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Abstract

Cancer occurs as a consequence of multiple somatic mutations that
lead to uncontrolled cell growth. Mutual exclusivity and co-occurrence of
mutations imply—but do not prove—that they can exert synergistic or
antagonistic epistatic effects on oncogenesis. Knowledge of these interac-
tions, and the consequent trajectories of mutation and selection that lead
to cancer has been a longstanding goal within the cancer research com-
munity. Recent research has revealed mutation rates and scaled selection
coefficients for specific recurrent variants across many cancer types. How-
ever, estimation of pairwise and higher-order effects—essential to estima-
tion of the trajectory of likely cancer genotoypes—has been a challenge.
Therefore, we have developed a continuous-time Markov chain model that
enables the estimation of mutation origination and fixation (flux), depen-
dent on somatic cancer genotype. Coupling the continuous-time Markov
chain model with a deconvolution approach provides estimates of under-
lying rates of mutation and selection across the trajectory of oncogenesis.
We demonstrate computation of fluxes and selection coefficients in a so-
matic evolutionary model for the four most frequently variant driver genes
(TP53, LRP1B, KRAS and STK11) from 585 cases of lung adenocarci-
noma. Our analysis reveals multiple antagonistic epistatic effects that
reduce the possible routes of oncogenesis, and inform cancer research re-
garding viable trajectories of somatic evolution whose progression could
be forestalled by precision medicine. Synergistic epistatic effects are also
identified, most notably in the somatic genotype TP53+LRP1B for mu-
tations in the KRAS gene, and in somatic genotypes containing KRAS or
TP53 mutations for mutations in the STK11 gene. Large positive fluxes
of KRAS variants were driven by large selection coefficients, whereas the
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flux toward LRP1B mutations was substantially aided by a large muta-
tion rate for this gene. The approach enables inference of the most likely
routes of site-specific variant evolution and estimation of the strength of
selection operating on each step along the route, a key component of what
we need to know to develop and implement personalized cancer therapies.

1 Introduction

Abnormal cell proliferation and survival can be driven by gene mutations
in somatic cells, and can result in cancer. The somatic mutations that lead to
cancer can become frequent within tumors either because they are frequently
mutated or because they are strongly selected to increase proliferation and sur-
vival. However, the selection operating on somatic mutations is complicated by
epistatic effects, wherein the effects of one mutation affect the selection operat-
ing on other genes [1].

Computational models have been proposed that can indicate pairwise epistatic
effects among mutations [2]. Empirically, patterns of mutual exclusivity can
be interpreted as a consequence of antagonistic epistasis, and patterns of co-
mutation can be interpreted as a consequence of synergistic epistasis. Other
approaches have been applied to identify sets of variants that are sufficient to
cause cancer [3]. However, to reveal the evolutionary genetic trajectories of
cancer that could be intercepted by precision therapeutic approaches to delay
or deny cancer morbidity and mortality due to metastasis, quantification of
higher order epistatic effects are needed [4]. Models proposed so far do not
appropriately condition on underlying mutation rates, nor do they reveal the
order of mutations revealed by the epistatic interactions. For example, a mu-
tation in a gene A could make it more likely that a mutation in a gene B is
acquired, whereas when the mutation in the gene B occurs first, the mutation
in gene A could be selected against. These differences in selection can arise from
stage-specific physiological divergence or from additional unrecognized epistatic
interactions.

The estimation of the order of epistatic effects in cancer is particularly chal-
lenging because most large tumor sequence datasets provide only one time point
of tumor evolution at the time of tumor biopsy or excision [5]. Most evaluate
correlations between the frequencies of mutations [2], yet correlations can arise
either because of selective epistasis or because of commonalities of mutation
process between selected sites. There are several orders of magnitude of differ-
ence in the rates at which somatic mutations occur in different genes and sites
within the genome. Therefore, it is vital to distinguish the mutation rate from
how much one mutation would confer a selective advantage in the tumor cell
population [6]. The scaled selection coefficient or cancer effect size has previ-
ously averaged over epistatic effects [6]. Evaluating epistatic effects of selected
mutations in cancer evolution is fundamental to illuminating the evolutionary
genetic trajectory of tumor evolution, and for the advancement of accurate and
personalized predictions of therapeutic responses [7, 8].
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Herein, we develop mathematical models enabling the inference of the poten-
tial evolutionary trajectories of tumors. Our approaches extend from pairwise
epistasis to combinations of three, four, or more cancer drivers. We apply our
models to lung cancer, the most frequent cancer in the world [9], and the leading
cause of cancer death in the United States [10]. Lung adenocarcinoma repre-
sents about 40% of all lung cancers, and has the worst prognosis among all types
of lung cancer [11]. It typically has a high tumor mutational burden [12], and
thus provides an excellent example in which to test theory on epistatic effects
in cancer oncogenesis.

