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ABSTRACT 

 

Problem:  

Systems biology is essentially based on the assumption that the complexity of a system can be 

described by almost generic models to predict the behavior of many other similar systems. To this end, 

inductive (data-intensive) or deductive (mechanistic) models are currently being developed either to 

discover patterns and identify plausible correlations from past events, or to connect different causal 

relationships of interacting elements to construct predictive models. The use of any mathematical 

approach, or combination of mathematical approaches, presupposes the existence of constant and 

observable universal causal principles for all biological systems. However, there are currently no tools 

to assess the robustness of adoption over these universal causal principles, even considering that 

organisms not only respond to inherent processes and environmental stimuli across multiple scales, 

but also integrate information across and within these scales, introducing a degree of uncontrollable 

uncertainty.  

 

Methodology: 

To this end, we have developed a method to better evaluate these causal processes by evaluating the 

information contained in the dynamic trajectories, using concepts of geometric information theory and 

persistent homology to analyze patterns in time series, so that recognizing the persistence of these 

patterns over different time periods leads to the evaluation of stable causal relationships. Since we are 

assessing causal relationships from the patterns in the time series, we are here going beyond mere 

feature engineering. With this measure, and together with the evaluation of persistent entropy in the 

trajectories in relation to different individual systems, we have developed a method called the Φ-S 

Diagram as a measure of complexity to better recognize when organisms follow mechanistic pathways 
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or respond autonomously and individually, which is a limitation for both the inductive and deductive 

modeling methods. 

 

Results: 

We calculated the Φ-S Diagram using a deterministic data set available in the UCI repository for 

reference to test the interpretability of the method, as well as health data available in the same 

repository that includes the physiological response to movement measured in individuals outside of 

laboratory conditions. We were able to confirm the mechanistic character in both data sets. Although 

the current data show that the cardiac response to exercise could be explained in a mechanistic way, 

we have also discovered that some individuals have a more autonomous than aleatoric response, 

implying that there are persistent individual variations that limit the universal observability of the 

system, suggesting that such individuals need an empirical rather than a systemic approach. This proof 

of concept presents a step towards a clearer framework for the theoretical representation of complex 

biological systems.  

 

1 INTRODUCTION 

 

The core idea of systems biology consist of reducing complex systems into clear interconnected 

elements, leading into either white box and deductive models, integrating causal paths from data 

obtained from system’s relevant physical-chemical interactions, or black box models, based on the 

automatic integration of large amounts of information using for instance neuronal networks to 

recognize relevant system’s patterns (Zitnik et al., 2019) (Baker et al., 2018). The hope behind this 

effort is to get insights into the function, effects of interventions/perturbations and future 

development of the bio-system. Essentially such approaches consider living systems just as an 

emergent phenomenon of all these interconnected phenomena (Kostić et al., 2020).  

 

These systemic approaches are fundamental in the definition of systems biology and systems 

medicine, which is a framework primarily concerned with the mathematical description of functional 

aspects of biological systems (Green, 2021)2 (Boogerd et al., 2007). The success of these systemic 

approaches has a clear pragmatic advantage, as they guide the identification and understanding of 

fundamental biological mechanisms that can be described using mathematical models useful in 

biotechnology and biomedicine  for the development of, for example, synthetic organisms, efficient 

bioprocesses, drugs or therapies (Alon, 2006). Often, identifying these models is a great effort, not only 

in defining the appropriate modelling scale, equations, and the set of parameters that both represent 

biological processes in deductive models, but also for the amount of information required to develop 

high-quality inductive models. In both cases, mechanisms or correlations assume an inherent constant 

behavior that could be reduced to simple first principles.  

 

But this kind of approaches often ignore the fact that coarse-grained physical systems can be much 

more effective in terms of intrinsic cause-effect power than conventional micro level systems. 

According to this, while mechanisms are usually characterized in causal terms, it is not the case that 

every cause act through or is a part of some mechanism, which is understood as a more or less complex 

arrangement of causal factors that are productive of change 3 (Reiss and Ankeny, 2016). Living systems, 

which are characterized by this coarse-grained character, behave as unitary ‘whole’ from their own 

intrinsic perspective in order to maintain homeostatic states, implying that living systems are much 

 
2 https://plato.stanford.edu/entries/systems-synthetic-biology/#BiolDigiAge  
3 https://plato.stanford.edu/entries/medicine/#IntrHowShouWeDefiHealDise  
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more than mere “systems” with mechanistic responses, since they are autonomous (from a coarse 

grained perspective), able of integrating self-defined and self-maintained borders, implying some 

notion of intrinsic causal control (Marshall et al., 2017). Therefore, it is necessary to realize the 

uniqueness of certain basic principles of biology that are not applicable to the inanimate world.4 This 

notion could encompass the idea that biological systems are non-trivially reducible to physical laws 

(Walker, 2019).  

