian cancer development including 6/14 candidate master regulators for 

HGSOC based on a recent pan-cancer gene expression analysis were implicated in EOC risk 

(Supplementary Table 6). Three of these factors (PAX8, SOX17, and MECOM) are functionally 

validated master regulators of HGSOC development (Figure 4b) (Reddy et al. 2019). HNF1B, a 

CCOC biomarker and a key regulator of CCOC tumorigenesis (Cuff et al. 2013; Li et al. 2015), 

was also on the leading edge of the clear cell ovarian cancer analysis (Figure 4b).  

Figure 3. chromMAGMA identifies histotype-specific as well as common pathways involved in EOC risk. 

a) Dot plot representing transcription, splicing, and chromatin related pathways that were enriched in risk genes 

nominated in all histotypes by chromMAGMA. b)  Bar plots representing the top 10 histotype-specific 

chromMAGMA pathways based on normalized enrichment score. NES, normalized enrichment score; CCOC, 

clear cell ovarian cancer; EnOC, endometrioid ovarian cancer; HGSOC, high-grade serous ovarian cancer; 

LGSOC, low-grade serous ovarian cancer; MOC, mucinous ovarian cancer. 
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Gene set enrichment analysis of TF cistromes 

 In addition to TFs being the target of risk SNPs, noncoding SNPs may also impact disease 

risk by modifying TF binding within enhancers to impact gene expression (Oldridge et al. 2015; 

Kandaswamy et al. 2016; Huo et al. 2019). Therefore, we asked whether target genes of specific 

TFs are disproportionally impacted by EOC risk SNPs in chromMAGMA. For this analysis we 

asked if TF-specific gene sets in the Molecular Signatures database (MsigDB) are enriched in the 

ranked gene list from chromMAGMA (Subramanian et al. 2005; Liberzon et al. 2011) 

Figure 4. Super-enhancers upstream of transcription factors are associated with histotype-specific EOC 

risk. a) Gene-set enrichment plot of super-enhancer associated TFs from each EOC histotype from Corona et al. 

2020 in conventional MAGMA and chromMAGMA.  b) Gene -log10(P-value) versus gene rank based on -

log10(P-value) with known genes implicated in CCOC and HGSOC from the leading-edge list of the super-

enhancer associated TF gene-set enrichment analysis highlighted. CCOC, clear cell ovarian cancer; EnOC, 

endometrioid ovarian cancer; HGSOC, high-grade serous ovarian cancer; LGSOC, low-grade serous ovarian 

cancer; MOC, mucinous ovarian cancer; NMOC, all non-mucinous ovarian cancers. 
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(Supplementary Table 7). TF targets are defined as genes with motifs located within 4 kb around 

their transcription start sites by MsigDB.  

We first explored the PAX8 target gene sets in HGSOC, as we have previously identified 

PAX8 target gene sets to be enriched in this histotype(Kar et al. 2017). PAX8 is represented by 

two gene sets in MsigDB - PAX8_B contains 106 genes, PAX8_01 contains 39 genes, with 23 

genes in common across the two sets. When ranked by the normalized enrichment score, PAX8_B 

ranked 24/573 (P-value =0.032, FDR q-value = 0.098) and PAX8_01 ranked 42/573 (P-value 

=0.13, FDR q-value = 0.34) in MAGMA. With chromMAGMA, the PAX8 target gene sets ranked 

higher, with PAX8_B ranked 1/573 (P-value < 1.0 x10-3, FDR q-value = 0.115), and PAX8_01 

ranked 12/573 (P-value =0.040, FDR q-value = 0.18). We also explored chromMAGMA 

performed for NMOC, and this analysis identified targets of EVI1, also known as MDS1 and EVI1 

Complex Locus (MECOM) as a significant gene set not identified in MAGMA (MsigDB-EVI1_05 

P-value = 1.0 x10-3, FDR q-value = 0.17; MsigDB-EVI1_04; P-value = .041, FDR q-value = 0.15; 

