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Abstract  33 

Predicting range expansion dynamics is a challenge for both fundamental and applied research in 34 

conservation and global change biology. However, if ecological and evolutionary processes occur on 35 

the same time scale, predictions are challenging to make. Combining experimental evolution and 36 

mathematical modelling, we assessed the predictability of independent realisations of range 37 

expansions in a laboratory model system, the freshwater protozoan Paramecium caudatum. We 38 

followed ecological dynamics and evolutionary change in range core and front populations in the 39 

experiment. These settings were recreated in a predictive mathematical model, parametrized with 40 

dispersal and growth data of the of the 20 founder strains in the experiment. We find that short-41 

term evolution was driven by selection for increased dispersal at the front and general selection for 42 

higher growth rates in all treatments. There was a good quantitative match of predicted and 43 

observed trait changes. Phenotypic divergence was mirrored by a complete genotypic divergence, 44 

indicating the highly repeatable fixation of strains that also were the most likely winners in our 45 

model. Long-term evolution in the experimental range front lines resulted in the emergence of a 46 

dispersal syndrome, namely a competition - colonisation trade-off. Altogether, both model and 47 

experiment highlight the importance of dispersal evolution as a driver of range expansions. Our 48 

study suggests that evolution at range fronts may follow predictable trajectories, at least for simple 49 

scenarios, and that predicting these dynamics may be possible from knowledge of few key 50 

parameters. 51 
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Introduction 62 

Predicting ecological dynamics and species’ range shifts has become a major challenge for 63 

conservation and management strategies in times of global climate and environmental change 64 

(Petchey et al., 2015). Indeed, whether the outcomes of range expansions or biological invasions 65 

can be predicted at all remains highly debated in ecology even in simple settings, due to the intrinsic 66 

stochasticity of these phenomena (Melbourne & Hastings, 2009; Giometto et al., 2014). Moreover, 67 

evolutionary processes occur at the same time scale as ecological dynamics during range expansions 68 

(Perkins et al., 2013; Williams et al., 2016), potentially exacerbating the uncertainty of outcomes 69 

(Williams et al., 2019).  70 

 71 

Theory shows that range expansions can involve the concurrent evolution of dispersal and other 72 

traits (Perkins et al., 2013; Kubisch et al., 2014) and lead to the emergence of dispersal syndromes 73 

(Clobert et al., 2012; Cote et al., 2017). Individuals with greater dispersal propensity are the first to 74 

reach the range front, and they will reproduce with conspecifics that have the same fast spreader 75 

characteristics (Thomas et al., 2001; Hughes et al., 2007). Consequently, high dispersal ability and 76 

correlated life-history traits evolve in the range front populations due to spatial selection and 77 

spatially assortative mating (Phillips et al., 2008; Shine et al., 2011). Since expansion speeds are 78 

mainly influenced by dispersal and reproduction (Fisher, 1937; Kolgomorov et al. 1937), the two 79 

traits can be rapidly selected and evolve simultaneously. However, if dispersal is costly (Bonte et al., 80 

2012) there may be trade-offs with other traits. Higher reproduction at the range front may come 81 

at the expense of lower competitive ability (Burton et al., 2010), recalling the competition-82 

colonisation trade-off in classic species coexistence models (Calcagno et al., 2006). 83 

 84 

Fast evolution in range front populations can produce eco-evolutionary feedbacks and thereby 85 

speed up the expansion process (Shine et al., 2011; Chuang & Peterson, 2016; Ochocki et al., 2019; 86 

Williams et al., 2019; Miller et al., 2020). In the emblematic example of the cane toad (Rhinella 87 

marina) expansion in Australia, increased dispersal at the range front coincided with evolutionary 88 

change in behavioural, morphological and demographic traits, promoting the speed of the toad 89 

expansion (Phillips et al., 2006; Perkins et al., 2013; Brown et al., 2014). Growing empirical evidence 90 

from other natural populations and biological systems (Simmons & Thomas, 2004; Alford et al., 91 

2009; Leotard et al., 2009; Lombaert et al., 2014) suggest that dispersal evolution at range fronts is 92 

a common phenomenon. Recently, experimental evolution and microcosm landscapes have been 93 
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used to test fundamental predictions (Friedenberg, 2003) and mimic range expansions in the 94 

laboratory. Experiments with ciliates (Fronhofer and Altermatt, 2015), arthropods (Ochocki & Miller, 95 

2017; Szűcs et al., 2017; Weiss-Lehman et al., 2017; Petegem et al., 2018) or plants (Williams et al., 96 