 

The main problem of this autonomy is that the unitary whole generating this unity must account the 

intervention of different elements across several scales, limiting our ability as observers to make 

objective observations as well as clear definitions about which are the appropriate coarse graining 

required to correctly describe a system. This whole can be characterized by the integrated information 

of the system, a method that has been recently used to investigate the relationship between this 

integrated information and the fitness of evolving systems (Joshi et al., 2013a). 

 

This autonomy could imply that models in systems biology have a limited applicability, a concern that 

has been shared by many scientists and scholars, i.e., the possibility that biological systems are non-

reducible into Hamiltonian functions (Walker, 2019). Instead, biology is characterized by the persistent 

absence of universal principles and a branched causation, which would be amenable to derive 

consistent and rigorous descriptions of biological systems, similar to physics or even chemistry (Ellis 

and Kopel, 2019). Furthermore, this autonomy could imply that these systems are themselves 

observers that not only interact with the environment, but also may simultaneously observe any 

external experimenter aiming to get objective observations of these systems5. Indeed, the evaluation 

of the degree of autonomy of a complex living system is relevant to assess its observability6. This fact 

makes under some circumstances the parameter identification and or establishment of plausible 

correlations not only a very difficult but, de facto, an impossible task.   

 

Thus, considering a network-like perspective (commonly used in systems biology), we are not simply 

dealing with network models with evolving links, but in general with network models whose nodes 

(representing internal states) and links (representing the couplings between these states) change in an 

autonomous and rather holistic way, depending on the current scale of observation , which is defined 

by the system itself (Diaz Ochoa, 2020). We are dealing with a kind of autonomy that is not reducible 

to mere intelligence (Koch, 2019), implying systems that are much more complex than evolving 

networks: the representation of the nodes and the links is currently a coarse-grained state that is 

accessed from outside, but which is defined by the system itself. In a nutshell, we are dealing with 

systems owning an irreparable inherent uncertainty. The current paradigms in mathematical modelling 

mainly focus on the definition of models aiming to predict future outcomes. But in recent years 

alternative approaches investigate the development of models that focus more on the assessment of 

the persistent uncertainty of the systems. Thus, ‘models to predict and control the future’ are replaced 

by ‘models to map our ignorance about the future’ (Ravetz, 2003). 

 

Our goal is to exactly evaluate causal paths in complex systems and its contribution in the model 

identification (Baker et al., 2018), as well as to assess the degree of autonomy of a complex-biological 

system and in this way map our own degree of ignorance or observability of this system, i.e. our 

 
4 https://www.cambridge.org/core/books/what-makes-biology-unique/autonomy-of-
biology/B59719F0B2A417A7C220AD17443BC796  
5 This situation resembles the uncertainty principle in quantum mechanics. 
6 Which is completely different to the concept of autonomy in engineering. See e.g. 
https://en.wikipedia.org/wiki/Autonomous_system_(Internet)  
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capacity to identify models, accounting in this way the degree of ignorance about the system’s future. 

Indeed, we are departing from the fact that the observations -input data- contains inherent 

imperfections generated by the organism’s autonomy, regardless the quality of the sampled data. To 

this end it is important to analyze and quantify the degree of causal relationships between different 

elements in the system (Oizumi et al., 2016), as well as the potential persistent structures in the data 

leading to relative individual differences regarding a population of organisms.  We combine this 

analysis and complexity measures in a diagram to quantify how feasible is to employ modeling 

paradigms, like network models defined as canvas for the representation of interconnected elements7. 

 

The novelty of our approach is the combination of methods to assess persistent topological 

characteristics directly from data points with the evaluation of the geometrical information of the 

system and propose a way to measure the limit of quantitative methods and the necessity to seriously 

account pure empirical - observational methods when this limit is surpassed.  

 

2 THEORETICAL BACKGROUND 

2.1 CONCEPTUAL BASIS 
Our systems analysis is based on two main concepts: the quantification of the system`s persistent 

entropy (Diaz Ochoa, 2020) and the analysis of the causal relationships in the system. The first 

complexity measure quantifies persistent structures in time series leading to individual system’s 

behavior differing from the rest of the population. The second complexity measure helps to identify 

the interrelation of causal processes at different scales. 

 

While the first complexity measure provides information about how the underlying mechanisms and 

theory can be extrapolated in a population, the second complexity measure delivers information about 

subtle phase changes of the observed system. By analyzing the system`s autonomy we are going 

beyond the mere modelling of the epistemic uncertainty8, since we open the door to the possibility 

that this uncertainty is not fortuitous or random (or is a systematic error of the observation) but is 

generated by the inherent autonomy of living processes. We focus our analysis on the use of integrated 

information using persistent homology.  

 

2.2 INTEGRATED INFORMATION  
The integrated information theory has become a relevant tool to measure the way how dynamical 

processes should be understood as a whole, considering that complex systems are essentially non-

reducible. In this way systems with different microscopic degrees of connectivity are different as the 

causal processes accounted by fully connected systems, generating a complexity upper-bound by the 

total information of the connected and disconnected system. This theory, which has its origin in 

neurosciences, essentially measures quantifies multiple causal influences among elements of a 

System, such that it serves as a marker about how a nervous system integrates information (Koch, 

2019), which is a fundamental notion defining consciousness. However, the same theory has been used 

as an alternative complexity measure useful to measure causal influences among elements in different 

complex system like physics, economics or biology, and which has been used to understand the 

evolution of complex organisms based on the relation between their ability to integrate information 

and their biological fitness (Joshi et al., 2013a). 