2 Theory

2.1 Mutational flux for one mutation with no epistasis

For a single mutation, λ can be taken as the exponentially distributed flux
from a “normal” tissue state (without a mutation) at time 0 to a tissue state
with a mutation fixed throughout a neoplasm, then

Prob {mutation by time t} =

∫ t

0

λe−λu du = 1− e−λt.

This flux can be decomposed into the mutation rate (the rate at which ge-
netic state is changed in single cells) times the scaled selection coefficient (the
consequent increase in survival and proliferation) [6].

2.2 Mutational fluxes for two mutations with epistasis

For two mutations labeled A and B, the fluxes from a normal state to a
state with mutation A and to a state with mutation B can be denoted λA and
λB . Assuming a regime of strong selection and weak mutation (SSWM) [13]
with no clonal interference on the action of selection, and thereby retaining
exponential distributions for the time that it takes for each mutation to appear
and be selected to high frequency, the minimum of those distributions is also
exponential, with the exponential parameter equal to the sum of the parameters
of each distribution. Starting in the normal state at time 0, the probability
density function for the time until the first mutation fixes is

f(t) = (λA + λB)e
−(λA+λB)t, (1)

for t ≥ 0 and 0 otherwise. Therefore, the probability of maintaining the normal
tissue state through time t is

P0(t) = Prob {X(t) at normal state | X(0) at normal state}
= e−(λA+λB)t,

(2)

for t ≥ 0, where X(t) represents the state at time t. Additionally, we know
that under SSWM, the probability that a specific mutation spreads to fixation
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before another mutation is equal to its rate relative to the sum of event rates,
thus

Prob {A before B} =
λA

λA + λB
. (3)

Without epistasis, the fixation probabilities of mutation B are independent
of whether mutation A has previously risen to fixation in the tumor. Therefore
under SSWM the probabilities of fixing either mutation or both can be computed
by multiplying the respective probabilities for each event. However, widespread
mutual exclusivity among driver mutations indicates that epistatic interactions
between them may be commonplace [9, 14, 15]. To model epistatic interactions
between two driver mutations, two additional parameters are required: the flux
to mutation A while at a state with mutation B, denoted λB→AB , and the flux
to B while at A, denoted λA→AB . Thus, for a tissue fixed for mutation A at
time u and t ≥ u,

Prob {X(t) = A | X(u) = A} = e−λA→AB(t−u). (4)

The probability of a tissue fixed with only mutation A at time t can be computed
by multiplying Equations (1), (3), and (4), and integrating:

PA(t) = Prob {X(t) = A | X(0) at normal state}

=

∫ t

0

(λA + λB)e
−(λA+λB)u λA

λA + λB
e−λA→AB(t−u) du

=
λA

λA→AB − (λA + λB)

(
e−(λA+λB)t − e−(λA→AB)t

)
.

(5)

Equations (1), (3), and (4) compose three conditions that together yield the
desired probability that a tissue fixed only mutation A at time t (Equation(5)).
Equation (1) conditions that a mutation fixed at a time u, Equation (3) con-
ditions for the case that the mutation was A instead of B, and Equation (4)
conditions for the case that no other mutations were fixed from the time u that
the mutation was fixed to the time t.

By symmetry,

PB(t) = Prob {X(t) = B | X(0) at normal state}

=
λB

λB→AB − (λA + λB)

(
e−(λA+λB)t − e−(λB→AB)t

)
,

(6)

and a formula for the probability that the neoplasm will be in a state fixed for
both mutations follows from Equations (2), (5), and (6):

PAB(t) = Prob {X(t) = AB | X(0) is normal}
= 1− P0(t)− PA(t)− PB(t).