2016) all showed the rapid evolution of dispersal and other dispersal-related traits during the 97 

experimental range expansions. However, whether we can accurately predict these eco-98 

evolutionary dynamics from prior information on the genetic or phenotypic characteristics of the 99 

expanding populations remains an open question. 100 

 101 

Coupling microcosm experiments with mathematical modelling and genetic analyses provides a 102 

possible way forward to assess the predictability of range expansions (Nosil et al., 2020). In 103 

micro/mesocosm landscapes, we can study the repeatability of range expansions through 104 

independent replicates under controlled conditions. Using specifically tailored and parametrised 105 

mathematical models, we can then formalise putative processes of range expansion dynamics and 106 

confront predicted with observed outcomes. Genetic analysis can further characterise the degree 107 

of similarity among experimental replicates and link phenotypic trait change to genetic change. 108 

 109 

Here, moving a step forward from previous ecological models (Melbourne & Hastings, 2009; 110 

Giometto et al., 2014), we employed such a combined approach to assess the predictability of 111 

evolutionary outcomes of range expansions in an aquatic model organism, the freshwater 112 

protozoan Paramecium caudatum. Following previous studies (Fronhofer & Altermatt (2015) 113 

Nørgaard et al. (2021), we used interconnected 2-patch systems to establish a range front 114 

treatment, where recurrent episodes of dispersal alternated with intermittent periods of population 115 

growth. In the contrasting range core treatment, only the non-dispersing individuals were 116 

maintained. We recreated these experimental treatments in a predictive mathematical model, 117 

parameterised for dispersal and growth characteristics of the 20 Paramecium strains that were used 118 

to assemble the founder population in the selection experiment. Based on selection from standing 119 

genetic variation in an asexual population, the model predicted the rapid divergence between range 120 

core and front populations, mainly driven by positive selection on dispersal at the front. There was 121 

a good quantitative match between model predictions and experimental results, and the most likely 122 

winner strains identified by the model corresponded to particular genotypes, found to be repeatably 123 

fixed in the experimental core and front populations. In the long run (160 dispersal/growth 124 

episodes), range core and front populations continued to diverge, resulting in the emergence of a 125 
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dispersal syndrome with a competition – colonisation trade-off, hypothesised in many ecological 126 

models (Livingston et al., 2012). Our results suggest that, even with evolution occurring over short 127 

ecological time scales, range expansions may follow predictable trajectories and predicting these 128 

dynamics may be possible from knowledge of a few key parameters. 129 

 130 

Material and Methods 131 

Study organism and strains  132 

Paramecium caudatum is a freshwater ciliate with a world-wide distribution, feeding on bacteria 133 

and detritus. Asexual reproduction occurs by mitotic division and represents the main mode of 134 

population growth. Swimming is accomplished through the coordinated movement of ciliary bands 135 

on the cell surface (Wichterman, 1986). Previous work on P. caudatum indicated a genetic basis of 136 

dispersal propensity, and plastic responses are induced by biotic factors, such as parasitism, 137 

chemical predator signals, or population density (Fellous et al., 2012; Fronhofer et al., 2018; Zilio et 138 

al., 2021). Here, we used 20 Paramecium strains (i.e., clonal mass cultures derived from a single 139 

individual) from various geographic origins (Weiler et al., 2020; Zilio et al., 2021) and representing 140 

different groups of mitochondrial haplotypes (“COI genotypes” or “genotypes”, hereafter; Table S1). 141 

All cultures were reared under standard laboratory conditions in lettuce medium with the food 142 

bacterium Serratia marcescens at 23 °C, allowing up to 3 asexual doublings per day (Nidelet & Kaltz, 143 

2007). 144 

 145 

Founder strains measurements  146 

Prior to the start of the long-term experiment, we assayed the 20 founder strains for dispersal and 147 

population growth characteristics (Table S1). For the dispersal assay, we placed aliquots of 8 mL of 148 

culture (at equilibrium density) in a 2-patch system (see below for additional details) and let the 149 

Paramecium disperse for 3h. Once connections were blocked, we estimated the number of 150 

residents and dispersers by taking 150-600 µL samples from the two tubes and counting the number 151 

of individuals under a dissecting microscope. Dispersal was taken as the proportion of dispersers of 152 

the total number of individuals in the system. Dispersal rates (Gaussian posteriors) were then 153 

estimated using a generalized linear mixed model (binomial error distribution; bobyqa optimizer in 154 

function glmer of R package “lme4”; Bates et al., 2015) for each strain with time and observation 155 

(to account for overdispersion) as random effects. We tested 4 replicates per strain. For the growth 156 

assay, we placed ca. 200 individuals (from cultures at equilibrium density) in 20 mL of fresh medium. 157 
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Over the course of 6 days, we tracked population density by counting the number of individuals in 158 

daily samples of 100-200 µL. We tested 3 replicates per strain. Using a Bayesian approach 159 

(Rosenbaum et al., 2019), we estimated the intrinsic population growth rate (r0) and equilibrium 160 

density (!) for each replicate by fitting a Beverton-Holt population growth model to the time series 161 

data. Details of the Bayesian fitting are given in Supplementary Information (Section S1). 162 