 

 
7 And how this network theory can (or cannot) be universalized, i.e. extrapolated to different complex systems 
8 https://towardsdatascience.com/probabilistic-neural-networks-for-breast-cancer-detection-2f1a6951e459  
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Our rationale is to use this complexity measure to assess possible changes in causal paths that might 

be generated by changes in the intrinsic connectivity between system’s internal states. This implies 

that any data analysis implicitly requires a condition of connectivity, i.e., the existence of a structure 

�̂� that integrates information and allows the computation of a trajectory Γ, such that 𝑃(�̂�) = Γ. The 

change in these causal paths is eventually generated from environmental factors: while stable 

mechanisms are associated to constant causal paths (low complexity), changes in the intrinsic 

connectivity leads to changes in the causal paths (and therefore a change in the measured complexity). 

 

To this end we adapt the use of the measurement of the intrinsic cause power Φ to assess the degree 

of autonomy of the system. According to this theory, wholes / Coarse grained behavior cannot be 

simply reduced to interacting elements, delivering in this way a measure about the autonomy of the 

system (Marshall et al., 2017) (Koch, 2019). We adapt in this investigation the concept of integrated 

geometrical information Φ𝐺  (Oizumi et al., 2016), considering all the possible connected and 

disconnected states. However, instead of analyzing the states as connected / disconnected (Marshall 

et al., 2017) we assume that we observe the whole state and evaluate Φ in different time periods, 

assuming that in such periods there are connected / disconnected internal states, which cannot be 

partially or fully accessed and which are encoded by the structure �̂�. 

 

From the geometrical integrated information theory, we consider the following fundamental 

postulates: 

 

Postulate 1: The strength of the influences is quantified by a minimized difference between 

fully connected and disconnected models. 

Postulate 2: A disconnected model system satisfies a Markov condition 

Postulate 3: The difference between a connected and a disconnected model is measured by a 

KL divergence. 

 

According to these postulates, and following the proof provided by Oizumi et al. (Oizumi et al., 2016) 

 

 Φ𝐺 = 𝑚𝑖𝑛𝑞𝐷𝐾𝐿[𝑝(𝑋, 𝑌)][𝑞(𝑋, 𝑌)], (1) 

 

where 𝑋 = {𝑥1, 𝑥2, ⋯ } and 𝑌 = {𝑦1, 𝑦2, ⋯ } are the past and present states of the system,  𝑝 is the 

joint probability function of connected states, and 𝑞 is the joint probability function of disconnected 

states, and 𝐷𝐾𝐿  is the Kulback-Leiber entropy, defined as 𝐷𝐾𝐿[𝑝(𝑋, 𝑌)][𝑞(𝑋, 𝑌)] =

∑ 𝑝(𝑋, 𝑌)𝑋,𝑌 𝑙𝑜𝑔
𝑝(𝑋,𝑌)

𝑞(𝑋,𝑌)
. 

 

Accordingly, Φ𝐺  is upper bounded by the mutual information 𝐼(𝑥𝑡′ , 𝑥𝑡) , such that 0 ≤ Φ𝐺  ≤

 𝐼(𝑥𝑡′ , 𝑥𝑡). In this way Φ𝐺 fulfills the conditions required for the definition of integrated information. 

Therefore, we have different scenarios 

 

• Low information loss by mechanistic systems 

• Information loss in case that the system behaves in an autonomous way 

• Fully information loss in case of fully disconnected and aleatory9 systems 

 

 
9 Aleatory implies fully causal disconnectedness. Stochastic uniform distributions could show a causal behavior, 
assuming that inherent mechanisms lead uniform distributed trajectories 
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In the case of dynamic systems, this joint probability function is characterized by the system’s 

trajectories in the phase space Γ, such that eq. 1 describes the distance between the phase space 

generated by connected and less connected systems.  

 

Considering that the trajectories are computed based on intrinsic information processing based on 

interconnected structures �̂�, such that the computation of a trajectory can be defined as 𝑝(�̂�) =  Γ, 

then after introducing this expression into equation 1, and based on the result of Oizumi el al. (Oizumi 

et al., 2016) we obtain 

 

 Φ𝐺 = 𝑚𝑖𝑛𝑞𝐷𝐾𝐿[𝑝(�̂�𝜏)][𝑝(�̂�𝜏′)] ≤ 𝐼(�̂�𝜏, �̂�𝜏′), (2) 

 

i.e., �̂�𝜏 and �̂�𝜏′ can be two different structures, where 𝐼(�̂�𝜏, �̂�𝜏′) represents the mutual information. 

