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Numerous brain disorders demonstrate structural brain abnormalities, which are thought to arise from
molecular perturbations or connectome miswiring. The unique and shared contributions of these
molecular and connectomic vulnerabilities to brain disorders remain unknown, and has yet to be stud-
ied in a single multi-disorder framework. Using MRI morphometry from the ENIGMA consortium,
we construct maps of cortical abnormalities for thirteen neurodevelopmental, neurological, and psy-
chiatric disorders from N = 21000 patients and N = 26 000 controls, collected using a harmonized
processing protocol. We systematically compare cortical maps to multiple micro-architectural mea-
sures, including gene expression, neurotransmitter density, metabolism, and myelination (molecular
vulnerability), as well as global connectomic measures including number of connections, centrality,
and connection diversity (connectomic vulnerability). We find that regional molecular vulnerability
and macroscale brain network architecture interact to drive the spatial patterning of cortical abnormal-
ities in multiple disorders. Local attributes, particularly neurotransmitter receptor profiles, constitute
the best predictors of both disorder-specific cortical morphology and cross-disorder similarity. Finally,
we find that cross-disorder abnormalities are consistently subtended by a small subset of network
epicentres in bilateral sensory-motor, medial temporal lobe, precuneus, and superior parietal cortex.
Collectively, our results highlight how local biological attributes and global connectivity jointly shape
cross-disorder cortical abnormalities.

INTRODUCTION

The brain is a network with intricate connection pat-
terns among individual neurons, neuronal populations,
and large-scale brain regions. The wiring of the net-
work supports propagation of electrical signals, as well
as molecules needed for growth and repair. This com-
plex system is vulnerable to multiple neurological, psy-
chiatric and neurodevelopmental disorders. Pathological

* bratislav.misic@mcgill.ca

perturbations—including altered cellular morphology,
cell death, aberrant synaptic pruning and miswiring—
disrupt inter-regional communication and manifest as
overlapping groups of sensory, motor, cognitive and af-
fective symptoms. How different disorders are shaped
by local and global vulnerability is unknown.

Indeed, several studies have demonstrated cross-
disorder connectomic vulnerability, where regions and
white matter pathways are targeted non-randomly. In
particular, regions that are highly connected and po-
tentially important for communication tend to be dis-
proportionately affected by disease [26, 114]. A sim-
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Figure 1. Molecular and connectomic cortical profiles | (a)-(b) Brain surfaces show the z-scored molecular (a) and connec-
tomic (b) predictors used in the multilinear regression models. Heatmaps on the right show Pearson’s correlation coefficients
between pairs of features. See Methods for details on how each feature was derived. Molecular predictors: gene PC1 = first
component of 11 560 genes’ expression; receptor PC1 = first component of 18 PET-derived receptor/transporter density; E:I ratio =
excitatory:inihibitory receptor density ratio; glycolytic index = amount of aerobic glycolysis; glucose metabolism = [*®F]-labelled
fluorodeoxyglucose (FDG) PET image; synapse density = synaptic vesicle glycoprotein 2A (SV2A)-binding [ C]UCB-J PET tracer;
myelination = T1w/T2w ratio. Connectivity predictors: strength = sum of weighted connections; betweenness = fraction of all
shortest paths traversing region 4; closeness = mean shortest path length between region i and all other regions; Euclidean distance
= mean Euclidean distance between region ¢ and all other regions; participation coefficient = diversity of connections from region
i to the seven Yeo-Krienen resting-state networks [130]; clustering = fraction of triangles including region i; mean first passage
time = average time for a random walker to travel from region ¢ to any other region.

ilar phenomenon is observed for connections that sup-
port multiple communication pathways [28]. In neu-
rodegenerative diseases such as Alzheimer’s and Parkin-
son’s diseases, emerging evidence suggests pathological
misfolded proteins spread trans-synaptically, such that
the connectivity of the brain shapes the course and ex-
pression of these diseases [56, 84, 90, 91, 101, 125,
128, 134]. Recent evidence also suggests that pat-
terns of tissue volume loss in schizophrenia are cir-
cumscribed by structural and functional connection pat-
terns [103, 124]. Collectively, these studies demonstrate
that both neurodevelopmental and neurodegenerative
brain diseases are influenced by network connectivity
[40, 115].

The effects of disease can also be driven by local cel-
lular and molecular vulnerability. Namely, local pat-
terns of gene expression [4, 18, 75], neurotransmitter
receptor profiles [53], cellular composition [100], and
metabolism [15, 16, 122, 123] may predispose individ-
ual regions to stress and, ultimately, pathology. Impor-

tantly, local and global vulnerability are not necessarily
mutually exclusive; some diseases may originate from
local pathologies that spread selectively along the net-
work to other vulnerable regions. How local attributes
and global connectivity shape cross-disorder pathology
remains an open question.

Here we map local molecular attributes (“molecular
vulnerability”) and global network connectivity (“con-
nectomic vulnerability”) to case versus control cortical
thickness abnormalities of thirteen different neurologi-
cal, psychiatric, and neurodevelopmental diseases and
disorders from the ENIGMA consortium [111]. We con-
sistently find that disorder-specific cortical abnormality
is shaped more by the local molecular fingerprints of
brain regions than network embedding. Interestingly,
for disorders that are better predicted by molecular at-
tributes, we find that the spatial patterning of cortical
abnormalities reflects the underlying network architec-
ture, suggesting that the local molecular and global con-
nectomic contributions to disorder effects may interact.
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Figure 2. Local and global contributions to disorder-specific cortical morphology | (a) A total of twenty-six multilinear models
were fit between local molecular and global connectome predictors to cortical abnormality maps of thirteen different disorders
(surface plots, left). Adjusted R? is shown in the bar plot (orange: molecular; blue: connectivity). (b) Dominance analysis
was applied to assess the contribution of each input variable (done separately for molecular (orange) and connectivity (blue)
predictors) to the fit of the model. Significance was assessed using the spin-test (two-tailed); asterisks represent pspin < 0.05.

Next, we study cross-disorder similarity and find that re-
gions with similar molecular make-up tend to be simi-
larly affected across disorders. Collectively, the present
report highlights how local and global factors interact to
shape cross-disorder cortical morphology.