 163 

Selection experiment  164 

The selection experiment comprised a sequence of cycles, where dispersal events alternated with 165 

periods of population growth. The founder population was created by mixing the 20 strains at equal 166 

proportions in a single mass culture, which was then divided up into 15 replicate selection lines, 167 

assigned to the following three treatments. First, in the range front treatment (6 selection lines), we 168 

placed the Paramecium in one of the two tubes in 2-patch dispersal systems (interconnected 15-mL 169 

tubes, Fig. 1A). Connections were opened for 3 h, during which time individuals were allowed to 170 

swim to the other tube. We then collected the dispersers and cultured them for 1 week under 171 

permissive conditions in 20 mL of fresh medium (in 50-mL plastic tubes), until we initiated a new 172 

round of dispersal, again only retaining the dispersers and culturing them for 1 week, and so on. 173 

Second, the range core treatment (6 selection lines) followed the same cycles of dispersal and 174 

growth, but only the non-dispersing residents were retained after each dispersal episode. Third, in 175 

the control treatment (3 selection lines), residents and dispersers were mixed after each dispersal 176 

event and then cultured for 1 week, as in the other treatments. In corollary, the range front 177 

treatment mimics the advancing cohort of a spatially expanding population, whereas populations 178 

from the core treatment remain in place and constantly lose emigrants. The control treatment is 179 

similar to the core treatment, except for the loss of emigrants. A total of 161 cycles were 180 

accomplished. Prior to each dispersal event, ca. 1800 individuals (median; 25% / 75% quantile range: 181 

1400 / 2700) were placed in the dispersal systems. After dispersal, the number of individuals starting 182 

the 1-week growth period were matched between treatments. Because dispersal rates were low at 183 

the beginning, these starting numbers were initially set to 200 individuals (placed in a total volume 184 

of 20 mL of fresh medium). During the following 1-week growth period, stable population sizes were 185 

typically reached within 3-4 days, with densities of ca. 240 individuals per ml (median; 25% / 75% 186 

quantiles: 180 / 360). After cycle 32, when dispersal had already reached higher levels (see Results), 187 

we adjusted the starting numbers to ca. 1500 (median; 25% / 75% quantiles: 1100 / 2000).  188 

 189 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477128doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.20.477128
http://creativecommons.org/licenses/by-nc/4.0/


7 
 
 
 

 190 
Figure 1 Design of range expansion selection experiment and long-term time series of dispersal in the experimental 191 
treatments. (A) Starting from a mix of 20 Paramecium caudatum founder strains, experimental population were allowed 192 
to disperse in 2-patch dispersal systems. For the range front treatment (red), only the dispersers were maintained and 193 
propagated for 1 week, until the next dispersal episode. In the core treatment (blue), only the non-dispersing residents 194 
were maintained at each cycle. In the control treatment, both residents and dispersers were maintained. (B) Observed 195 
levels of dispersal over the whole duration of the experiment (161 cycles, ca. 3 years). Lines show the trajectories for 196 
the individual selection lines (n = 15), the circles indicate the mean dispersal per treatment and cycle. 197 

 198 

Data collection  199 

For each selection line, dispersal was measured at each dispersal event and equilibrium densities 200 

(!) taken at the end of the 1-week growth period at each cycle, as described above. Furthermore, 201 

growth rate (r0) was determined in assays conducted at cycle 21 (year 1), 78 (year 2) and 160 (year 202 

3), as described above, with 2-3 replicates per selection line and year. Bayesian model fitting was 203 

used to estimate r0 (Section S1). Measurement of swimming behaviour were also taken in the first 204 

two years of the experiment (Section S2). 205 

 206 

Genotyping 207 

All founder strains were genotyped for the mitochondrial cytochrome c oxidase I (COI) gene, by 208 

extracting DNA from 10 cells per strain and applying a PCR amplification protocol and sequence 209 

analysis described in Killeen et al. (2017). At cycle 30 in the selection experiment, mixes of 50 cells 210 

from each selection line were processed in the same way and analysed for (multiple) COI marker 211 

(A)

Front

Core

Control

20 founder 
strains

20 founder 
strains

20 founder 
strains

(B)
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signals. This method characterises the line for the most frequent COI genotype, and it has a 212 

resolution threshold of c. 5%, i.e., it can detect 2-3 cells of a minority genotype in the sample (Killeen 213 

et al., 2017). The sequences used are deposited in GenBank under the accession numbers listed in 214 