According to this definition, the divergence of Φ𝐺  implies a divergence of microstates, which 

simultaneously measures the degree of autonomy of the system, because the probability distribution 

depending on �̂�𝜏, 𝑝(�̂�𝜏), behaves in a different way as the second probability distribution, 𝑝(�̂�𝜏′), 

depending on the response to the environment, i.e. 𝑝(�̂�𝜏) is equivalent to 𝑝(𝑥𝑡′ , 𝑥𝑡) and 𝑝(�̂�𝜏′) is 

equivalent to 𝑞(𝑥𝑡′ , 𝑥𝑡). Observe that we are comparing the system in two different periods of time, 

which is essentially a difference respect the original method in the eq. 1.  

 

This approach is helpful to track possible inherent changes in �̂�, and this can only be made assuming 

adaption / evolution of the system. Thus, instead analyzing different models leading to autonomous 

systems (Oizumi et al., 2016) we are analyzing the coarse grained state of the system with an 

underlying structure �̂�. In this analysis we assume that we do not have information about �̂�; but the 

analysis of the trajectory Γ provides information about the preservation of causal rules, and therefore 

about the autonomy of the system and the possibility to derive �̂� as the underlying causal structure 

of Γ when Φ𝐺 → 0.  

 

 
 

Figure 1 Causal relationship for a system with changing interactions (internal as well as external). Instead to defining an 
interactome10, leading to a comprehensive and complete model, we aim here to analyze from the data potential changes in 
the underlying interactions or the coarse graining required in the definition of the final observations  

 

 
10 https://en.wikipedia.org/wiki/Interactome  
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Of course, we cannot make a detailed analysis between connected and disconnected systems based 

only on Γ. But we can analyze the structure of Γ by estimating the difference of persistence bars 𝐿[Γ] 

inside different time periods, as has been demonstrated in previous works11 (Diaz Ochoa, 2020).  

 

To this end we assume that  Γ owns a topology that reflects the periodic behavior of a signal with Euler 

characteristics, this means Γ owns a function 𝑔 with a compact subset of ℝ𝐷  and 𝑑�̅�𝑘: ℝ𝐷 → ℝ the 

distance function of �̅�𝑘 . The function 𝐿 = {𝛿: 𝑑�̅�𝑘(𝛿) ≤ 휀} represents the set of persistent bars 𝛿𝜀 

containing the length of the topological feature extracted from the periodic behavior of the signal. In 

this context, a barcode is the persistence analogue of a Betti number. Recall that the kth Betti number 

of a complex, acts as a coarse numerical measure of the topological feature 𝐻𝑘 . Key topological 

features 𝐻𝑘 include zero (connected points) and first order topology (loops) (Diaz Ochoa, 2020). In this 

way, we essentially estimate a hierarchical grouping of topological characteristics of higher order 

leading to a type of invariants represented by bar codes (Pun et al., 2018). The use of this methodology 

is thus a way to track subtle changes in the characteristic trajectories in different time periods, as is 

presented in figure 1.  

 

We compute the Kullback Leiber distance of 𝐿[Γ], assuming that they are implicitly generated by 

systems with different connectivity, such that the equation 2 gets the following form 

 

 Φ′𝐺𝑃 = min 𝐷𝐾𝐿[𝐿[𝑤𝜏] ∥ 𝐿[𝑤𝜏′]] ≤ 𝐼(Γ𝜏, Γ𝜏′), (3) 
 

where Φ𝑃~Φ′𝐺𝑃  is the geometric integrated information, measured on the persistent topological 

characteristics of the trajectories of the single organisms; and according to these postulates, the 

measurement of the causal relation between underlying connectivity �̂�𝜏  and �̂�𝜏′  can be 

mathematically accounted by the Kulback-Leiber divergence between the probability distributions of 

fully connected and disconnected systems12, i.e. by measuring the degree of independency between 

the topological characteristics in different time periods.  The workflow of this computation is shown in 

Figure 2. All the computations were implemented using the TDA package in R13. 

 

 
Figure 2 Workflow for the computation of 𝜱𝑮𝑷  based on the computation of persistent bars obtained from time series, 
considering the construction of clouds of points form timeseries extracted in different time periods, the computation of 
persistence bars and the final computation of the Kallback-Leiber entropy for the estimation of 𝜱𝑮𝑷. 

 
11 For the definition of the computation of persistence bars see the following publications 
12 Computed in this work using the Kullback Leiber Plugin in R: 

https://www.rdocumentation.org/packages/entropy/versions/1.3.1/topics/KL.plugin  
13 https://cran.uni-muenster.de/web/packages/TDA/vignettes/article.pdf  
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In these evaluations is impossible to know if systems have a clear causal structure derived from a 

mechanistic causal structure �̂� . However, systems exploring their environment in different ways 

should stablish different inherent causal relations to interpret this environment, such that the 

connectivity of the model changes accordingly. Based on these postulates, if there is a deviation in the 

measured probability distribution, as is evaluated with the workflow in figure 3, then there is probably 

an intrinsic change in system (internal mechanisms as well as its interaction with the environment), 

impairing this way the observability of the system (Figure 2), i.e. the possibility to identify mechanisms 

interlinking different observables in a given system. 