RESULTS

We collected thirteen spatial maps of cortical abnor-
malities from the ENIGMA consortium for the follow-
ing diseases, disorders, and conditions: 22q11.2 deletion
syndrome (22q) [109], attention-deficit/hyperactivity
disorder (ADHD) [55], autism spectrum disorder (ASD)
[119], idiopathic generalized epilepsy [127], right tem-
poral lobe epilepsy [127], left temporal lobe epilepsy

[127], depression [99], obsessive-compulsive disorder
(OCD) [13], schizophrenia [117], bipolar disorder (BD)
[51], obesity [82], schizotypy [62], and Parkinson’s dis-
ease (PD) [63]. For simplicity, we refer to diseases, disor-
ders, and conditions as “disorders” throughout the text.
While most disorders show decreases in cortical thick-
ness, some (e.g. 22q, ASD, schizotypy) also show re-
gional increases in cortical thickness. We therefore refer
to the cortical measure as “cortical abnormalitiy”. All
cortical abnormality maps were collected from adult pa-
tients, following identical processing protocols, for a to-
tal of over 21 000 scanned patients against almost 26 000
controls. To assess the extent to which each abnor-
mality pattern is informed by molecular attributes and
network connectivity, we defined a molecular and con-
nectivity fingerprint at each brain region. The molecu-
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Figure 3. Comparing molecular and connectomic contri-
butions to disorder-specific cortical differences | The local
molecular Rfdj of each disorder is plotted against the global
connectivity Rfdj. The grey line indicates the identity line and
circle colour represents the difference between molecular and
connectomic Rfdj, such that warm colours represent disorders
that are better predicted by molecular predictors, and cool
colours represent disorders that are better predicted by con-
nectomic predictors.

lar fingerprint of a region was defined using the gene
expression gradient, neurotransmitter receptor gradient,
excitatory-inhibitory receptor density ratio, glycolytic in-
dex, glucose metabolism, synapse density, and myeli-
nation (Fig. 1a). Likewise, we defined the connectiv-
ity fingerprint of a region by calculating the strength,
betweenness centrality, closeness centrality, mean Eu-
clidean distance, participation coefficient, clustering co-
efficient, and mean first passage time of a weighted struc-
tural connectivity matrix from 70 healthy adults (Fig. 1b;
see Methods for details). Collectively, these graph mea-
sures aim to capture the connectedness, centrality, and
connection diversity of regions in the network. All analy-
ses were conducted using the 68-region Desikan Killiany
parcellation [19, 29], as this is the native and only avail-
able representation of ENIGMA datasets.

Local and global contributions to disorder-specific cortical
morphology

To assess the extent to which cortical abnormalities
of all thirteen disorders are informed by molecular gra-
dients versus measures of network connectivity, we fit
a multilinear model between molecular or connectivity
predictors and abnormality maps for each disorder sep-
arately, for a total of 13 x 2 = 26 model fits (Fig. 2a;
for results when measures of network connectivity were
computed on the binary structural connectome and the
functional connectome, see Fig. S1; for results when

4

molecular and connectomic predictors are combined,
see Fig. S2). Next, we conducted a dominance analy-
sis for each multilinear model [5, 17, 67, 102]. Dom-
inance analysis distributes the Rgdj across input vari-

ables as a measure of contribution (“dominance”) that
each input variable has on the cortical thinning pattern
(Fig. 2b). Dominance was assessed against a spatial
autocorrelation-preserving null model (“spin test”, see
Methods for details), and each model was cross-validated
in a distance-dependent manner (Fig. S3; [46]).

We find that the fit between molecular predictors and
cortical thinning is greater than that between connectiv-
ity predictors and cortical thinning for most disorders
(Fig. 3). Notably, the variance in cortical thickness of
schizotypy (a possible precursor of schizophrenia that is
poorly defined in the brain [66]) and idiopathic general-
ized epilepsy (a form of epilepsy that is thought to be in-
formed by genetics instead of brain structural abnormali-
ties [24, 35]) are poorly explained by both biological gra-
dients and network measures of the brain. On the other
hand, ADHD, ASD, OCD, PD, and depression are better
predicted by biological predictors, whereas schizophre-
nia, 22q deletion syndrome, and bipolar disorder are bet-
ter predicted by connectivity predictors (Fig. 3).

From the dominance analysis, we find that certain pre-
dictors are consistently unimportant. Indeed, synapse
density and myelination demonstrate less dominance
than microscale gradients such as the gene expres-
sion gradient, neurotransmitter receptor gradient, and
metabolic gradients. Connectivity predictors, particu-
larly measures of centrality, demonstrate less dominance
than more fundamental measures of connectivity such as
number of connections (strength), distance, and connec-
tion diversity (participation coefficient). For complete-
ness, we tested a third family of predictors related to
temporal dynamics: magnetoencephalography (MEG)-
derived power spectral densities for six canonical fre-
quency bands (Fig. S4). However, no temporal predic-
tors were significantly dominant toward any disorders so
we excluded the temporal predictors from further analy-
ses.

Interactions between local and global vulnerability

The previous section separately addresses molecu-
lar and connectomic contributions to disease-specific
cortical abnormalities. However, molecular attributes
likely interact with network connectivity to shape disease
pathology. These molecular mechanisms include gene
expression, neurotransmitter expression, and metabolic
pathways in the cell. In neurodegenerative diseases,
this interaction may result in synaptic pruning and cor-
tical atrophy whereas in neurodevelopmental disorders,
the pathology may manifest as perturbations in net-
work wiring during the embryonic stage [30]. We hy-
pothesized that abnormalities in such molecular mecha-
nisms at the regional level may spread trans-synaptically
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Figure 4. Interactions between molecular and connectomic vulnerability | (a) Left: schematic of structural connectivity
informing disorder-related cortical changes. The correlation between SC-weighted mean neighbour abnormality and region ab-
normality represents the extent to which a disorder demonstrates network spreading disorder-specific cortical morphology. Right:
this correlation coefficient was then correlated to both local molecular (left) and global connectivity (right) Ridj. Yellow points
refer to disorders where the correlation between region abnormality and SC-weighted mean neighbour abnormality is significant
(pspin < 0.05) (b) Left: likewise, mean neighbour abnormality can be additionally weighted by functional connectivity between
regions. Right: correlation between the extent to which a disorder demonstrates SC- and FC-informed network spreading cortical
morphology and local molecular (left) and global connectivity (right) Rfdj. Yellow points refer to disorders where the correlation
between region abnormality and SC- and FC-weighted mean neighbour abnormality is significant (pegpin < 0.05) (c) Left: a region
with high abnormality that is also connected to regions with high abnormality is considered a likely disorder epicentre. Middle:
epicentre likelihood was calculated as the mean rank of region and neighbour abnormality. Right: mean epicentre likelihood was
calculated for all seven disorders that show a significant correlation between regional and neighbour abnormality.