(7)

For two mutations, Equations (2), (5), (6), and (7) provide probabilities for all
possible genotypic states of the evolving neoplasm.
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If three or more mutations are considered, an equation for the probability
of having two mutations fixed cannot be obtained by subtracting the other
probabilities as in Equation (7). Alternatively, PAB(t) can be directly computed
with the formula

PAB(t) =

∫ t

0

(λA + λB)e
−(λA+λB)u

×
(

λA

λA + λB
PA→AB(t− u) +

λB

λA + λB
PB→AB(t− u)

)
du,

where

PA→AB(t) = Prob {X(t) = AB | X(0) = A} ,
PB→AB(t) = Prob {X(t) = AB | X(0) = B} ,

are probabilities that can be obtained by a similar argument as the one used
to obtain Equation (5). However, as we only require P0(t), PA(t), PB(t) and
PAB(t) for the likelihood (Section 2.4), it would be better to obtain a formula
where PAB(t) is in terms of PA(t) and PB(t). We will obtain such an equation
for the general case with M mutations.

2.3 Mutational fluxes for M mutations with epistasis

To solve the general case of M possible somatic mutations, we can model
the somatic genetic state of a neoplasm with respect to time t as a continuous-
time Markov chain X(t), t ≥ 0. We define the set of all possible states of the

system as the M -ary Cartesian product S = {0, 1}M . Any state in the system
is represented by a vector in S:

x = (x1, . . . , xM ),

where xi is 1 if the state has fixed the i-th mutation and 0 otherwise. Modeling
two mutations A and B, M = 2; the normal state would be represented by
(0, 0), the state with only mutation A fixed by (1, 0), the state with only B
fixed by (0, 1), and the state with both A and B fixed (AB) with (1, 1).

Under an SSWM regime, mutations occur and spread one at a time. Conse-
quently, the flux from x to y is 0 unless y has exactly one more mutation than
x, or y is x. The infinitesimal parameters λx→y that determine the flux from
state x to y are such that λx→y = 0 unless there is an i ∈ {1, . . . ,M} with
xi = 0, yi = 1 and xj = yj for all j ̸= i, or y = x. The y = x case is relevant
because—as is customary for continuous-time Markov chains—we define

λx→x = −
∑
y∈S
y ̸=x

λx→y. (8)

If x ̸= (1, . . . , 1), Equation (8) can be simplified to

λx→x = −
∑

1≤i≤M

ei·(x+ei)=1

λx→x+ei
,
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where ei represents the i-th vector of the standard basis of RM , that is, the
vector with zeros everywhere except for a 1 in its i-th entry. The state with all
mutations fixed x = (1, . . . , 1) is an absorbing state, therefore the infinitesimal
departure rate from the state is zero, i.e. λ(1,...,1)→(1,...,1) = 0.

Modeling M = 2 mutations, all infinitesimal parameters can be represented
by the continuous Markov matrix:

Q =


−λ(0,0)→(1,0) − λ(0,0)→(0,1) 0 0 0

λ(0,0)→(1,0) −λ(1,0)→(1,1) 0 0
λ(0,0)→(0,1) 0 −λ(0,1)→(1,1) 0

0 λ(1,0)→(1,1) λ(0,1)→(1,1) 0

 ,

with the ordered rows and columns representing the states (0, 0), (1, 0), (0, 1)
and (1, 1). Equivalently, this matrix can be written with the notation of Sec-
tion 2.2 as:

Q =


−λA − λB 0 0 0

λA −λA→AB 0 0
λB 0 −λB→AB 0
0 λA→AB λB→AB 0

 ,

with ordered rows and columns representing tissue in a normal state, a state
with only the first mutation A, a state with only the second mutation B, and a
state with both mutations AB.

Because X(t) is a continuous-time Markov chain, the probabilities that a
neoplasm starts in a state y at time u and is in a state x at time t + u are
independent of u, so we can denote them as:

Py→x(t) = Prob {X(t+ u) = x | X(u) = y} ,

for any t, u ≥ 0. Applying Kolmogorov’s backward equation [16] to the matrix
P (t) with entries pij = Pxi→xj

(t), for any ordering x1,x2, . . . ,x2M of all possible
states, we obtain the differential equation

P ′(t) = P (t)Q, (9)

where Q is the continuous Markov matrix for the same ordering of all possible
states. Thus we could find the solution for P (t) by computing the matrix
exponential for Q and applying the Fundamental Theorem for Linear Systems
[17, Section 1.4], then:

P (t) = eQtX(0).