Barth et al. (2006) and Weiler et al. (2020). 215 

 216 

Range expansion model  217 

Our model is designed to capture the specificities of the selection experiment and the characteristics 218 

of the strains in the founder population. Thus, we model the population dynamics of Paramecium 219 

strains, assuming logistic growth following the Verhulst equation expanded to include both intra- 220 

and inter-strain competition: 221 

 222 

"!!	
"# = (&#,! −( ()!%!%

%
))	!!  223 

 224 

where !!  is the population size of strain i, &#,!  is its intrinsic rate of increase and )!%  as the 225 

competition coefficients. The model is parametrized with the posteriors extracted from growth 226 

curve fitting (r0, !), as described above. We make the simplifying assumption that intra- and 227 

interspecific competition is of equal strength. We further assume a quasi-extinction threshold of 0.7 228 

(the bottleneck occurring during dispersal, we have tested the effect of different quasi-extinction 229 

thresholds ranging from 0.0001 to 0.9), which implies that strains experience an extinction if they 230 

exhibit densities below this value. 231 

 232 

We model the community dynamics of the strains for 7 days, followed by a 3h dispersal phase in a 233 

2-patch metapopulation. During this 3h dispersal phase all strains can disperse from their patch of 234 

origin to their destination patch according to the dispersal rates estimated from dispersal assay; the 235 

model is parametrized with posteriors extracted from the statistical analysis described above. After 236 

the dispersal phase we follow the patch of origin (residents in the range core treatment), the 237 

destination patch (dispersers in the front treatment) or the combined patches (dispersers and 238 

residents mixed in the control treatment). We repeat this procedure for a total of 10 iterations. As 239 

in the experiment, we control for densities between rounds of iteration by selecting the equivalent 240 

of 10 mL samples. 241 
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This approach allows us to predict, based only on measurements of growth parameters and 242 

dispersal rates of the founder strains, which strains should predominate in each of the three 243 

treatments at the end of the experiment. It is important to keep in mind that the underlying model 244 

is deterministic. However, since we parametrize the model with draws from posteriors, our 245 

approach takes into account the uncertainty associated with the data and yields a distribution of 246 

likely outcomes, given these uncertainties. Note that our model depicts a scenario of selection from 247 

standing genetic variation; it does not include mutational change. 248 

Statistical analysis  249 

Statistical analyses were performed in R (ver. 4.1.2; R CoreTeam 2021 and JMP 14 (SAS Institute Inc. 250 

2018). We analysed dispersal (proportion of dispersers), using generalised linear models (GLM) with 251 

binomial error distribution. We considered selection treatment (core, front, control), experimental 252 

cycle and selection line (nested within treatment) as explanatory variables. We analysed variation 253 

in intrinsic population growth rate (r0) and equilibrium density (!; averages per selection line and 254 

year) using GLMs, with selection treatment, year and selection line as explanatory variables. To 255 

illustrate how selection acts on standing genetic variation in our model, we associated the winning 256 

probability of each of the 20 founder strains with their respective median values of dispersal, r0, and 257 

! from the distributions used by the model. For each treatment, we then performed multiple 258 

regressions, with winning probability as response variable and the three traits as explanatory 259 

variables. To investigate associations between dispersal, r0 and !, we constructed a data matrix 260 

based on trait means per year and selection line (3 years x 15 selection lines, n = 45), after centering 261 

and scaling trait distributions. One range-front line was lost in year 3, leading to n = 44. We used a 262 

Bayesian approach with the “rstan” package version 2.21.2 (Carpenter et al., 2017) to estimate 263 

pairwise trait correlations (see section S3). We also performed a principal component analysis (PCA), 264 

considering the joint variation in all three traits. 265 

 266 

Results 267 

Predicted and observed short-term trait evolution  268 

Over the first 25 cycles of the selection experiment, we observed a strong increase in dispersal in 269 

the range front treatment. Dispersal reached 22.3% (± 0.012 SE, averaged over cycles 15-25) at the 270 

front, compared to only 4.4% (± 0.004 SE) in the core treatment and 6 % (± 0.012 SE) in the control 271 

treatment (effect of selection treatment: χ22 = 119.7; p < 0.001). Increased dispersal at the front 272 
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established within only a few cycles, and was formally significant for the first time at cycle 8 (cycle-273 

by-cycle analysis: p < 0.001). Our parametrized model captured this rapid increase of dispersal in 274 

the range front treatment (Fig. 1B), and there was a quantitative match between the distribution of 275 

endpoint levels of dispersal in the model and observed values in the experiments (Fig. 2A). The 276 

model further predicted general increases in growth rate (r0) and equilibrium density (!) in all 277 

treatments, from 0.07 in the ancestral mix to 0.08 in core and front end-point populations. This is 278 

consistent with results from the growth assay conducted at cycle 21, where estimates of r0 for the 279 

15 selection lines are well within the central range of predicted values in the model (Fig. 2B). As 280 

predicted, selection treatments did not significantly differ in r0 (treatment: F2,12 = 1.2; p = 0.354). 281 