This situation is different to the mere concept of evolving networks since we are not only tracking a 

constant causal difference in a single system (dynamic and evolving system with dynamic interlinks), 

but also the interindividual variations, such that some individuals might evolve, while other systems 

own a stable inherent structure. 

The tracking of the inter-species differences is thus a signal about the inherent autonomy of the 

systems. Therefore, the goal is not to model the uncertainty to get a complete model14, but discover 

how uncertainties push sometimes systems to behave in an autonomous way. 

 

Figure 3 Effect of the change of internal causality on the system topology and consequent computation of persistence bars  

 

According to these postulates, and the concept of mutual information15, the upper bound of the 

mutual  information is the join information or join entropy16, which measures the uncertainty in the 

set of observations, and is defined as 𝐻[Γ𝜏, Γ𝜏′] = ∑ 𝑃(Γ𝜏, Γ𝜏′)log (Γ𝜏, Γ𝜏′)𝑤𝜏,𝑤𝜏′
, where  𝑃(Γ𝜏, Γ𝜏′) is 

the joint probability. Accordingly, the equation 3 takes the following form:  

 

 0 ≤ Φ𝐺𝑃 ≤ 𝐻[Γ𝜏, Γ𝜏′], (4) 
 

Such that, if Φ𝐺𝑃 → 0 then the connectivity remains invariant and constrained into a single manifold. 

Otherwise, the structure of the probability distribution diverges. Therefore, when Φ𝐺𝑃 → 𝐻[Γ𝜏, Γ𝜏′] it 

implies that the inferred causal relations tend to have the same degree of observed uncertainty, 

leading to extreme variable and eventually aleatory systems (see Figure 3). The interpretation of this 

expression and its practical application is provided in the next section.  

 
14 Which is the goal of several modern modelling technologies 
15 https://en.wikipedia.org/wiki/Mutual_information  
16 https://en.wikipedia.org/wiki/Joint_entropy  
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2.3 Φ-S DIAGRAM 
While the previous analysis aims to assess the degree of the internal connectivity between the 

elements of an observed system at a given scale, the estimation of the persistent entropy (Diaz Ochoa, 

2020)17 helps to assess the relative inherent differences between individual organisms.  

Thus, by using the measurement of the geometrical (and persistent) integrated information as well as 

the persistent entropy we can deploy a diagram to estimate the regions where different organisms 

probably behave in an individual and autonomous way.  

The Φ-S Diagram essentially solves the following questions: i) can the underlying mechanisms and 

theory be extrapolated from one to other organisms, or a whole population? and ii) are these 

mechanisms obeying constant causal relationships? 

The positive answer to both questions is the basis for universal theories, as well as models that can be 

extrapolated to any other system or organism. 

According to this representation, we define a vector Φ𝑆  for each observed organism 𝑘  or system 

ordering the amount of integrated geometric information Φ𝐺𝑃 (causal analysis) and the mean amount 

of persistent entropy 𝑆(Γ𝑘𝑙), i.e. 𝑆(Γ𝑘) =
∑ 𝑆(Γ𝑘𝑙)𝑘

𝑁𝑘
, where 𝑁𝑘  is the total amount of other reference 

organisms. Thus, the Φ-S Diagram for each organism 𝑘  is defined as.  

 

 𝚽𝑆
𝑘 = 𝚽𝑆{Φ𝐺𝑃(Γ𝑘), 𝑆(Γ𝑘)} (5) 

 

The representation of this vector and the distances measured on the main axes Φ𝐺𝑃 and 𝑆(Γ𝑘), and 

the relative distance to low entropy values provides a map about observability / autonomy of the 

population. The interpretation of the diagram is presented in figure 3, for systems behaving in a 

mechanistic way (Figure 4, i.) and in an autonomous or aleatory way (Figure 4, ii.) 

 

Figure 4 Interpretation of the Φ-S Diagram based on the composition of the geometric integrated information 𝜱𝑮𝑷 and the 
persistent entropy, for mechanistic (region A), mechanistic but high intersystem variability (region B), autonomous (region C) 
and aleatory systems (region D). 

The shortest persistent bars in the diagram essentially represent noise and are therefore filtered in the 

final evaluation, such that any entropy measurement represents the relative grade of disorder of 

 
17 The detailed estimation of this entropy is provided in this article 
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persistent patterns in the paths, and not the inherent noise of the system. The vector 𝚽𝑆
𝑘 represents 

the degree of disorder in persistent patterns from the measured paths, and while 𝑆(Γ𝑘) represents 

the relative degree of disorder of these paths (degree of individual behavior), the second measure 

Φ𝐺𝑃(Γ𝑘) represents the degree of autonomy.  