If all eigenvalues of the matrix Q are real and distinct then the exponential
matrix can be found by finding its diagonalization [17, Section 1.2]. Performing
this operation and solving for the probabilities of being in the mutation states
associated with M = 2 (0, A, B, and AB) yields Equations (2), (5), (6), and (7).
However, a direct solution for the exponential matrix is exhaustive to compute
for large matrices [17, Section 1.8]. The size of the matrix Q grows exponentially
with M . Even for the case of M = 3 an 8 × 8 matrix is required, and each
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entry of eQ is prohibitively complicated. To develop an alternate approach
toward quantification of the probabilities of state for M mutations, a main
property of our estimation problem may be capitalized upon: it can be assumed
that all individuals start at the normal state, that is, without relevant somatic
mutations. Therefore, only one column in the matrix P is of interest, the one
that includes the entries P0→x. To simplify notation, we will write

Px(t) = P0→x(t),

for any t ≥ 0. The relevant column in Equation (9) reduces to

P ′
x(t) =

∑
y∈S

Py(t)λy→x, (10)

where the specific ordering of state transitions is no longer important as it was
in Equation (9). By the properties of the continuous-time Markov chain, we
know the initial condition for this differential equation:

Px(0) =

{
1 if x = 0,

0 if x ̸= 0.
(11)

For the case of x = 0 = (0, . . . , 0), that is, the normal tissue state, Equa-
tion (10) becomes

P ′
0(t) = λ0→0P0(t).

Solving this differential equation with the initial condition specified by Equa-
tion (11), we have

P0(t) = eλ0→0t = e−(
∑

j λ0→ej )t, (12)

where the sum goes for all j = 1, . . . ,M .
For the case that x ̸= 0, using Equation (10) and the definition of the

infinitesimal parameters,

P ′
x(t) = λx→xPx(t) +

∑
1≤i≤M

ei·x=1

λx−ei→xPx−ei(t). (13)

Solving Equation (13) with the integral factor e−(λx→x)t and the initial condition
in Equation (11) provides a recursive formula

Px(t) =
∑

1≤i≤M

ei·x=1

λx−ei→x

∫ t

0

eλx→x(t−u)Px−ei
(u) du. (14)

This formula enables computation of Px(t) for all states x by starting with the
normal state using Equation (12), then proceeding to compute all states with
one mutation (where Equation (14) depends on P0(t)), then all states with two
mutations (where Equation (14) depends on Px(t) for states x with only one
mutation), and so on.
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A straightforward validation case of the Equation (14) comes from its appli-
cation when x already features exactly one mutation. Applied to that case,

Pei
(t) =

λ0→ei

λ0→0 − λei→ei

(
eλ0→0t − eλei→ei

t
)

=
λ0→ei∑

j ̸=i λei→ei+ej
−
∑

j λ0→ej

(
e−(

∑
j λ0→ej )t − e−(

∑
j ̸=i λei→ei+ej )t

)
,

which agrees with Equation (5) for the case of M = 2.

2.4 Likelihood of observed frequencies of tumors

To quantify the flux associated with one mutation with no epistasis (Sec-
tion 2.1), if we have a sample of N tumors within which n tumors exhibited the
variant site, we can assume that the samples are taken at a similar time T from
an initial state without the mutation assessed. The likelihood is binomial:

L (n tumors with mutations | λ) ∝
(
1− e−λT

)n (
e−λT

)N−n
,

and can be maximized to obtain an estimate of λ.
With two mutations and accounting for epistatic effects (Section 2.2), the

genotypes of N tumors can be subdivided into n0, nA, nB , and nAB , represent-
ing those tumors without any mutations, with only A, with only B, and with
both A and B. To estimate all the fluxes, we set the time again at t = T and
the likelihood is multinomial:

L (n0, nA, nB , nAB | λA, λB , λB→AB , λA→AB) ∝
∏

x∈{0,A,B,AB}

(Px(T ))
nx .

The maximization of this likelihood will provide estimators of the fluxes.
For the general case with an arbitrary number of mutations (Section 2.3), a

sample of N tumors that have been sequenced can be divided according to the
somatic genotype in S attributed to each tumor. Let nx be the total number
of samples that have the somatic genotype x for each x ∈ S. We assume that
the samples are taken at a similar time T (of potentially arbitrary unit) from
an initial state without any of the M mutations assessed (i.e. the “normal”
state 0). Consequently, the probability Px(T ) reflects the fraction of the cases
observed with the somatic genotype x. The likelihood L is then multinomial:

L
(
{nx}x∈S

∣∣{λx→y}x,y∈S

)
∝

∏
x∈S

(Px(T ))
nx , (15)

where
∑

x∈S nx = N , and Px(T ) is dependent on the fluxes λx→y according to
Equations (12) and (14).