Unlike in the model, range front lines produced nearly 20% higher equilibrium densities than did 282 

range core and control lines (treatment: F2,12 = 11.1; p = 0.003).  283 

 284 

 285 
 286 
Figure 2 Model endpoint predictions for (A) dispersal, (B) growth rate (r0), and (C) equilibrium density (!"). In each panel, 287 
left: model predictions for the 3 treatments; right: posteriors distributions of the most likely winner strains in the range 288 
core (AMF_11_11A) and range front (goe_14) treatment. Circles are the average values measured for each experimental 289 
selection lines after 15-25 cycles (“short term”). Different colours represent the different treatments. The black circles 290 
represent the ancestral means (founder population). 291 
 292 

Predicted and observed short-term changes in strain composition 293 

Our model finds strong variation in the fixation probability among the 20 strains, and different 294 

treatments have different most likely winners (range: 0.7-16.8 %; Fig. S7).  295 

 296 

For the range front treatment, multiple regression analysis (Table S1) shows that both dispersal and 297 

r0 are positively associated with strain winning probability, and this with equal strength 298 

��� ��� ���
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(standardised beta (b) regression coefficients: +0.55 and +0.64, respectively; Fig. 3). Thus, selection 299 

is predicted to favour strains that both disperse more and grow faster. In contrast, in the core and 300 

control treatments, strain winning probability is mainly associated with high growth rate (b > +0.96), 301 

accompanied by weak selection against clones with higher dispersal (b £ -0.27) or equilibrium 302 

density (b £ -0.33).  303 

 304 

Molecular analysis of the 15 selection lines indicates complete genetic divergence between 305 

selection treatments. For all 9 range core and control lines, only the b05 COI genotype was detected. 306 

The two strains in the founder population that carry this genotype (Table S1) have very high growth 307 

rates and very low dispersal, the trait combination favoured in the model. Indeed, the candidate 308 

strain AMF_11_1A has the highest growth rate overall and is the most likely winner in core and 309 

control treatments according to our model (Fig. 3). In contrast, all 6 range front selection lines 310 

appear to be fixed for the b07 COI genotype. This genotype is shared by 13 founder strains (Table 311 

S1), which may thus have gone to fixation in groups or individually. Among these candidate strains 312 

is the most likely winner (goe_14) predicted by the model: it has the highest growth rate and the 313 

third-highest dispersal, in line with the prediction of the two traits being under joint positive 314 

selection in this treatment. As shown in Fig. 2, trait values of the most likely front and core winner 315 

strains (goe14 vs AMF_11_1A; strain posterior distributions on the right) show a good match with 316 

both the predicted model outcomes (distributions on the left; Fig. 2) and the experimental data. 317 
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 318 
Figure 3 Winning probability (frequency of going to fixation in 10k model runs) of each of 20 strains from the founder 319 
population, as a function of its dispersal, growth rate (r0) and equilibrium density (!"), shown for range front (A-C), range 320 
core (D-F) and control (G-I) treatments. Full circles denote the potentially fixed and open circles the eliminated strains, 321 
according to genetic analysis (COI genotype). Regression lines obtained from multiple regression models. Different 322 
colours represent the different treatments. 323 

 324 

Long-term changes 325 

Dispersal  326 

In addition to the short-term evolution (see above), we also observed a long-term increase in 327 

dispersal in the range front treatment over the entire time span of the three years of the experiment 328 

(cycle x treatment interaction: χ22 = 88.8; p < 0.001; Fig. 1). This trend is significant, even when 329 

omitting the first 50 cycles (χ22 = 51.7; p < 0.001). We found little evidence for a dispersal difference 330 

between range core and control lines, neither overall (contrast core vs control: p > 0.68) nor when 331 
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considering individual cycles (11 cycle-by-cycle contrasts with 0.0078 < p < 0.09, none significant 332 

after correction for multiple testing). 333 

 334 

Demographic traits. 335 

While no significant treatment effects were detected in the first growth assay (cycle 21, see above), 336 

range front lines had nearly 2-fold lower values of r0 than range core lines in assays conducted in 337 

year 2 and 3 (year x treatment: F4 = 6.66; p < 0.001; Fig. SI 1A). Furthermore, while beginning to 338 

grow more slowly, range front lines continued to produce up to 2-fold higher ! than range core and 339 

control lines (treatment: F2 = 34.21; p < 0.001; Fig. SI 1B). 340 

 341 

Trait associations. 342 

Fig. 4A-C illustrates short- and long-term trends in pairwise trait associations, in relation to the 343 

model predictions. For dispersal and r0 (Fig. 4A), there was no clear relationship between the two 344 

traits after short-term selection (year 1). However, in year 2 and 3, observed data points tend to fall 345 

outside the main predicted ranges, and a negative relationship between dispersal and r0 emerged 346 