 

The usability of the Φ-S Diagram depends on an approximate definition of threshold values defining 

the three regions represented in Figure 5. Here we assume that the degree of autonomy corresponds 

to states changing between different regular individual mechanisms characterized by Φ𝑆 → 0, and 

completely chaotic states characterized by Φ𝑆 ≫ 0 (aleatory system).  To better interpret this diagram, 

we set the following criteria to recognize if the system is either mechanistic, autonomous, or aleatory:  

 

i. Considering the probability 𝑤 that a half of the persistent patterns are mutually divergent, 

then by replacing this probability in the definition of the entropy we obtain 𝑆(Γ𝑘𝑙) ≈ 0.67, 

which is an approximation to define a threshold defining whether the system`s states mutually 

diverge or not: below this value the persistent patterns tend to be non-divergent (similar 

mechanisms across different systems, region A in figure 4); otherwise, patterns are divergent, 

representing high intersystem variability (region B, figure 4) 

ii. If Φ𝐺𝑃 lies below the mean value of the join entropy, and the mean joint entropy is relatively 

low then the system behaves in a mechanistic way; otherwise, the system has several phase 

transitions, is probably autonomous depending on the information it processes (region C, 

figure 4), or is aleatory (region D, figure 4).  

 

Of course, we don't value the autonomy of the system in the same way as the integrated information, 

since in principle we do not have access to the system’s structure. However, indirectly Φ𝑆 traces the 

probably coarse-grained autonomy of the system: if 0 < Φ𝐺𝑃 < 𝐻[Γ𝜏, Γ𝜏′], then this indicates that 

there are phase changes in the trajectories that do not necessarily originate from an autonomous 

behavior; but a simultaneous interindividual variability implies that these phase changes are individual 

and thus probably coarse-grained autonomous. 

 

With these two threshold values is then possible to fix the space where simple causal – mechanistic 

principles can be established. In general, when ‖𝚽𝑆‖ → 0 then there is a probability to find stable 

inherent causal structures responsible of mechanisms leading to the identification of a model. 

Otherwise, a probable non-observability (rooted on a coarse-grained causality) can be stablished. 

  

Thus, this diagram is like navigating with a map, helping to assess the degree of observability of single 

organisms regarding all the population. In both cases, if both entropies tend to be zero, then the 

system is probably observable and can be described using mathematical models. Once this is 

guarantee, then assessment about whether the inherent mechanisms of the system can be 

represented by black or white/grey box models, or if only an empirical approach is the most 

appropriate way to understand the system. 

3 RESULTS 

In this first test we aim to test this methodology on a deterministic dataset consisting of the 

combination of the semi-periodic timeseries 18 that are permuted to synthesize different individual 

systems generating their own time series. Here we expect to obtain a deterministic model leading to 

 
18 https://archive.ics.uci.edu/ml/datasets/Pseudo+Periodic+Synthetic+Time+Series 
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features representing some degree of observability, i.e., model and parameter identification; 

simultaneously we also expect high interindividual variability, since the original time series are 

permuted to generate each individual system. This should be characterized by a 𝚽𝑆
𝑘  value 

representing both a high degree of causality and relatively low persistence of defects.  

 

Figure 5 Φ-S Diagram  for different deterministic systems 

The analysis for three different periods is deployed in Figure 5, where the distribution of [𝚽𝑆
𝑘]𝑖 for 

each individual i, is represented as a distribution (Fig. 5 A) and as a double boxplot (Fig. 5-B). From the 

computation of 𝚽𝑆
𝑘 we have found, as expected, that almost for all the systems Φ𝐺 < 0.5 (besides 

one outlier), i.e., for all the system there is a high probability to share same intrinsic causal rules (low 

autonomy). Simultaneously we observe a high inter-individual variability, i.e., 𝑆(Γ𝑘𝑙) > 0. This implies 

that there are persistent characteristics that differ between individual systems.   

In our next example we use the M-Health data19 to analyze the correlation between cardiac response 

to exercise. In this database individuals were provided wearables to measure acceleration in three axes 

and other physiological parameters like ECG to measure the response of the participants to sport. The 

aim of this data is thus to measure the response to sport in rather real situations and outside from the 

labor in order to have realistic data about the response to exercise. The heart rate regulation system 

was conceptualized as a complex network, with non-linear feedforward and feedback inputs. This 

system exhibits chaotic and non-linear dynamics, due to interactions between physiological oscillators, 

functional state changes, and noise (Dimitriev et al., 2020)(Voss et al., 2009) . 

Despite this non-linear character of the cardiac response, we assume that it should be possible to 

generate a simple 𝐴 ⟷ 𝐵  model based on the correlation between both states, i.e. 𝐴(𝑥, 𝑦, 𝑧) =

𝑓1(𝐵), and 𝐵 = 𝑓2(𝐴(𝑥, 𝑦, 𝑧)) where 𝐴(𝑥, 𝑦, 𝑧) is the acceleration measured in three different axes, 

and 𝐵  is the heart response measured using an electrocardiogram (figure 6 A). This simple model 

implies that for different individuals in a small population there is a high probability to find similar 

causal relationships in the response to exercise, i.e., there is a simple and mechanistic causal relation 

between the hearth response and physical exercise. Since we are analyzing along the tree axis, we can 

first analyze Φ𝐺 as a 3D distribution20. 