3 Methods

We obtained single-nucleotide variants (SNV) from 585 cases of lung ade-
nocarcinoma from The Cancer Genome Atlas, and classified them into genes
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following human genome coordinates from the Ensembl Project [18]. All muta-
tions were used to determine the baseline mutation rate. However, synonymous
mutations were removed for the purpose of tallying prevalence of selected muta-
tions because they are typically not selected. To estimate epistatic effects among
four genes using the quadruplewise case M = 4, we restricted our analysis to
the four genes most commonly fixed for mutations among the 585 samples.

We set T = 1 in Equation (15) to evaluate the likelihood, equating one
unit to the average duration between the clonal origin of the tumor and tumor
sampling; all rates and fluxes derived with T = 1 are thus in units of 1 over this
unit. To compute the integral on the right-hand side of the recursive formula
in Equation (14), we used a trapezoidal rule with a resolution of 1,000 points
between 0 and T . We tested higher resolutions, and our results were unchanged.

We estimated the fluxes λx→y by maximizing the likelihood in Equation (15).
We computed asymptotic confidence intervals for each of the flux estimates by
computing the log-likelihood ratio and using Wilk’s theorem [19]. To validate
model fit, we compared for each state x the probability Px(1) evaluated with
the flux estimates Equation (14) to the observed fraction of the samples in each
category. The values were equal for each somatic genotype.

To factor each flux into a mutation rate and a scaled selection coefficient, we
assumed that the mutation rate per gene did not change with the acquisition
of the somatic mutations of interest. We used cancereffectsizeR to obtain gene-
specific mutation rates [6].

4 Results

The genes that were most frequently mutated were tumor protein p53 (TP53,
n = 278), low-density lipoprotein receptor-related protein 1B (LRP1B, n =
183), Kirsten rat sarcoma (KRAS, n = 150) and the tumor suppressor ser-
ine/threonine kinase 11 (STK11, n = 82). The numbers of patients with each
somatic genotype informed the likelihood of our model, which provided esti-
mates and confidence intervals for the flux and scaled selection coefficient of
each mutation in the context of each somatic genotype for these four genes
(Table 1).

Fixed-value estimates for the mutation rates for each gene over oncogenesis
led to a gene-specific linear relationship between the flux and the scaled selection
coefficient (Figure 1). A consequence of the multiplicative relationship between
mutation rate and scaled selection coefficient is that mutation rate determined
the slope of response of flux to scaled selection coefficient. Consequently, under-
lying mutation rate had a substantial effect on flux and prevalence of somatic
genotypes, especially in the context of less-strongly selected mutations such as
those in LRP1B. Mutations to KRAS were the least frequent of any gene (Ta-
ble 1), and exhibited the lowest slope of flux in response to scaled selection
coefficient.

Despite the lower slope of response to scaled selection coefficient evident
for somatic mutations of TP53 and KRAS, the scaled selection coefficients for

9

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477132doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.20.477132


Table 1: Fluxes, mutation rates, and scaled selection coefficients for a four-gene model
of lung adenocarcinoma oncogenesis.