(Fig. 4A). This negative association is highly significant over all lines and years combined (r = -0.627, 347 

95% CI [-0.771; -0.434]), but also holds for year 2 and 3 separately (Fig. S3). The positive relationship 348 

between dispersal and !, already observed as a short-term trend, further consolidated in year 2 349 

and 3 (Fig. 4B), again with values mostly falling outside the main predicted short-term ranges. The 350 

correlation is significant overall (r = 0.599, 95% CI [0.347; 0.725]), as well as for each year separately 351 

(Fig. S3). Furthermore, diverging trends in core and front selection lines lead to a negative 352 

association between r0 and ! (Fig 4C). The negative correlation is of intermediate effect size overall 353 

(r = -0.325, 95% CI [-0.575; -0.031]), and is significant in all three years separately (Fig. S3). It should 354 

be noted that all of these main trends of divergence hold, when we correct for year effects, by 355 

expressing front and core line data relative to the control treatment in each year (Fig. S5). 356 

 357 

Principal Component Analysis (PCA, Fig. 4D) summarises the patterns of phenotypic divergence. 358 

Demography-related traits and dispersal are pulling in approximately equal strength on PC axis 1, 359 

but in opposite directions (PC 1 loadings: r0 = -0.53; ! = +0.57; dispersal = +0.62). Thus, range front 360 

lines are characterised by a combination of higher equilibrium density and dispersal, but lower 361 

intrinsic population growth rate relative to range-core and control lines (MANOVA: F2,37 = 10.85, p < 362 
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0.001). The separation of clouds indicates the progressive divergence through time, with a 363 

maximum in year 3. There is little differentiation between range core and control treatments.  364 

365 
Figure 4 Short- and long-term traits associations observed in the experiment, in relation to short-term predictions in the 366 
model. (A-C) Bivariate correlations between dispersal, growth rate (r0) and equilibrium density (!"). Circles are the 367 
average values measured for each experimental selection line in year 1 (cycles 15-25; “short term”). Stars refer to year 368 
2 (cycles 74-84) and cross symbols to year 3 (cycles 154-161). From the distributions of the model predictions (outer 369 
part of graphs), the central range of each trait (50% high density probability interval, HDPI; thin lines) can be defined; 370 
the overlap zones of the HDPI (shaded square areas) represent the predicted trait association for each treatment, after 371 
short-term evolution. Observations falling outside of the overlap areas indicate deviation from the model, possibly due 372 
to de novo evolution (year 2 and 3). The black circles represent the mean ancestral trait association (founder 373 
population). (D) Principal Component Analysis (PCA) of all three traits combined according to the first two principal 374 
components of the PCA. The arrow length represents the loading value of the trait, while opposite arrow direction 375 
indicates opposite trend between traits. Different symbols correspond to the different years (circles, year 1; stars, year 376 
2; cross, year 3). The ellipses are the 95 % containment probability region per treatments and year. Different colours 377 
represent the different treatments. 378 
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Discussion 379 

Predicting range expansions with ecology and evolution occurring on the same timescale is a 380 

challenging task. Building on previous ecological range expansion studies (Melbourne & Hastings, 381 

2009; Giometto et al., 2014), we included short-term evolution in a simple model parameterised for 382 

our laboratory system and confronted predicted evolutionary outcomes with results from 383 

experimental range expansions. Both model and experiment show rapid divergence between range 384 

core and front treatments, with selection for higher dispersal at the front. The repeated fixation of 385 

particular COI genotypes in the experimental lines corresponded to strains identified as most likely 386 

winners in the model. This match between predicted and observed outcomes suggest a certain 387 

predictability of range expansions, even when evolutionary change occurs. Over longer time scales, 388 

experimental range core and front populations continued to diverge, indicating de novo evolution 389 

and resulting in the emergence of dispersal syndromes. 390 

 391 

Dispersal and growth rate are main targets of selection  392 

In the context of reaction-diffusion models, dispersal (diffusion) and population growth at low 393 

densities are the two key traits for understanding and predicting range expansion dynamics (Fisher, 394 

1937; Kolgomorov et al. 1937). Consistent with this view and previous studies (Phillips et al., 2010; 395 

Shine et al., 2011), dispersal and population growth were here identified as main targets of 396 

selection.  397 

 398 

Higher dispersal was immediately selected from standing genetic variation at the range front and 399 

weakly selected against in the range core in the model as well as in the experiment, where range 400 

front populations showed increased dispersal already after the first few cycles. Such strong and fast 401 

selection on dispersal in the vanguard front populations has been found in similar experiments 402 

(Fronhofer & Altermatt, 2015; Williams et al., 2016; Ochocki & Miller, 2017; Szűcs et al., 2017; 403 