between connected regions, resulting in connectome-  ilar, one region may have greater disease exposure than
informed changes in cortical morphology that reflect an  the other [14, 134].

interplay between local vulnerability and network struc-
ture. For instance, two regions may both participate in
many connections (have high degree), but one may be
connected to more regions with local vulnerability. Thus,
despite the fact that their connectomic profiles are sim-

To test the hypothesis that a region’s cortical thick-
ness is driven by “exposure” to abnormalities of con-
nected regions, we measured the extent to which dis-
orders demonstrate network spreading patterns of cor-
tical morphology [23, 101, 103]. The extent to which
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Figure 5. Brain regions with similar molecular annotations are similarly affected across disorders | (a) Disorder similarity was
computed as the pairwise correlation of regional cortical thickness across all thirteen disorders such that pairs of regions with high
disorder similarity are similarly affected across disorders. (b) The upper triangle of the disorder similarity matrix is approximately
normally distributed. (c) Disorder similarity is significantly correlated to molecular attribute similarity, after distance-regression
(r = 0.38, p < 0.001). (d) Disorder similarity is less correlated to global connectome attribute similarity after distance-regression
(r = 0.22, p < 0.001). (e) Disorder similarity is significantly correlated to neurotransmitter receptor similarity, after distance-
regression (r = 0.33, p < 0.001). (f) Left hemisphere disorder similarity is significantly correlated to gene coexpression, after
distance-regression (r = 0.36, p < 0.001). (g) Disorder similarity is significantly greater within intrinsic functional networks
than between networks, against the spin test (p = 0.005; top). Disorder similarity is significantly greater between structurally
connected regions than regions that are not connected, against a degree- and edge-length-preserving null model (p = 0.003 [11]).

(h) Disorder similarity is significantly correlated to functional connectivity, after distance-regression (r = 0.26, p < 0.001).

a disorder displays network-informed cortical changes is
defined as the correlation between regional abnormality
and mean abnormality of structurally connected neigh-
bours (Fig. 4a). Importantly, significance was assessed
using a spatial autocorrelation preserving null model to
control for the effect of distance on cortical abnormality
patterns. We also test the hypothesis that this network-
spreading effect is functionally informed, whereby the
cortical thickness of structurally connected neighbours
is weighted by the functional connectivity between re-
gions when calculating the mean (Fig. 4b; see Meth-
ods for details and Fig. S5 and S6 for scatter plots of
regional abnormality versus mean neighbour abnormal-
ity across all thirteen disorders). We find that multiple
disorders display a significant correlation between re-
gional thickness and thickness of connected neighbours
(0.23 < r < 0.80), suggesting that spatial patterning of
disorders reflects the connection patterns between brain
regions, above and beyond the effect of spatial autocor-
relation (Fig. S5).

Does molecular or connectomic predictability of a dis-
order pattern (Fig. 2a) relate to network spreading? In-
terestingly, the extent to which a disorder can be pre-
dicted from molecular attributes (i.e. yellow R? in
Fig. 2a) is positively correlated with the extent to which
a disorder displays evidence of network spreading (r =

0.61, p = 0.03 when weighted by SC only as shown in
Fig. 4a; r = 0.75, p = 0.003 when weighted by FC and
SC as shown in Fig. 4b). Notably, we do not observe
this relationship with the extent to which a disorder can
be predicted from global connectivity (i.e. blue R? in
Fig. 2a; r = 0.24, p = 0.42 when weighted by SC only,
Fig. 4a; » = 0.06, p = 0.84 when weighted by FC and
SC, Fig. 4b). In other words, for disorders with cortical
morphologies that more strongly depend on molecular
attributes, we also observe a greater effect of disorder
exposure. Although we previously found that the corti-
cal patterning of a disorder is less influenced by network
embedding per se (e.g. centrality or connection diver-
sity), here we show that it is instead more influenced by
network-driven exposure to regions with local vulnera-
bility. This finding is significant because it shows that
connectome architecture interacts with local vulnerabil-
ity.

Brain regions with high abnormality and high neigh-
bour abnormality are likely to act as an epicentre of the
network spreading disorder pattern, since the region is
both heavily affected and facilitates the spread of atyp-
ical morphology [14, 103, 133]. We calculated epicen-
tre likelihood of each brain region as the mean rank of
regional and neighbour abnormality, such that regions
with high node and neighbour abnormality would be la-
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beled as likely epicentres (Fig. 4c). The measure identi-
fies “disorder hubs”—regions that are both vulnerable to
disorder-specific changes but also embedded in a highly
atypical network cluster. Epicentre likelihood was only
calculated for brain maps with significant correlation be-
tween their node and neighbour abnormality (network
spreading disorders). This list comprised of: 22q11.1
deletion syndrome, ADHD, ASD, right and left tempo-
ral epilepsy, bipolar disorder, and schizotypy (Fig. S7).
We averaged epicentre likelihood of these seven disor-
ders to produce a map of epicentre likelihood across
disorders that demonstrate network spreading disorder-
specific cortical morphology (Fig. 4c, right). We find that
cross-disorder epicentre likelihood is highest in bilateral
sensory-motor cortex, medial temporal lobe, precuneus,
and superior parietal cortex.

Brain regions with similar molecular annotations are
similarly affected across disorders

In the previous sections, we mapped molecular an-
notations and network measures to each disorder sepa-
rately. Here, we focused on disorder similarity. For every
region we constructed a 13-element vector of abnormal-
ity values, where each element corresponds to cortical
change in that region in one disorder. We then corre-
lated regional vectors with each other to estimate how
similarly two regions are affected across the thirteen dis-
orders (Fig. 5a).