MsigDB-EVI1_03; P- value= 4.6 x10-2, FDR q-value = 0.229). MECOM is a known master 

regulator TF in HGSOC that is functionally involved in disease pathogenesis (Reddy et al. 2019; 

Bleu et al. 2021). Leading-edge analysis was performed for MsigDB-PAX8_B and MsigDB-

EVI1_05 to identify the candidate susceptibility genes potentially regulated by PAX8 and 

MECOM. This analysis identified 29 and 49 candidate susceptibility genes regulated by PAX8 

and MECOM, respectively. Interestingly, HOXB5, HOXB7, HOXB8, and NEUROD6 genes were 

common target genes between the two factors. HOXB5, HOXB7, and HOXB8 are homeobox 

superfamily TFs that are particularly highly expressed in HGSOC and associated with poor 

survival (Idaikkadar et al. 2019). 
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We then used chromMAGMA to discover additional TFs not previously implicated in EOC 

risk with histotype specificity in consideration. Since one transcription factor can be represented 

by multiple gene sets, the gene set with the most significant  P-value was chosen to represent each 

transcription factor. chromMAGMA performed for NMOC were excluded from this as it is a 

dataset consisting of all samples except for MOC. Considering P-value <0.05 & FDR cutoff of < 

0.25, we identified 113 transcription factors implicated in EOC risk. Of these 113 transcription 

factors, 13 were specific to CCOC, 4 to EnOC, 5 to HGSOC, 7 to LGSOC, 9 to MOC and 7 

common across all 5 histotypes (Figure 5a, Supplementary Figure 5a). SOX9 was identified as a 

CCOC specific TF in which its downstream regulatory targets are enriched for risk SNPs. A recent 

single-cell RNA sequencing study of the human endometrium (hypothesized tissue-of-origin for 

CCOC) grouped SOX9 positive epithelial cells of the endometrium as a regenerating and 

proliferative subset (Garcia-Alonso et al. 2021).  

Finally, we set to identify TFs that are likely to be directly regulated by risk SNPs and 

where risk SNPs also modify TF downstream binding, hereinafter termed as ‘nexus TFs’. Nexus 

TFs were defined as TFs that were (1) on the leading edge of the super-enhancer associated TF 

gene set enrichment analysis and (2) TF target gene sets from MsigDB that were significantly 

enriched in chromMAGMA for each respective histotype (Figure 5b, Supplementary Table 7). 16 

TFs such as PAX8 were identified for HGSOC and EnOC, along with novel TFs implicated in 

EOC such as SP1, a TF implicated in a variety of biological processes across multiple cancer types 

(Vizcaíno et al. 2015). To explore the functional role of Nexus TFs, we leveraged a publicly 

available CRISPR-Cas9 knock-out screen that includes seven CCOC cell lines, four EnOC cell 

lines, 15 HGSOC cell lines, and five MOC cell line models (Meyers et al. 2017). Although there 

is heterogeneity across cell lines and histotypes, EOC lines are largely dependent on RREB1, 
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ATF4, MAX, PAX8, MZF1, SRF (average essentiality scores ≤ -0.4; average score for pan-essential 

genes = -1) and SP1, MECOM, and CEBPB (average essentiality scores ≤ -0.3) (Figure 5c, Table 

1). By comparison, negative control TFs that were (1) not on the leading edge of the super-

enhancer associated TF gene set enrichment analysis and (2) bottom 16 of the TF target gene sets 

from MsigDB were less likely to be essential in EOC cell lines (Figure 5c). In total 9/16 nexus 

TFs showed at least modest dependency (average essentiality scores ≤ -0.3) in at least one 

histotype, compared to 2/16 negative control TFs. These results imply that TFs on the nexus of 

risk through genetic variation both in upstream REs and downstream binding sites can be identified 

in chromMAGMA and are often essential genes in EOC.  
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Figure 5. Transcription factor networks in EOC risk. a) Genome-wide significant Molecular Signatures 

Databse transcription factor targets (MsigDB ‘TFT_legacy’) gene-sets (FDR < 0.05) compared between MAGMA 

and chromMAGMA across histotypes b) Schematic depiction of the definition of a ‘Nexus TF’. Top ranks = 

leading edge of the gene-set enrichment analysis. c) Heatmap displaying the essentiality score of Nexus TFs in 

EOC lines (data from Depmap.org). Columns clustered using unsupervised hierarchical clustering (method = X). 