 

 

 
19 https://archive.ics.uci.edu/ml/datasets/MHEALTH+Dataset  
20 To this end we used the sthda package in R: http://www.sthda.com/english/wiki/a-complete-guide-to-3d-
visualization-device-system-in-r-r-software-and-data-visualization  
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A. 

 
 

B. 
Φ𝐺𝑃[𝑥, 𝑦, 𝑧] 

 

𝚽𝑆[𝑥] 

 
 

𝚽𝑆[𝑦] 

 

𝚽𝑆[𝑧] 

  

Figure 6 Analysis of the cardiac response to sport assuming tha the physical excersise (meassured as acceleration A) has a 
correlation to the cardiac response B. The possibility to induce/deduce a model requires a low causal entropy 𝛷𝐺; however, a 
first inspection of this entropy along the three axes demonstrates that only few individuals have this low causal entropy 
(Figure B, 3 D diagram). The Φ-S Diagram for each acceleration axis is also deployed.  

The 3D representation is helpful to understand the meaning of the present analysis: when this 

complexity measure “condenses” inside the blue bubble, then the causal relations are stable, which 

means that this system cis feasible to be modelled, i.e., that the recognized patterns can for instance 

be used as features for inductive (AI) models. Otherwise, there is an “informational evaporation”, close 

to the condensation region the system is probably autonomous. But for larger “informational 

evaporation” the system is either highly autonomous or aleatory.  

 

 Thus, we have found out that de facto a coupling between cardiac response and physical exercise 

close to the blue region and confirm the feasibility for the identification of both inductive and 

deductive models, or a combination of both methods. But there are also strong deviations that suggest 

that this coupling is much more complex and less correlated. The analysis of 𝚽𝑆
𝑘  on the x axis reflect 

different movement patterns in some individuals, implying an autonomous response to exercise. There 

is also a high interindividual variability, i.e., only for few individuals a kind of universal model could 

correctly represent the response to sport. 
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Since only few individuals fall into the blue square reserved for almost mechanistic systems, we 

conclude that any modelling effort will be confronted to a high degree of uncertainty, and that a 

common calibrated model for all individuals is feasible (in particular for a model only on the y axis) but 

will not accurate enough for model all the individuals.  

4 DISCUSSION 

Many scholars have recently observed that we are currently amid a Copernican revolution in biology:  

like the celestial mechanics, where the trajectory of the planets has been correctly described using 

basic physical laws represented in an elegant mathematical way, biologically living systems could soon 

also be represented with simple laws and consistent mathematical concepts. And taking into account 

a reductionist perspective,  such biological laws should also be derived from basic physical laws (Kesić, 

2016). The game or life is the perfect example about how the combination of deterministic laws and 

chance, resembling random mutations and natural selection, could lead into cellular automata models 

mimicking simple living forms (Berto and Tagliabue, 2021)21. In this way, the cojoin of two mean 

characteristics, namely dependence and autonomy, are mediated between extreme forms of dualism, 

which reject the micro-dependence of some entities, and reductionism, which rejects macro-

autonomy 22  (O’Connor, 2020), a characteristic observed in several complex systems like complex 

networks.  

 

Such notion of emergence is the corner stone for the formulation of systemic approaches leading to 

mathematical descriptions in different scales of molecules and pathways as well as whole populations 

of organisms, leading to an understanding about how living organisms metabolize, replicate and form 

populations and ecologies 23. From these simple laws is then possible to derive a systemic theory 

aiming to model/describe any bio-medical system with relatively high precision, allowing to perform 

synthetic biology as well as modify (or hack) biological processes. These ideas have become a hope in 

order to siege over diseases and death, innovate and optimize production processes in biotechnology 

and modify biological processes and even help to bring humans into other planets (Verseux et al., 

2016).  

 

However, these ideas assume that causal relationships as well as a relative uniformity between 

different organisms within a tolerance range can be identified, which leads to the identification of 

mechanisms or correlations. On the other hand, organisms are known to sometimes exhibit great 

biological variability, perhaps originating not simply in the stochastics of the system, but also in their 

inherent macro autonomy and ability to integrate information linked to the evolution and complexity 

of organisms (Joshi et al., 2013a). For example, and contrary to the generally accepted notion of the 

prevalence of blind and random mutations that act as the engine of evolution, it has recently been 

discovered that mutations in Arabidopsis thaliana  are biased and that genes protect relevant parts of 

the genome, and that mutations occur less frequently in functionally restricted regions.(Monroe et al., 

2022).  