We first asked whether brain regions with similar
molecular versus connectivity fingerprints show greater
disorder similarity. Molecular similarity was likewise
computed as the pairwise regional correlation of molec-
ular predictors, and vice versa for connectivity. To ac-
count for spatial autocorrelation in molecular and con-
nectomic attributes, we regressed the exponential trend
with Euclidean distance out of molecular similarity, con-
nectivity similarity, and disorder similarity (Fig. S8a, b,
c). After distance-regression, we find that disorder sim-
ilarity is significantly correlated with molecular similar-
ity (r = 0.38, p < 0.001; Fig. 5c). On the other hand,
the correlation between distance-regressed connectivity
similarity and disorder similarity was smaller and less vi-
sually apparent, albeit significant (r = 0.23, p < 0.001;
Fig. 5d).

Two of the molecular predictors included in the
present report are summary measures of much more ex-
pansive molecular annotations: the gene expression gra-
dient and the neurotransmitter receptor gradient. We
therefore asked whether inter-regional similarity of these
molecular attributes confers similar predisposition to
disease. We computed gene coexpression and neuro-
transmitter receptor similarity matrices, regressed out
the exponential trend with Euclidean distance as before
(Fig. S8d, e, [39, 47]), and correlated these matrices
with disorder similarity (Fig. 5e, f). We find a signifi-
cant correlation between disorder similarity and neuro-
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transmitter receptor similarity (r = 0.33, p < 0.001) as
well as gene coexpression (r = 0.36, p < 0.001) [3, 47].
Altogether, our results indicate that regions with similar
biological composition are similarly affected across dis-
orders.

We finally ask whether disorder similarity might analo-
gously be informed by structural and functional connec-
tivity between regions. We compared the disorder simi-
larity matrix to weighted structural and functional con-
nectomes. First, we find that brain regions that are struc-
turally connected are more likely to change similarly
across disorders than regions that are not structurally
connected, although this result is non-significant against
a degree and edge-length preserving null model (Fig. 5g
[11]; see Null models). Second, we find that brain re-
gions that are within the same intrinsic functional net-
work are more likely to change similarly than regions be-
tween functional networks, against the spin-test (Fig. 5g,
pspin = 0.01). Finally, we find a positive significant cor-
relation between disorder similarity and functional con-
nectivity (r = 0.26, pspin = 0.002; Fig. 5h). Consistent
with the previous subsection, these results collectively
suggest that areas that share molecular attributes and
connections are similarly affected across disorders.

DISCUSSION

In the present report, we comprehensively map local
molecular attributes and global measures of connectivity
to the cortical morphology of thirteen different neuro-
logical, psychiatric, and neurodevelopmental disorders.
We consistently find that local attributes govern both
disorder-specific abnormalities and cross-disorder simi-
larity more than global connectivity and regional dynam-
ics. In addition, we find that molecular mechanisms in-
teract with the structural and functional architectures of
the brain to guide cross-disorder abnormality patterns.
Altogether, our results highlight how molecular and con-
nectomic vulnerability shape cross-disorder cortical ab-
normalities.

This work builds on a growing literature on cross-
disorder effects, and how shared vulnerability may po-
tentially transcend traditional diagnostic boundaries [28,
61, 120, 129]. It is becoming increasingly clear that
pathology is governed by layers of abnormal processes,
at the molecular and cellular level, to neural dynam-
ics, to large-scale brain networks. Aligning high-quality
maps of disorder-specific cortical changes to a common
reference frame of local and global attributes allows us
to systematically relate the effect of disease to multi-
ple scales of organization. By taking a cross-modal and
cross-disorder approach we reveal that, despite different
clinical presentation and label, there exists some com-
monality across diseases including predictors that are
ubiquitously important as well as interplay between local
vulnerability and network structure.

Interestingly, we find that the principal gradient of
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receptor distribution is particularly dominant towards
disease-specific cortical morphology. This receptor gra-
dient represents the maximal variance of density distri-
butions from fourteen receptors and four transporters
across nine different neurotransmitter systems, and
therefore captures how brain regions may integrate ex-
ogenous signals differently [47, 104]. This gradient is
a powerful predictor of ADHD, and is the only signifi-
cantly dominant predictor of left temporal lobe epilepsy,
depression, and Parkinson’s disease. Indeed, neurotrans-
mitter dysfunction is thought to underlie multiple disor-
ders, including dopamine release in PD and schizophre-
nia or serotonin reuptake in depression. Modern ther-
apeutics are designed to selectively manipulate neuro-
transmitter function for the purpose of alleviating be-
havioural symptoms, as opposed to altering brain struc-
ture. Our findings confirm the fundamental contribution
of neurotransmitters to a wide spectrum of diseases, but
they also highlight an important link between the spa-
tial patterning of neurotransmitter receptors and cortical
disorder morphology itself [47].

We generally find that cortical abnormality is better
predicted by local vulnerability compared to global con-
nectomic vulnerability. One possible reason for the rel-
atively poorer performance of connectivity predictors is
that they are generic measures of a region’s embedding
in a network (number of connections, centrality, connec-
tion diversion) but do not consider how this embedding
exposes regions to pathology elsewhere in the network.
Indeed, we find that disorders whose cortical morphol-
ogy is better reflected by local vulnerability also bear a
prominent signature of network architecture (e.g. ASD,
ADHD, 22q, temporal lobe epilepsy, schizotypy, bipo-
lar disorder). Namely, in these disorders, areas with
greater change are disproportionately more likely to be
structurally- and functionally-connected with each other.
This suggests a network spreading phenomenon where
focal pathology or perturbation propagates to connected
regions, resulting in cortical abnormality that is corre-
lated with the underlying connection patterns [40]. This
interaction between local vulnerability and connectomic
vulnerability has previously been reported in neurode-
generative syndromes where the trans-synaptic spread-
ing of misfolded proteins appears to be guided and am-
plified by local gene expression [25, 50, 92].