CCOC, clear cell ovarian cancer; EnOC, endometrioid ovarian cancer; HGSOC, high-grade serous ovarian cancer; 

LGSOC, low-grade serous ovarian cancer; MOC, mucinous ovarian cancer; NMOC, all non-mucinous ovarian 

cancers. 
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 CCOC EnOC HGSOC MOC 

TF Mean 

Essentiality 

Score 

SD  Mean 

Essentiality 

Score 

SD  Mean 

Essentiality 

Score 

SD  Mean 

Essentiality 

Score 

SD  

EGR1 -0.12 0.21 -0.03 0.19 -0.15 0.11 -0.11 0.10 

RREB1 -0.47* 0.20 -0.19 0.16 -0.43* 0.16 -0.52* 0.22 

SP1 -0.34** 0.22 -0.37** 0.23 -0.29 0.20 -0.50* 0.08 

ATF4 -0.76* 0.18 -0.73* 0.06 -0.78* 0.20 -0.91* 0.26 

HIF1A 0.34 0.36 0.15 0.10 0.14 0.10 0.06 0.30 

MECOM -0.34** 0.61 0.10 0.04 -0.23 0.38 0.10 0.12 

MEIS1 -0.01 0.06 -0.04 0.16 -0.11 0.16 -0.04 0.15 

VDR -0.05 0.13 -0.09 0.14 -0.06 0.12 -0.13 0.07 

IRF2 -0.04 0.09 0.04 0.04 0.10 0.18 0.02 0.21 

MAX -0.58* 0.16 -0.47* 0.10 -0.52* 0.15 -0.62* 0.12 

PAX8 -0.98* 0.66 -0.36 0.40 -0.71* 0.58 -0.25 0.44 

CEBPB -0.40** 0.25 -0.18 0.05 -0.30** 0.13 -0.28 0.32 

IRF1 -0.16 0.10 -0.17 0.13 -0.09 0.07 -0.20 0.13 

MZF1 -0.56* 0.28 -0.48* 0.17 -0.51* 0.11 -0.58* 0.23 

RFX1 -0.15 0.11 -0.25 0.14 -0.26 0.11 -0.24 0.18 

SRF -0.76* 0.17 -0.52* 0.16 -0.67* 0.14 -0.48* 0.29 

AR -0.12 0.14 -0.11 0.05 -0.01 0.13 -0.06 0.08 

*Mean essentiality score =< -0.4 **Mean essentiality score =< -0.3  

 

 

Table 1. Average essentiality scores for Nexus TFs across EOC cell lines. Mean essentiality score represents 

the average essentiality score for all cell lines associated with each EOC histotype. CCOC, clear cell ovarian 

cancer; EnOC, endometrioid ovarian cancer; HGSOC, high-grade serous ovarian cancer; LGSOC, low-grade 

serous ovarian cancer; MOC, mucinous ovarian cancer; NMOC, all non-mucinous ovarian cancers; SD, standard 

deviation. 
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DISCUSSION 

 Most common risk polymorphisms associated with complex traits in GWAS are located in 

the noncoding portion of the genome (Zhang and Lupski 2015). These noncoding risk 

polymorphisms likely modify the activity of noncoding regulatory elements to impact the 

expression of a target gene (or genes) that play a role in disease susceptibility (2019).  Identifying 

the risk RE and target gene remain two main challenges in post-GWAS functional work, since REs 

outside of promoters are tissue-specific and can interact with transcription start sites over large 