 

Mechanistic approaches had also inspired concepts that deny complex forms of autonomy in apparent 

simple organisms, leading to perceptions such as viewing insects as unconscious and robotic, with little 

 
21 https://plato.stanford.edu/entries/cellular-automata/#CAEmer  
22 https://plato.stanford.edu/entries/properties-emergent/  
23 This concept is influent in several communities, not only in biology, biasing in some cases the way how living 

beings are considered and studied, in some cases reducing them to mere mechanisms  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 23, 2022. ; https://doi.org/10.1101/2022.01.21.477230doi: bioRxiv preprint 

https://plato.stanford.edu/entries/cellular-automata/#CAEmer
https://plato.stanford.edu/entries/properties-emergent/
https://doi.org/10.1101/2022.01.21.477230


14 
 

more emotional depth than lumps of stone24. Only recently has there been a different focus on complex 

biological systems25 who have even recognized the possibility that honeybees have behaviors that 

could reflect mood states (Bateson et al., 2011). 

 

All these examples suggest that living systems are not blind on any scale. A reductionist as well as a 

systemic approach (leading into a synthetic organism) could in some cases be a limited perspective, 

either for an entire population or for individual individuals, and identification of complex forms of 

autonomy is necessary before models are formulated and validated.  

 

Using techniques inspired from the concepts of the integrated information as a way to measure the 

complexity of a system in relation to its ability to integrate information (Koch, 2020) (Oizumi et al., 

2016)., we have develop a novel methodology based on persistent topology to analyze the patterns in 

time series of states that would be potentially coupled through a model. This method helps to precisely 

assess if a model, and in general an objective systemic reduction of a system, is feasible or not by 

scanning the causal relations in the response of a system. This scan is then deployed in what we have 

defined as a Φ-S Diagram, which is essentially the combination of two complexity measures: the 

observed integrated information from the empirical measurements and the persistent entropy.  

 

This method assumes the fact that systems behave as a whole and as autonomous observers 

evaluating their environment regardless the system’s scale, limiting our ability to identify well-defined 

mechanisms. Thus, the Φ-S Diagram is like a Ptolemais map, i.e., is a cartography of organisms that can 

be either placed in a known world due to its mechanistic character (small corner in the diagram), vs. 

organisms with larger entropy generated by their inherent autonomy belonging to a larger and less 

explored space in the map (limited-observability).  

 

Persistent entropy and the autonomy of the system imply limitations that ultimately could not be 

overcome with mere engineering, not only in terms of a possible limitation in the way we objectively 

describe the world, considering that other organisms also interpret the world from a subjective 

perspective, but also how possible ethical problems might arise, by trying to derive objective 

observations. This could have serious implications for the way machine learning and artificial 

intelligence are used to model biological systems. For example, some argue that machine learning 

could be used to overcome the current scalability limitations of mechanistic modeling, while 

mechanistic models of machine learning algorithms could be used both as transient inputs and as 

validation frameworks (Baker et al., 2018); in this framework our methodology aims to evaluate the 

feasibility of this marriage and the fact that systems eventually go beyond the expected mechanistic 

perspective. Specifically, the vast majority of machine learning applications is aimed at supporting 

statistical or correlation studies that bypass the need for causality and focus exclusively on prediction 

(Baker et al., 2018).  

 

With the Φ-S Diagram is thus possible to comprehend and track this causality before starting any 

modelling effort: at some point there is a factual boundary where a correlation-based model is not 

enough to describe a system, while a persistent empirical approach is the only way to understand the 

actual state of a system, which is an important fact not only for biology but also for medicine in 

evaluating how mechanistic reactions should be studied, taking into account that these causal 

relationships lead to medical outcomes (Reiss and Ankeny, 2016). 

 
24 https://www.bbc.com/future/article/20211126-why-insects-are-more-sensitive-than-they-seem 
25 A feature belonging to non-trivial autonomous systems  
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5 CONCLUSIONS 

In this work we have reported on a novel method based on persistent homology to recognize patterns 

in dynamic trajectories helping to identify causal mechanisms as well as interindividual variability in 

dynamic trajectories, and in this way track non-trivial autonomous response/behavior patterns. 

Therefore, this method is essentially a kind of unsupervised machine-learning method that relies on 

the fundamental topological characteristics of system trajectories. This method leads to a novel 

complexity measurement, defined here as a Φ-S Diagram, that helps to determine the observability of 

a given system, i.e., the feasibility to represent this system either with a deductive or an inductive 

model. Thus, this method helps to estimate the degree of inherent uncertainty in the system, and the 

feasibility to represent it in a consistent mathematical way.  

 

We deduced the theoretical background, the way to interpret the results delivered by the Φ-S Diagram 

and demonstrated the use of this methodology in two datasets, one based on pure-deterministic data 

and the second one based on physiological data captured from patients performing physical exercise. 

The obtained results help thus to estimate if for certain individuals a common morel is enough to 

represent its physiological behavior, or if individualized methods or an empirical approach is required.  

 

The presented results are preliminary, and additional tests and analysis is required, for instance the 

extension of this methodology for the efficient analysis of high dimensional datasets. Furthermore, 

additional work is required to match the presented theory with the foundations and theoretical 

background of the theoretical biology/systems biology as well as for its application in a productive 

framework, for instance in the exact assessment about how reliable is to make decisions based on 

models, as well as in establishing cartographic methods in the analysis of the degree of uncertainty of 

complex systems.  
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