Genotype Mutation Flux (CI)a Mutation rate SSCb (CI)a

normal TP53 0.84 (0.73, 0.95) 1.98×10−6 422 (368, 482)
normal KRAS 0.31 (0.25, 0.38) 1.18×10−6 267 (216, 325)
normal STK11 0.08 (0.05, 0.11) 2.09×10−6 37 ( 24, 54)
normal LRP1B 0.19 (0.13, 0.26) 9.86×10−6 19 ( 14, 26)
TP53 KRAS 0.29 (0.19, 0.41) 1.18×10−6 243 (160, 351)
TP53 STK11 0.13 (0.07, 0.23) 2.09×10−6 64 ( 33, 108)
TP53 LRP1B 0.84 (0.64, 1.07) 9.86×10−6 85 ( 65, 109)
KRAS TP53 0 (0, 0.3) 1.98×10−6 0 ( 0, 150)
KRAS STK11 0.82 (0.54, 1.19) 2.09×10−6 392 (261, 569)
KRAS LRP1B 0.56 (0.34, 0.86) 9.86×10−6 56 ( 35, 87)
STK11 TP53 0 (0, 0.6) 1.98×10−6 0 ( 0, 305)
STK11 KRAS 0 (0, 0.69) 1.18×10−6 0 ( 0, 585)
STK11 LRP1B 0.41 (0.14, 0.91) 9.86×10−6 42 ( 15, 93)
LRP1B TP53 1.02 (0.51, 1.68) 1.98×10−6 516 (258, 849)
LRP1B KRAS 0 (0, 0.38) 1.18×10−6 0 ( 0, 319)
LRP1B STK11 0 (0, 0.23) 2.09×10−6 0 ( 0, 109)
TP53+KRAS STK11 0.52 (0.16, 1.21) 2.09×10−6 249 ( 79, 581)
TP53+KRAS LRP1B 0.21 (0, 1.17) 9.86×10−6 21 ( 0, 119)
TP53+STK11 KRAS 0 (0, 1.21) 1.18×10−6 0 ( 0, 1022)
TP53+STK11 LRP1B 0.52 (0, 2.01) 9.86×10−6 53 ( 0, 204)
KRAS+STK11 TP53 0 (0, 0.59) 1.98×10−6 0 ( 0, 298)
KRAS+STK11 LRP1B 0.82 (0.35, 1.63) 9.86×10−6 84 ( 36, 166)
TP53+LRP1B KRAS 0.72 (0.45, 1.08) 1.18×10−6 608 (384, 911)
TP53+LRP1B STK11 0.21 (0.07, 0.42) 2.09×10−6 100 ( 34, 203)
KRAS+LRP1B TP53 0 (0, 1.0) 1.98×10−6 0 ( 0, 504)
KRAS+LRP1B STK11 0.08 (0, 0.85) 2.09×10−6 36 ( 0, 408)
STK11+LRP1B TP53 0 (0, 2.99) 1.98×10−6 0 ( 0, 1513)
STK11+LRP1B KRAS 0 (0, 2.95) 1.18×10−6 0 ( 0, 2500)
TP53+KRAS+STK11 LRP1B 0.92 (0, 5.92) 9.86×10−6 93 ( 0, 601)
TP53+KRAS+LRP1B STK11 0.23 (0, 0.86) 2.09×10−6 110 ( 0, 415)
TP53+STK11+LRP1B KRAS 0 (0, 1.59) 1.18×10−6 0 ( 0, 1352)
KRAS+STK11+LRP1B TP53 0 (0, 1.77) 1.98×10−6 0 ( 0, 892)

a 95% confidence interval.
b Scaled selection coefficient (in thousands).
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Figure 1: Estimates of positive scaled selection coefficients and positive genotypic
fluxes for a four-gene model of lung adenocarcinoma oncogenesis. Each genotype
(indicated by the directions of ticks superimposed on each point) has distinct effects
on the flux that are mediated by epistasis affecting the scaled selection coefficients of
new mutations (TP53, blue; KRAS, red; STK11, green; LRP1B, purple). No points
are shown from one genotype to another where the estimated selection coefficient—
and consequently the flux—was zero.
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the positively selected mutations to these two genes were typically high in lung
adenocarcinoma (Figure 1). Especially notably, scaled selection coefficients for
TP53 and KRAS mutations were higher than for mutations in other genes at
the initiation of oncogenesis. Consequently, from a normal somatic genotype
the flux to TP53 was vastly higher than for any other mutation, with KRAS
a distant second, and LRP1B and STK11 following. Even in later stages of
oncogenesis when the flux to LRP1B was quite large, the magnitude of that
larger flux could be attributed to the high mutation rate of LRP1B (Table 1,
Figure 2), rather than to its relatively small scaled selection coefficient.

Comparison of the scaled selection coefficient for fixation of the first muta-
tions to the scaled selection coefficient for that mutation in non-normal geno-
types frequently quantified an antagonistic epistatic effect of somatic mutations
to oncogenic drivers (Table 1, Figure 2C). Antagonistic epistatic effects, in turn,
likely explain the low number of patients that had mutations in three or more
of the four studied genes (Figure 2A). Antagonistic epistatic effects also parti-
tioned the order of mutation fixation into three classes of routes: (i) STK11 then
LRP1B; (ii) KRAS, then STK11 or LRP1B, and then the remainder of LRP1B
or (less often) of STK11; and (iii) more complex routes with a first fixation of
either LRP1B or TP53 (Figure 2A).