The interaction between molecular vulnerability and
network structure naturally raises the question of what
are the network epicentres of cortical disorder maps.
We find epicentres—regions with high abnormality that
are also strongly connected with other regions with high
abnormality—in the sensory-motor cortex, medial tem-
poral lobe, precuneus, and superior parietal cortex. That
the sensory-motor cortex is an epicentre is consistent
with recent reports that multiple psychiatric and neuro-
logical disorders are accompanied by sensory deficits and
reduced motor control [10, 57, 69]. Indeed, the sensory-
motor cortex has been previously established as a func-
tional hub in temporal lobe epilepsies and across mul-
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tiple psychiatric disorders [61, 65]. Interestingly, both
the bilateral precuneus and superior parietal cortex are
members of the brain’s putative rich club—densely inter-
connected regions that are thought to support the inte-
gration and broadcasting of signals [113]. Rich club re-
gions undergo changes in connectivity patterns in mul-
tiple diseases such as schizophrenia, Alzheimer’s, and
Huntington’s [28, 115, 116]. We complement this work
by showing that the precuneus and superior parietal cor-
tex are both vulnerable to cortical abnormality and, by
virtue of their network embedding, increase disease ex-
posure to connected regions. Conversely, although the
anterior cingulate cortex (ACC) is implicated across mul-
tiple psychiatric disorders [45, 103], we do not find that
the ACC is an epicentre of cross-disorder cortical mor-
phology. This suggests that although the ACC demon-
strates considerable local vulnerability in a subset of
brain disorders, it is not consistently involved across the
seven disorders included in the epicentre analyses. Al-
together, despite variable cortical morphology patterns
across the thirteen disorders, when looked at through
the lens of network connectivity, we see a more consis-
tent and compact subset of potential epicentres, suggest-
ing greater commonality among diseases than previously
appreciated.

The present work should be considered along some
important methodological considerations.  First, al-
though the ENIGMA consortium standardizes prepro-
cessing pipelines and provides large N datasets, allow-
ing for robust results and meaningful comparison be-
tween disorder-specific cortical abnormality maps, work-
ing with ENIGMA data also has caveats: (1) the mea-
sures of cortical abnormality are effect sizes between pa-
tients and controls and do not represent tissue volume
loss/gain, (2) some of the patient populations included
have co-morbidities and patients may be undergoing
treatment, and (3) all analyses were conducted at the
level of 68 cortical brain areas, limiting regional speci-
ficity and precluding analyses of the subcortex and cere-
bellum. Second, despite the fact that structural connec-
tomes were reconstructed from high resolution diffusion
spectrum imaging, diffusion tractography is still prone to
false-positives and false-negatives [58, 68, 132]. Third,
both local biological and global connectivity predictors
are derived from state-of-the-art open-access datasets in
healthy participants, but they do not capture individ-
ual variability or changes across the lifespan—both of
which are key factors in neurological, psychiatric, and
neurodevelopmental disorders. Additionally, the biolog-
ical predictors are limited by imaging modality and, in
the case of the gene and receptor gradients, by the subset
of genes and receptors included in the data decomposi-
tion. Fourth, we assessed contribution of multiple pre-
dictors to disorder maps using simple but robust linear
models that are not sensitive to non-linear contributions
or higher-order interactions among the predictors. Fifth,
the linear models used in the present analyses assume in-
dependence between observations, which is not the case
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in the brain; we therefore employ spatial-autocorrelation
preserving null models to account for the spatial depen-
dencies between regions throughout the report. Finally,
although the present report spans a wide range of neuro-
logical, psychiatric, and neurodevelopmental disorders,
results are only valid for this subset of disorders. Future
work is needed to map local and global vulnerabilities to
the many more brain diseases and disorders that exist.

In summary, we find that molecular and connectomic
vulnerability jointly shape cross-disorder cortical abnor-
malities. Cross-disorder regional vulnerability is largely
driven by molecular fingerprints, including neurotrans-
mitter receptor densities and gene expression, while con-
nection patterns among vulnerable regions further am-
plify this vulnerability. Our results highlight how an in-
tegrative, multi-modal approach can illuminate the con-
tributions of local biology and connectome architecture
to brain disease.

METHODS

All code and data used to perform the analyses can
be found at https://github.com/netneurolab/hansen_
crossdisorder_vulnerability. Molecular predictors can
also be found in the neuromaps toolbox (https://
netneurolab.github.io/neuromaps/ [71]).

Cortical disorder maps

Patterns of cortical thickness were collected for
the available thirteen neurological, neurodevelopmen-
tal, and psychiatric disorders from the ENIGMA con-
sortium and the enigma toolbox (https://github.com/
MICA-MNI/ENIGMA; [64]) including: 22q11.2 deletion
syndrome (22q) [109], attention-deficit/hyperactivity
disorder (ADHD) [55], autism spectrum disorder (ASD)
[119], idiopathic generalized epilepsy [127], right tem-
poral lobe epilepsy [127], left temporal lobe epilepsy
[127], depression [99], obsessive-compulsive disorder
(OCD) [13], schizophrenia [117], bipolar disorder (BD)
[51], obesity [82], schizotypy [62], and Parkinson’s dis-
ease (PD) [63]. The ENIGMA (Enhancing Neuroimag-
ing Genetics through Meta-Analysis) Consortium is a
data-sharing initiative that relies on standardized im-
age acquisition and processing pipelines, such that dis-
order maps are comparable [111]. Altogether, over
21000 patients were scanned across the thirteen dis-
orders, against almost 26 000 controls. The values for
each map are z-scored effect sizes (Cohen’s d) of corti-
cal thickness in patient populations versus healthy con-
trols. Imaging and processing protocols can be found at
http://enigma.ini.usc.edu/protocols/.

9

Structural and functional data acquisition

Structural and functional data were collected at the
Department of Radiology, University Hospital Center and
University of Lausanne, on n = 70 healthy young adults
(16 females, 25.3 + 4.9 years). Informed consent was
obtained from all participants and the protocol was ap-
proved by the Ethics Committee of Clinical Research
of the Faculty of Biology and Medicine, University of
Lausanne. The scans were performed in a 3-T MRI
scanner (Trio; Siemens Medical), using a 32-channel
head coil. The protocol included (1) a magnetization-
prepared rapid acquisition gradient echo (MPRAGE) se-
quence sensitive to white/grey matter contrast (1 mm
in-plane resplution, 1.2 mm slice thickness), (2) a DSI
sequence (128 diffusion-weighted volumes and a sin-
gle b0 volume, maximum b-value 8 000s/mm?, 2.2 x
2.2 x 3.0 mm voxel size), and (3) a gradient echo-planar
imaging (EPI) sequence sensitive to blood-oxygen-level-
dependent (BOLD) contrast (3.3 mm in-plane resolu-
tion and slice thickness with a 0.3 mm gap, TR 1920
ms, resulting in 280 images per participant). Partici-
pants were not subject to any overt task demands dur-
ing the fMRI scan. The Lausanne dataset is available at
https://zenodo.org/record/2872624#.X0JqE99fhmM.