linear genomic distances (Sanyal et al. 2012). Here we built chromatin-MAGMA, or 

‘chromMAGMA’, to prioritize candidate risk REs and target genes based on the landscape of gene 

regulation in a specific tissue type. chromMAGMA first maps SNPs to user-defined tissue-specific 

regulatory element landscapes. REs are linked to putative target genes using the GeneHancer 

database, or any other resource. The collection of annotated active REs can then be interrogated at 

the gene level, or gene set level. Here we focused on epithelial data sets representing the tumor 

type of interest, plus likely precursor cell types; however analogous data sets for other cell types 

could also be interrogated, where they exist.  

We tested the performance of chromMAGMA using the largest EOC GWAS dataset to 

date, consisting of 26,151 EOC cases and 105,724 controls (Coetzee et al. 2021) combined with 

disease-relevant Müllerian active REs and RE-to-gene contact maps from the GeneHancer 

database. We contrasted the RE-centric chromMAGMA to genes nominated by conventional 

MAGMA. Overall, chromMAGMA assigned lower P-values to genes compared to MAGMA, in 

line with evidence that SNPs are enriched in active REs, validating the overall premise of this 

approach (Gerasimova et al. 2013, 2019; Jones et al. 2020; Nasser et al. 2021). Orthogonal 

evidence to validate the chromMAGMA approach came from concordant results obtained when 
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using chromMAGMA and alternative approaches to nominate candidate EOC susceptibility genes 

(including proximity, chromosome conformation capture assays, and quantitative trait locus-based 

analyses). Of particular note is that chromMAGMA identified previously validated candidate 

genes in scenarios where large genomic distances or multiple genes lie between the candidate 

causal risk SNPs and the risk gene. This highlights how the chromMAGMA approach represents 

an efficient route to candidate gene nomination that incorporates the benefits of popular existing 

methods, while avoiding some of the limitations associated with those techniques. For example, 

chromMAGMA circumvents the distance bias of both eQTL analyses (which are often only 

powered to identify local cis interactions) or analyses that leverage chromatin interactome data 

(which conversely cannot resolve short-range interactions, which poses a particular challenge in 

gene-dense regions). 

In addition to validating known risk genes, chromMAGMA provided insights into EOC 

risk that have not been achieved using previous methods. Pathway analysis of the chromMAGMA 

ranked gene list revealed enrichments of mRNA processing and splicing pathways across all 

histotypes, indicating that noncoding risk SNPs falling on REs regulate genes within these 

pathways. While splicing events have been recently associated with EOC risk(Gusev et al. 2019), 

components of splicing machinery have not been implicated in EOC risk previously. 

Transcriptional regulation pathways were also enriched in risk genes highly ranked by 

chromMAGMA, particularly super-enhancer associated lineage specific factors (such as PAX8 in 

HGSOC and HNF1B in CCOC). A study incorporating long-range, noncoding chromatin 

interactions from Hi-C with MAGMA (H-MAGMA) in 9 neuropsychiatric disorders also found 

common pathways in transcriptional regulation/RNA splicing(Sey et al. 2020). These results 

suggest that risk variants impacting such pathways may be common occurrences across complex 
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traits. As TFs can be both targets and mediators of risk SNPs, we identified a set of ‘Nexus TFs’, 

i.e., transcription factors with oncogenic transcriptional properties that are enriched for risk 

variation both in its upstream cis regulatory element and in its downstream target binding sites. 

Gene dependency data prioritized nine transcription factors, which included master regulators of 

HGSOC – PAX8 and MECOM. PAX8 and MECOM are known to co-occupy a majority of 

H3K27ac active regions in HGSOC, and may be contributing to the differential regulation of 

HGSOC-relevant risk genes (Reddy et al. 2019). 