Weiss-Lehman et al., 2017; Petegem et al., 2018), but also in natural populations (Phillips at al. 2006; 404 

Perkins et al. 2013). Dispersal evolution might therefore accelerate the speed of range expansion 405 

already over very short time scales (Ochoki & Miller, 2017; Miller et al. 2020). 406 

 407 

Contrary to more standard views of range expansion with r- and K-selection (Charlesworth, 1971; 408 

Roughgarden, 1971; Burton et al., 2010), growth rate was under positive short-term selection in 409 

both range core and front treatments. This can be explained by the fact that populations in all 410 
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treatments experienced regular bottlenecks, thus imposing general selection for increased growth 411 

rate, a trait for which there was ample variation among founder strains (Fig. S4 A-C). Importantly, 412 

however, our model shows that dispersal and growth rate can be simultaneously selected in the 413 

range front treatment (Fig. 3). Whether one or the other trait has more weight depends on the 414 

stochasticity introduced by the dispersal bottlenecks, implemented in the model via the quasi-415 

extinction threshold. With small bottlenecks, even weak dispersers make it into the new patch and 416 

can subsequently regrow to high density. Indeed, additional model scenarios show that when we 417 

decrease the quasi-extinction threshold, selection for growth rate overrides selection for dispersal 418 

and the strain with the highest growth rate becomes fixed in all treatments (Section S8). However, 419 

the model scenario that fits the observed data indicates a large enough extinction threshold in our 420 

experiment, putting equal selective weight on dispersal and growth rate (Fig. 2) and allowing 421 

selection to pick the best possible disperser strain that still has a high growth rate. 422 

 423 

Predictability of outcomes  424 

Genetic analysis indicates that the experimental selection lines became fixed for single COI 425 

genotypes. Despite limited resolution (several strains have the same COI), there is a good 426 

correspondence with model predictions: Range core and control treatments were fixed for the b05 427 

COI genotype, and the two b05 strains in the founder population were the most likely winners in 428 

the model, due to their particularly high growth rate (Table S1). In the range front treatment, there 429 

is more uncertainty (12 strains carry the b07 genotype fixed in this treatment), but among the 430 

possible candidates only the predicted most likely winning strain (goe_14) has both high dispersal 431 

and high growth rate (Fig. 3). Additional sequencing would be required to determine whether these 432 

selection lines are fixed for the same or different (combinations of) strains. 433 

 434 

Although our model seems to correctly identify the most likely winner strains, it nonetheless 435 

predicts the frequent fixation of strains with alternative COI genotypes (Fig. 3). Indeed, according to 436 

the model, our exclusive finding of b05 strains in all 9 range core and control lines is highly unlikely 437 

(0.289 < 0.0001). Similarly, even in the front treatment, the expected probability of exclusive fixation 438 

of b07 strain(s) is well below 5% (0.486 = 0.01). In this sense, our experiment was more deterministic 439 

than the model. Possibly, when we determined dispersal and growth of the individual strains, a large 440 

measurement error was added to biologically relevant variation (Fig. S4). This additional noise then 441 

cascades through the model, from the strain posterior distributions (making them wider) to the 442 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477128doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.20.477128
http://creativecommons.org/licenses/by-nc/4.0/


17 
 
 
 

phenotypic composition of the founder population (making strains more similar) to model outcomes 443 

(making them more variable). Alternatively, our model may be missing additional factors, such as 444 

direct strain-strain interactions or density-dependent dispersal, which potentially amplify among-445 

strain variation in performance. Regardless, one main conclusion from this model-experiment 446 

confrontation is that evolution can be fairly predictable, at least in the short term. As already shown 447 

for ecological models (Giometto et al., 2014), realistic predictions can indeed be made about range 448 

expansion dynamics, at least in highly controlled laboratory settings. Here we infer trait change from 449 

knowledge of standing genetic variation in only a few parameters, suggesting that such models can 450 

be readily extended to include evolution. 451 

 452 

Long term evolution of dispersal syndromes and emergence of trade-offs  453 

Experimental evolution studies show that adaptation to novel conditions may reduce performance 454 

in other environments (Kassen, 2014). The emergence of such trade-offs depends on underlying 455 

biochemical and life-history constraints (Walsh & Blows, 2009), but also on historical contingency, 456 

determining the composition and genetic architecture of the ancestral population, and thus the 457 

available trait space for selection to act on. 458 

 459 

In our case, short-term selection from standing genetic variation did not seem to produce clear 460 

trade-offs. In the long run, however, range front and core populations continued to diverge in 461 

multiple traits (Fig. 4D), and the increase in dispersal in the front treatment was associated with a 462 

decrease in growth rate (Fig. 4A). Such coupled responses in dispersal and life-history traits are 463 

referred to as dispersal syndrome (Clobert et al., 2012; Cote et al., 2017). Typically, they involve the 464 