Structural network reconstruction

Grey matter was parcellated according to the 68-
region Desikan-Killiany cortical atlas [29]. Structural
connectivity was estimated for individual participants
using deterministic streamline tractography. The pro-
cedure was implemented in the Connectome Mapping
Toolkit [27], initiating 32 streamline propagations per
diffusion direction for each which matter voxel. Collat-
ing each individual’s structural connectome was done us-
ing a group-consensus approach that seeks to preserve
the density and edge-length distributions of the individ-
ual connectomes [11].

We first collated the extant edges in the individual par-
ticipant matrices and binned them according to length.
The number of bins was determined heuristically, as the
square root of the mean binary density across partici-
pants. The most frequently occurring edges were then
selected for each bin. If the mean number of edges
across participants in a particular bin is equal to k, we
selected the k edges of that length that occur most fre-
quently across participants. To ensure that interhemi-
spheric edges are not underrepresented, we carried out
this procedure separately for inter- and intrahemispheric
edges. The binary density for the final whole-brain struc-
tural connectome was 24.6%. For the weighted structural
connectome, edges were weighted by the log-transform
of the mean non-zero streamline density, scaled to values
between O and 1.
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Functional network reconstruction

Functional MRI data were preprocessed using proce-
dures designed to facilitate subsequent network explo-
ration [86]. fMRI volumes were corrected for physio-
logical variables, including regression of white matter,
cerebrospinal fluid, and motion (3 translations and 3 ro-
tations, estimated by rigid body coregistration). BOLD
time series were then subjected to a low-pass filter (tem-
poral Gaussian filter with full width at half maximum
equal to 1.92 s). The first four time points were excluded
from subsequent analysis to allow the time series to sta-
bilize. Motion “scrubbing” was performed as described
by [86]. The data were parcellated according to the
same 68-region Desikan-Killiany atlas used for the struc-
tural network. Individual functional connectivity matri-
ces were defined as zero-lag Pearson correlation among
the fMRI BOLD time series. A group-consensus func-
tional connectivity matrix was estimated as the mean
connectivity of pairwise connections across individuals.
Note that one individual did not undergo an fMRI scan
and therefore the functional connectome was composed
of n = 69 participants.

Biological predictors

A total of seven local biological predictors were used in
the multilinear model to represent the influence that lo-
cal biological attributes have on disorder-specific cortical
morphology.

Gene expression gradient. The first principal compo-
nent of gene expression (“gene gradient”) was used to
represent the variation in gene expression levels across
the left cortex. Gene expression data was collected by the
Allen Human Brain Atlas as described in Hawrylycz et al.
[49] and processed by abagen, an open-source Python
toolbox [70]. A total of 11560 genes with differential
stability greater than 0.1 were retained in the region by
gene matrix [48]. The left gene gradient was mirrored in
the right hemisphere. A detailed account of the specific
processing choices made can be found in Hansen et al.
[46].

Receptor gradient. The first principal component of re-
ceptor density (“receptor gradient”) was used to repre-
sent the variation in receptor densities across the cortex.
Receptor densities were estimated using PET tracer stud-
ies for a total of 18 receptors and transporters, across 9
neurotransmitter systems. These include dopamine (D,
[59]1, Dy [96, 105, 108, 131], DAT [33]), norepinephrine
(NET [8, 22, 31, 95]), serotonin (5-HTs [98], 5-HTg
[6, 41, 73, 76, 77, 85, 97, 98], 5-HT24 [9], 5-HT4 [9],
5-HTg [87, 88], 5-HTT [9]), acetylcholine (a4/3; [6, 52],
M; [78], VAChT [1, 7]), glutamate (mGluR; [32, 106]),
GABA (GABA,4 [80]), histamine (Hs [42]), cannabinoid
(CB; [34, 79, 81, 931]), and opioid (MOR [60]). Volu-
metric PET images were registered to the MNI-ICBM 152
nonlinear 2009 (version c, asymmetric) template, aver-
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aged across participants within each study, then parcel-
lated to 68 cortical regions. Parcellated PET maps were
then z-scored before compiling all receptors/transporters
into a region xreceptor matrix of relative densities. Data
were originally presented as an atlas in Hansen et al.
[47].

Excitatory-inhibitory ratio. The excitatory-inhibitory
ratio was computed as the ratio of z-scored PET-derived
excitatory to inihibitory neurotransmitter receptor densi-
ties in the cortex, using the same dataset that was used
to compute the receptor gradient. Excitatory neurotrans-
mitter receptors included are: 5-HT2,, 5-HT,, 5-HTg, Dy,
mGIuRs, ayf2, and M;. Inhibitory neurotransmitter re-
ceptors included are: 5-HTja, 5-HT15, CB1, Dy, GABA,,
Hs, and MOR.

Glycolytic index. Aerobic glycolysis is the process of
converting glucose to lactate in the presence of oxy-
gen. It is traditionally calculated as the ratio of oxygen
metabolism to glucose metabolism. Here, we use gly-
colytic index, a measure of aerobic glycolysis that mit-
igates certain limitations of using the traditional ratio
[112]. Glycolytic index is defined as the residual af-
ter fitting glucose metabolism to oxygen metabolism in
a linear regression model. Larger values indicate more
aerobic glycolysis. Note that glycolytic index and the tra-
ditional ratio are highly correlated (see Vaishnavi et al.
[112]). Data were collected, calculated, and made avail-
able by Vaishnavi et al. [112].

Glucose metabolism. Glucose metabolism in the cor-
tex was measured in 33 healthy adults by administering
[*8 F]-labelled fluorodeoxyglucose (FDG) for a PET scan,
as described in detail in Vaishnavi et al. [112].

Synapse density. Synapse density in the cortex was
measured in 76 healthy adults (45 males, 48.9 + 18.4
years of age) by administering ['!C]UCB-J, a PET tracer
that binds to the synaptic vesicle glycoprotein 2A (SV2A)
[12, 20, 21, 36-38, 54, 74, 83, 89, 107, 126]. Data were
collected on an HRRT PET camera for 90 minutes post in-
jection. Non-displaceable binding potential (BPyp) was
modelled using SRTM2, with the centrum semiovale as
reference and £/ fixed to 0.027 (population value).