While our study used H3K27ac chromatin immunoprecipitation data – a widely available 

mark of active chromatin, other technologies and epigenetic marks – such as other histone post-

translational modifications, transcription factor binding sites, open chromatin regions, and 

methylation profiles - are all compatible with chromMAGMA. In this study we used GeneHancer 

active regulatory-element-to-gene contact map data (Fishilevich et al. 2017). GeneHancer is the 

most comprehensive catalogue of gene-regulatory element associations currently available and is 

comprised of RE-to-gene maps represented by 46 tissue types. One limitation to this approach is 

that Müllerian tissues are not well represented in the GeneHancer database and could be missing 

interactions unique to gynecologic tissues. Alternative data types, such as in silico maps of RE-

promoter interactions inferred from ATAC-seq data (Corces et al. 2018) or genome-wide data from 

epigenome and genome editing screens could be incorporated to create tissue-specific maps of 

gene-RE assignments. Another limitation of chromMAGMA is the necessary step of assigning a 

representative RE to a single gene for the generation of gene-level statistics. In this study, genes 

were mapped 1:1 to the RE with the most significant P-value. This step simplifies the biological 

complexity of multiple REs influencing a gene in an additive (Hay et al. 2016; Kawakami et al. 

2021), or sometimes hierarchal manner (Shin et al. 2016; Huang et al. 2018), but for some genes, 
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may miss a critical aspect of transcriptional regulation relevant to risk. Integration of 

chromMAGMA with data from perturbation (Fulco et al. 2019) and massively parallel reporter 

(Muerdter et al. 2015) assays may be a superior way to prioritize REs associated with each gene. 

Overall, chromMAGMA is a flexible approach that can be readily adapted to prioritize candidate 

risk genes and regulatory elements for a wide array of phenotypes. 

COMPUTATIONAL METHODS 

MAGMA 

MAGMA uses the P-values of SNPs and local linkage disequilibrium to assign SNPs to 

gene locations, and then aggregates SNPs within the same gene body using a hypergeometric 

distribution (de Leeuw et al. 2015). These genes are then ranked by ranking the -log10(P-value). 

The greater the -log10(P-value), the greater the number and/or significance of GWAS SNPs lying 

within the interval of the gene. MAGMA requires two external data sources: a list of GWAS SNPs 

with associated P-values from that of GWAS, number of participants, and a list of annotations 

linking gene names to intervals in the genome.  

GWAS data came from the OCAC consortium study of 26,151 cases and 105,274 controls 

participants (Coetzee et al. 2021). The GWAS data contained SNP P-values for five histotypes of 

ovarian cancer - high-grade serous, low-grade serous, clear cell, endometrioid, mucinous, and a 

composite category of all non-mucinous histotypes. Gene locations from the NCBI build 37. 

Significant genes were identified by filtering genes whose P-values were less than the Bonferroni 

corrected value of 2.70x10-6. 

chromMAGMA 

A list of all REs (hg19) and corresponding gene targets was obtained from Genehancer 

(v4.7) a publicly available database of RE-to-gene maps (Fishilevich et al. 2017). Genehancer 
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captures a broad universe of RE activity which we wished to reduce to those specific to ovarian 

cancer and precursor cell states. We used a dataset of H3K27ac peaks derived from clear cell 

(number of non-unique peaks = 119,549 peaks), endometrioid (125,743 peaks), high-grade serous 

(122,734 peaks), mucinous (131,655 peaks) ovarian tumor tissues, and samples from 

endometriosis epithelial (44,083 peaks), and normal fallopian tube secretory epithelial cell lines 

(43,734 peaks) (Coetzee et al. 2015; Corona et al. 2020). This was converted to hg19 using UCSC 

liftOver, duplicates were removed and the remainder were merged into 80,271 distinct intervals 

using bedtools v2.25.0 (Quinlan and Hall 2010). We then selected REs from Genehancers which 

overlapped with our H3K27ac intervals by at least one base pair.  