Some synergistic epistatic effects were also evident. For example, any geno-
type with a KRAS or TP53 mutation substantially increased the scaled selec-
tion coefficient on LRP1B mutation compared to when neither gene was mutated
(Table 1, Figure 2C). The largest significant synergistic epistatic effects were the
presence of TP53 and LRP1B when acquiring the KRAS mutation, the presence
of KRAS when acquiring STK11, and the presence of TP53 and KRAS when
acquiring the STK11 mutation (Table 1, Figure 2C).

When considering each one of the 24 possible paths of mutation acquisition
we observed that fitness increases after an initial TP53 mutation and decreases
afterwards (Figure 3). A similar situation occurs with an initial KRAS muta-
tion, except when STK11 mutates afterwards (Figure 3). Initial acquisition of
STK11 or LRP1B mutations left relatively low selection coefficients for addi-
tional mutations of these genes, with one notable exception: when LRP1B was
followed by TP53 (Figure 3).

5 Discussion

Here we have shown how to estimate high-order epistatic effects on the so-
matic selection of cancer mutations. Our model enables computation of the
flux in somatic genetic state of tissue from one genotype to another by single
mutations. Application of our model to 585 lung adenocarcinoma samples pro-
vided estimates of 32 fluxes to the 4 most commonly mutated genes (TP53,
LRP1B, KRAS and STK11), and showed that the flux to each of those four
genes depended on the current somatic genotype. Many genotypes exhibited an
antagonistic epistatic effect that resulted in zero or near-zero fluxes out of that
genotype. Antagonistic epistatic effects likely partly explain the relatively low
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Figure 2: Trajectories of the somatic evolution by mutation of TP53, KRAS, LRP1B,
and STK11, inferred from a total of 585 whole-exome sequenced lung adenocar-
cionma tumors. Genotypes (grey circles; areas are proportional to observed n for
the genotype) evolve at (A) fluxes, (B) mutation rates, and (C) scaled selection
coefficients that are proportional to the width of arrows pointing from one genotype
to another, colored by the gene in which the mutation occurs (TP53, blue; KRAS,
orange; STK11, green; LRP1B: purple).
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Figure 3: Mutation landscape depicting all paths of mutation acquisition in a four-
gene model for lung adenocarcinoma. The four mutations incorporated are TP53
(blue, initial mutation in column one), KRAS (orange, initial mutation in column
2), STK11 (green, initial mutation in column three), and LRP1B (purple, initial
mutation in column four). The mean time to acquire a mutation in a cancer-
competent cell lineage (x-axis) quantifies how quickly each mutation will occur
on a cellular level in the landscape of mutations (shorter is quicker), whereas the
scaled selection coefficient (y-axis) is a measure of the benefit of the mutation
to lineage proliferation and survival (the higher the selection coefficient, the more
likely a mutation, once it occurs, will spread to high frequency in tumor tissue).
In every subplot, one path is highlighted (colored curve, which corresponds to the
order indicated by the gene names above the curve) and contrasted with all other
possible paths (gray curves).
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number of tumor samples that contain mutations in more than three of these
commonly-mutated genes.

By estimating the neutral mutation rates of each gene, we also computed the
corresponding scaled selection coefficients quantifying the degree to which the
mutations increased survival and proliferation. We found that KRAS mutations
exhibited scaled selection coefficients that were especially large and were a major
reason for their high fluxes, especially from the TP53+LRP1B genotype. In
contrast, most of the flux to LRP1B mutations—and thus the large number of
samples with LRP1B mutations— can be explained by LRP1B’s large mutation
rate, not so much by a large cancer effect. Despite their lower overall effect size,
LRP1B mutations in lung adenocarcinoma have been associated with chronic
obstruction pulmonary disease [20], and suggested as predictors of response to
immune checkpoint inhibitors [21]. Additionally, LRP1B appears to cooperate
with TP53 to induce a large selection for mutant KRAS as a driver of lung
adenocarcinoma [3].