Myelination. Data from the Human Connectome
Project (HCP, S1200 release) [43, 118] was used for
measures of T1w/T2w ratios—a proxy for intracortical
myelin—for 417 unrelated participants (age range 22—
37 years, 193 males), as approved by the WU-Minn
HCP Consortium. Images were acquired on a Siemens
Skyra 3T scanner, and included a T1-weighted MPRAGE
sequence at an isotropic resolution of 0.7mm, and a
T2-weighted SPACE also at an isotropic resolution of
0.7mm. Details on imaging protocols and procedures
are available at http://protocols.humanconnectome.
org/HCP/3T/imaging-protocols.html. Image processing
includes correcting for gradient distortion caused by
non-linearities, correcting for bias field distortions, and
registering the images to a standard reference space.
T1w/T2w ratios for each participant was made avail-
able in the surface-based CIFTI file format and parcel-
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lated into 68 cortical regions according to the Lausanne
anatomical atlas [19].

Connectivity predictors

A total of nine global connectome predictors were used
in the multilinear model to represent the influence that
global connectivity has on disorder-specific cortical mor-
phology. In the main text, connectome measures were
computed on the weighted structural connectome. Anal-
yses were repeated using a binary structural connectome
and an absolute functional connectome (Fig. S1). All
connectivity measures were computed using the Python-
equivalent of the Brain Connectivity Toolbox, bctpy.

Strength. The strength of region ¢ is the sum of the
edges connected to region ¢. For a binary structural con-
nectome, the strength is equivalent to the degree, which
is the number of links connected to region .

Betweenness centrality. Betweenness centrality of re-
gion 1 is the fraction of all shortest paths between any
two regions that traverse region 1.

Closeness centrality. Closeness centrality is equivalent
to the mean shortest path distance from region i to every
other region in the network.

Euclidean distance. Mean Euclidean distance of a re-
gion to all other regions in the network represents how
spatially close one region is to all other regions.

Participation coefficient. Participation coefficient was
computed using the putative intrinsic functional net-
works of the brain [130]. Participation coefficient repre-
sents the connection diversity of a region. A region with
high participation coefficient is well connected to several
different networks, whereas a region with low participa-
tion coefficient primarily makes local (within-network)
connections.

Clustering coefficient. The clustering coefficient of re-
gion 4 is the fraction of all triangles that are around re-
gion i. Equivalently, it is the fraction of all of region
©’s neighbours that are also neighbours with each other.
In the case of the weighted structural connectome, clus-
tering coefficient is the average geometric mean of all
triangles associated with the region.

Mean first passage time. The mean first passage time
from region ¢ to j is the expected amount of time it takes
a random walker to reach region j from i for the first
time. For each region, mean first passage time was av-
eraged across regions, resulting in a mean mean first
passage time representing the average amount of time
it takes a random walker to travel from region 7 to any
other region in the network for the first time.

Temporal predictors

6-minute resting-state  eyes-open magenetoen-
cephalography (MEG) time-series were acquired from
the Human Connectome Project (HCP, S1200 release)
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for 33 unrelated subjects (age range 22—35, 17 males)
[43, 118]. Complete MEG acquisition protocols can
be found in the HCP S1200 Release Manual. For each
subject, we computed the power of the run at the vertex
level across six different frequency bands: delta (2—4
Hz), theta (5-7 Hz), alpha (8-12 Hz), beta (15-29 Hz),
low gamma (30-59 Hz), and high gamma (60-90 Hz),
using the open-source software, Brainstorm [110]. Each
power band was then parcellated into 68 cortical regions
[19].

Dominance analysis

Dominance analysis seeks to determine the relative
contribution (“dominance”) of each input variable to the
overall fit (adjusted R?) of the multiple linear regres-
sion model (https://github.com/dominance-analysis/
dominance-analysis [5, 17]). This is done by fitting the
same regression model on every combination of input
variables (27 — 1 submodels for a model with p input
variables). Total dominance is defined as the average
of the relative increase in R? when adding a single in-
put variable of interest to a submodel, across all 22 — 1
submodels. The sum of the dominance of all input vari-
ables is equal to the total adjusted R? of the complete
model, making total dominance an intuitive measure of
contribution. Significant dominance was assessed using
the spin test (see Null models), whereby dominance anal-
ysis was repeated between a spun disorder map and the
original predictor matrix (1 000 repetitions).

Each multilinear model was cross-validated using a
distance-dependent method proposed by [46]. Briefly,
for each of 1000 iterations, the 75% of regions closest
in Euclidean distance to a randomly chosen source node
were selected as the training set, and the remaining 25%
of regions as the test set. Predicted values in the test set
were then correlated to true abnormality patterns, and
the correlations are shown in Fig. S3.

Network spreading

Network spreading was computed as first introduced
in Shafiei et al. [103] and later adopted in [23, 101].
Briefly, regional abnormality was defined as the normal-
ized effect size used in all ENIGMA brain maps. For each
region i, its neighbours are those with which region i is
connected via a structural connection, as defined by the
structural connectivity matrix. Mean neighbour abnor-
mality of region ¢ (D;) is the average abnormality of re-
gion ¢’s neighbours, where d; represents the abnormality
of neighbour j. Notably, this method normalizes neigh-
bour abnormality by the number of connections made by
region i (IV;).
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When neighbour abnormality is weighted by func-
tional connectivity, each neighbour’s abnormality are
weighted by the functional connection to node i (F'C;;).
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Each brain region was assigned a rank in terms of
their node abnormality and their mean neighbour abnor-
mality. The average of node and neighbour abnormality
ranks was defined as the epicentre likelihood of the node,
where nodes with high abnormality and whose neigh-
bours are also highly atypical are more likely to be an
epicentre of the disorder.

Disorder similarity

For every brain region, we constructed a 13-element
vector of disorder abnormality, where each element rep-
resents a disorder’s cortical abnormality at the region.
For every pair of brain regions, we correlated the ab-
normality vectors to quantify how similarly two brain
regions are affected across disorders. This results in a
region-by-region matrix of “disorder similarity” (Fig. 5a).
We verified that no single disorder pattern was driving
the disorder similarity matrix by recalculating the disor-
der similarity when a single disorder is excluded. We
then correlated the leave-one-out disorder similarity ma-
trix with the original disorder similarity matrix. The min-
imum correlation was r = 0.95 (Fig. S9a). Finally, influ-
ence on the disorder similarity matrix by a disorder i was
quantified as

I, =1— Corr(D, D;)

where D is the original disorder similarity matrix and D;
is the disorder similarity matrix constructed when disor-
der ¢ is excluded (Fig. S9b).