We used the REs as the interval input into MAGMA to replace the gene intervals used by 

MAGMA. This generated a list of REs and their statistics. This list was then linked to the genes, 

where each gene was assigned the greatest -log10(P-value) from its REs. REs were defined as 

promoters based on the txdb.hsapiens.ucsc.hg19.knowngene database, and all non-promoters were 

labeled as candidate transcriptionally active enhancers. Significant genes were identified by 

filtering genes whose P-values were less than the Bonferroni corrected value of 2.87x10-6. 

Identifying proximal genes to GWAS genome-wide significant loci 

All lead variants labeled as genome-wide significant (P < 5x10-8) in ovarian cancer by Jones et al. 

2017 (Jones et al. 2017)  were assigned to a gene based on nearest transcription start site.  

Generation of the gene list 

Gene identifiers in chromMAGMA and MAGMA were curated by restricting to those 

identifiable as ‘ensembl_gene_id’, ‘external_gene_name’,’external_synonym’,’hgnc_symbol’, 

‘entrez_gene_id’, and ‘uniprot_gn_symbol’ and filtered for genes labeled as ‘protein_coding’  

from the BioMart portal (Smedley et al. 2015).  For MAGMA, the maximal -log10(P-value) was 
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then assigned to a gene, and simply ranked with -log10(P-value) in descending order. For 

chromMAGMA, ties in the -log10(P-value) were broken using the average expression of variance 

stabilization normalized primary CCOC, EnOC, HGSOC, MOC and fallopian tube secretory 

epithelium (Average Müllerian mRNA Expression) as described from Corona et al. 2020 (Corona 

et al. 2020). The ties were broken using this formula: 

       Weighted P-value = -log10(P-Value)*Average Müllerian mRNA Expression  

The same list was used for subsequent gene set enrichment analysis.  

Pathway gene set enrichment analysis 

Pathway enrichment analysis was conducted using the ClusterProfiler package in R. We 

removed the HLA genes defined by the HLA Informatics Group (Tiercy et al. 2002; Hollenbach 

et al. 2011; Nunes et al. 2011) from the ranked list prior to carrying out gene set enrichment 

analysis. This is because the strong, long-distance linkage disequilibrium between SNPs in this 

region led to a clustering of multiple gene-level associations in this region making it difficult to 

differentiate between these genes in terms of ranks. This clustering in turn may yield potentially 

spurious enrichment signals for pathways that contain several HLA genes. We ran this analysis 

using the following script: 

gseGO(geneList= <GENE-LIST>,  

             ont ="ALL",  

             keyType = "ENTREZID",  

             nPerm = 10000,  

             minGSSize = 3,  

             maxGSSize = 800,  

             pvalueCutoff = 0.05,  
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             verbose = TRUE,  

             OrgDb = org.Hs.eg.db,  

             pAdjustMethod = "BH") 

Pathways with gene set sizes less than 25 (as recommended by the BROAD institute) were 

removed from further analysis as the normalization to variation in gene set size becomes inaccurate 

for small gene sets. 

Super-enhancer associated TF gene set enrichment analysis 

This analysis was conducted using the default GSEA preranked setting within the Broad 

GSEA (v3.0) program. The super-enhancer associated TF gene set was generated by taking known 

TFs from the Human Transcription Factor data base (Lambert et al. 2018), which was then filtered 

to only include TFs that were proximal, overlapping, or nearest to a super-enhancer as defined by 

ROSE2 (Whyte et al. 2013) for CCOC, EnOC, HGSOC, MOC, and NMOC (Corona et al. 2020). 

Enrichment plots were generated with the R package fgsea. 

MsigDB TF cistrome gene set enrichment analysis 

This analysis was conducted using the default GSEA preranked setting within the Broad 

GSEA program (v3.0).  

EXPERIMENTAL METHODS 

Fallopian tube secretory epithelium RNA-seq  

RNA-sequencing data from primary fallopian tube secretory epithelial cells were generated as 

described in Corona et al. 2020 (Corona et al. 2020). They are available in the GEO database under 

the accession code GSE182510.  
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