KRAS and TP53 have been suggested to play a role in lung adenocarcinoma
initiation [22]. KRAS mutations are consistently revealed by sequencing of all
tumor grades [23], and because of identification of copy number gains that en-
able estimation of the relative timing of somatic alterations [24]. Our analysis
provided a result consistent with these findings: our results show that KRAS
is subject to a positive, synergistic epistatic effect on its selection in the con-
text of LRP1B and STK11 mutations. Interestingly, our quantification of these
epistatic effects argues that the order in which KRAS and TP53/STK11 mu-
tations are acquired is relevant to their selective effect. Acquisition of a TP53
mutation before a KRAS mutation does little to change selection on a new KRAS
mutation. However, if a KRAS mutation is acquired first, selection on TP53
mutation almost disappears. Conversely, acquisition of a STK11 mutation from
a normal state prevents the selection of KRAS—but if KRAS is acquired first,
there is strong selection for STK11. TP53 and STK11 have been identified as
determinants of distinct subsets of lung adenocarcinomas dominated by KRAS
mutants [25]. Importantly, patients whose tumors have KRAS mutations but
no TP53 have better overall survival than those with both mutations, especially
in the absence of STK11 mutations [26, 27], a situation that arises more often
when a LRP1B mutation occurs immediately after KRAS is mutated.

STK11 has previously been identified as a mutation that occurs relatively
early in the oncogenesis of lung adenocarcinoma [24]. An early, relatively simple
route of mutations starts with a STK11 mutation and continues with an LRP1B
mutation, without further mutation of KRAS or TP53 prior to tumor resection.
Additionally, we have estimated strong selection for STK11 mutations after
KRAS mutation, indicating that if KRAS mutations occur early, then STK11
mutations would be strongly selected and once mutated would fix not long after.
However, we have also found a relatively constant selection for STK11 from other
genotypes, that—despite being lower than when KRAS mutates first—suggests
that STK11 does not occur exclusively early during tumor initiation.

We focused here on single-nucleotide variants that affect the genes studied.
However, there are other somatic factors that could have epistatic effects, such

15

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477132doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.20.477132


as copy number alterations and structural variants. Our model can easily in-
corporate those factors and compute the fluxes associated with their fixation.
However, the estimation of the underlying mutation rate for copy number alter-
ations and structural variants remains a challenge. Consequently, quantifying
the strength of selection operating on them is not feasible. Thus far, research
has indicated that copy-number changes and structural variants do not sub-
stantially influence selection on simple nucleotide variations, and have instead
orthogonal effects in cancers [28].

Confidence intervals for our estimates became wider as the genotypes in-
cluded mutations in more genes, because the number of tumors with mutations
in three or four of these commonly-mutated genes tended to be very low. To re-
duce the parameter uncertainty, future research should explore larger data sets
by aggregating whole-exome sequences and panel data from multiple sources.
Alternatively, data that includes tumor samples at multiple time points could
better inform the order at which mutations occur, reducing uncertainty. The
equations we have derived enable estimation of the time-dependent probability
of each somatic genotype given the flux values. Thus, our theory can be extended
to applications quantifying cancer effects on tumor samples at metachronous
time points.

Using an established approach [6], we were able to estimate the mutation
rate in each gene. However, this approach does not evaluate whether somatic
genotypes vary in gene mutation rate. Mutation rates that depend on somatic
genotype could affect the co-occurence or mutual exclusivity of future muta-
tions [29–32]. For example, it has long been suggested that mutations in TP53
cause impairment in the response to DNA damage, which might lead to higher
mutation rates in other genes [32, 33], and even increases in specific genomic
hotspots. Smoking is another major factor that increases the mutation rate of
certain oncogenic sites in lung cancer, including KRAS [34]. Incorporation of
differences in mutation rates depending on endogenous and exogenous muta-
tional processes associated with somatic genotype and environmental exposures
such as smoking, could enable increasingly precise estimation of selection coef-
ficients attributable to each mutation [32].

In summary, we have developed a new approach to estimate fluxes and selec-
tion coefficients dependent on genotypes among somatic cancer mutations, and
have employed this new approach to obtain epistatic effects among the four most
commonly mutated genes in lung adenocarcinoma. We found several antago-
nistic and synergistic epistatic effects that reduced the space of possible routes
of mutation acquisitions substantially and quantified how likely each path is.
Determining the most likely trajectories of mutation across the time course of
oncogenesis can help to determine optimal personalized therapies that account
for the current somatic genotype of tumor tissue from a patient and that are
designed to forestall the somatic genotypic trajectories that are most likely to
be forthcoming.
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