Null models

Spatial autocorrelation-preserving permutation tests
were used to assess statistical significance of associations
across brain regions, termed “spin tests” [2, 72]. We cre-
ated a surface-based representation of the parcellation
on the FreeSurfer fsaverage surface, via files from the
Connectome Mapper toolkit (https://github.com/LTS5/
cmp). We used the spherical projection of the fsaver-
age surface to define spatial coordinates for each par-
cel by selecting the coordinates of the vertex closest to
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the center of the mass of each parcel [121]. These par-
cel coordinates were then randomly rotated, and original
parcels were reassigned the value of the closest rotated
parcel (1000 repetitions). Parcels for which the medial
wall was closest were assigned the value of the next most
proximal parcel instead. The procedure was performed
at the parcel resolution rather than the vertex resolution
to avoid upsampling the data, and to each hemisphere
separately.

A second null model was used to test whether disor-
der similarity is greater in connected regions than un-
connected regions. This model generates a null struc-
tural connectome that preserves the density, edge length,
and degree distributions of the empirical structural con-
nectome [11, 44, 94]. Briefly, edges were binned ac-
cording to Euclidean distance. Within each bin, pairs of
edges were selected at random and swapped. This pro-
cedure was then repeated 10 000 times. To compute a p-
value, the mean disorder similarity of unconnected edges
was subtracted from the mean disorder similarity of con-
nected edges, and this difference was compared to a null
distribution of differences computed on the rewired net-
works.
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Figure S1. Computing global network measures on different connectivity matrices | Global network measures were calculated
on the binary structural connectivity matrix as well as the weighted functional connectivity matrix. (a) Adjusted R? between
connectivity predictors and disorder maps (left-most surfaces) when connectivity measures were calculated on the binary structural
connectome (dark blue), weighted structural connectome (medium blue; used in main text analyses), and weighted functional
connectome (light blue). (b) Dominance analysis for the binary structural connectome (left) and weighted functional connectome
(right). Asterisks represent pepin < 0.05.
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Figure S2. Combining molecular and connectomic predictors | Thirteen multivariate regression models were fit between the
combined (molecular and connectomic) predictor set, to predict disorder-specific cortical thinning. Dominance analysis was applied
to assess the predictors that contribute most to each mode. Asterisks represent pgpin < 0.05.
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Figure S3. Distance-dependent cross-validation | Each model was cross-validated using a distance-dependent method. For 1 000
randomly chosen source regions, the model was fit on a training set, composed of the 75% of regions closes to the source region.
Next, cortical abnormality values were predicted on the remaining 25% of regions and correlated to the empirical abnormality
values. Circles represent the median and lines span the first to third quartiles.
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Figure S4. Mapping MEG-derived temporal predictors to disorder-specific cortical morphology |
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For each disorder, a multi-

linear model was fit between six MEG-derived power distributions and the abnormality pattern. Dominance analysis extracted no
significantly dominant predictors, and fits always underperformed compared to local biological predictors.
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Figure S5. Assessing network spreading disorder-specific cortical morphology using structural and functional connectivity
| A disorder whose cortical morphology demonstrates network spreading was defined as one whose regional abnormality pattern
is correlated to mean neighbour abnormality, weighted by structural connectivity and functional connectivity. Yellow scatter plots
indicate significant (pspin < 0.05) node-neighbour correlations.

0.5

)
w

o
o w

neighbour abnormality

0.5

22q deletion adhd asd epilepsy (generalized)
I | | | | | i | | | . | | |
epilepsy (right) epilepsy (left) depression ocd
I | | | | | i | | | . | | |
schizophrenia bipolar obesity schizotypy parkinson’s
| | | | | | i Il | I i | | | ! | I
25 0 25 0 2.5 -25 0 25 25 0 25 -25 0 25

node abnormality

Figure S6. Assessing network spreading disorder-specific cortical morphology using structural connectivity only | A disorder
whose cortical morphology demonstrates network spreading was defined as one whose regional abnormality pattern is correlated
to mean neighbour abnormality, weighted by structural connectivity only. Yellow scatter plots indicate significant (pepin < 0.05)
node-neighbour correlations.
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Figure S7. Epicentre likelihood | Epicentre likelihoods of the seven disorders that demonstrate significant correlations between
node abnormality and mean sc- and fc-weighted neighbour abnormality.

¢

a y=0.95%09-0,14 b y=1.40%0*-0.60 C y =2.83%e01%
1 1k 1h
>
0.75 - k=
= o
2 05 S 05f ‘€ o5t
s £ @
z 0.25 @ 2
= >
2 0 S o T o
[ [V ()
S0 S =
2 2 £
T s —=-05F O .05t
S 3
Ke] o
-0.75 5
-1k -1t
20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160
Euclidean distance Euclidean distance Euclidean distance
d *-0.03. € *-0.02 f *n-0.04
> 10 L y=135%%9x-0.16 y=1.15%e0%%2-0.34 y=091%%% 4+ 0.174
2
5 0.8
E 06 0.75 |
E 0.5 c é\
[e] 92 04 >
s 2 S o5t
g g 02 2
L ol X <
5 g o Soast
E et ©
IS 2.02 S
205 | & = of
s 204 g
- >
[e] L=
E -06 025}
< 20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160
Euclidean distance Euclidean distance Euclidean distance

Figure S8. Annotation similarity between brain regions decreases exponentially | Similarity matrices for (a) disorder-specific
cortical morphology, (b) local molecular fingerprint similarity, (c) global connectome predictor similarity, (d) neurotransmitter
receptor density, (e) gene coexpression, and (f) functional connectivity were plotted against Euclidean distance. Each panel shows
a negative exponential relationship between regional annotation similarity and distance, indicating that regions that are further
apart show less similar properties. Note that gene coexpression was computed only for the left hemisphere.
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Figure S9. Robustness of disorder similarity matrix | (a) Disorder similarity was correlated to a version of the disorder similarity
matrix, constructed by excluding a single disorder, across all thirteen disorders. The minimum correlation, computed when 22g-
deletion syndrome is excluded, is » = 0.95. (b) The influence that each disorder has on the disorder similarity matrix is calculated
as the difference between 1 and the correlation coefficient calculated in (a).
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