emergence of a competition-colonisation trade-off, where dispersal evolution coincides with 465 

selection for opportunistic growth strategies (r-selection). Theoretical and empirical studies have 466 

demonstrated the importance of dispersal syndromes in generating eco-evolutionary feedbacks and 467 

accelerating the pace of range expansions and biological invasions (Burton et al., 2010; Perkins et 468 

al., 2013; Ochocki et al., 2019; Miller et al., 2020). 469 

 470 

Dispersal - growth trade-offs were previously reported for this (Zilio et al., 2020) and another ciliate 471 

species (Fronhofer & Altermatt 2015). In these systems, growth rate is a good indicator of 472 

competitive ability, and the trade-off with dispersal likely reflects a true life-history constraint, 473 

mediated through energy costs of foraging activity (Fronhofer & Altermatt 2015). 474 
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 475 

The evolved differences between core and front lines are stable, even after switching core and front 476 

treatments for multiple cycles (Fig. S6.1). Moreover, mixes of core and front lines readily respond 477 

to dispersal selection (Fig. S6.2), making new selection experiments possible, where phenotypic 478 

measurements change can easily be combined with the tracking of COI genotype frequencies. 479 

 480 

Advantages and limitations of an asexual reproduction scenario  481 

In this study, we consider asexual reproduction in both model and experiment. Hence advantageous 482 

allele combinations are not broken apart or reshuffled by sex and recombination (Otto, 2009; 483 

Lehtonen et al., 2012), such that strains with favourable trait combinations rapidly increase in 484 

frequency in our range and core treatments. Similar results were reported for experimental range 485 

expansions of the plant Arabidopsis thaliana, where the fastest-dispersing clonal genotype became 486 

predominant in multiple replicate selection lines, all starting from the same initial mix of clones 487 

(Williams et al., 2016). Thus, asexual reproduction narrows down the variability in the range 488 

expansion outcomes and, as we show here, makes predictions possible with relatively simple 489 

models. 490 

 491 

Clearly, recombination will make predictions more difficult, and replicated range expansion 492 

experiments with sexually reproducing organisms already showed higher variability and uncertainty 493 

in final outcomes (Ochocki & Miller, 2017; Weiss-Lehman et al., 2017; Petegem et al., 2018). For 494 

example, recombination may slow down range expansions in the short term, but speed up longer-495 

term responses by creating novel trait associations not previously available. In our system, sex may 496 

have immediate and strong fitness consequences due to the nuclear dimorphism typical of all 497 

ciliates. Aside from creating novel genetic variants (in the germline micronucleus), sexual 498 

reproduction also involves the recreation of a new somatic macronucleus and thereby the loss of 499 

any (somatic) adaptation acquired during asexual life (Verdonck et al., 2021). 500 

 501 

Conclusions  502 

Predicting evolution is arduous because of the intrinsic tension between determinism and 503 

contingency (Blount et al., 2018), and it demands an adequate theoretical representation of the 504 

eco-evolutionary processes in the biological system in question and reliable information on the 505 

genetic variation in the relevant traits (Nosil et al., 2020), as we describe in this work. At least in 506 
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simple settings as ours, accurate predictions of the evolutionary outcomes of range expansions 507 

require surprisingly few parameters, and independent biological realisations can be highly 508 

repeatable. Future studies will need to consider, for example, more realistic landscape scenarios 509 

and interactions with other species occurring during range expansion. This would imply a more 510 

systems-biology approach, with simulations calibrated on the empirical knowledge of the specific 511 

ecological scenario and biological players (Papp et al., 2011). More generally, increasing our 512 

capacities to make reliable quantitative predictions of invasive eco-evolutionary processes is critical 513 

to a variety of issues, from conservation and biocontrol strategies to antibiotic development and 514 

disease management. 515 
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Supplementary Information 696 

 697 

S1 Growth characteristics of long-term selection lines: r0 and , 698 

In growth assays, intrinsic population growth rate (r0) was measured after 21 (year 1), 78 (year 2) 699 

and 160 (year 3) dispersal / growth cycles. Equilibrium density (!) was taken for each selection 700 

line at the end of the 1-week growth period at each cycle during the long-term experiment. Here 701 

we averaged ! for each line over 9-10 cycles in year 1 (cycle 15-25), year 2 (74-84) and year 3 702 

(154-163). 703 

 704 

Figure S1 (A) Intrinsic population growth rate (r0) and (B) mean density at the end of the cycle (!) from core, 705 

front and control treatments (respectively in blue, red and grey). Full symbols represent the mean values for 706 
each selection line (n = 15), different symbols (circle, star, cross) refer to the three different years where 707 
measurement were taken. Shaded panels show means and 95 % confidence intervals of the model 708 
predictions. 709 

 710 

Script Beverton-Holt fitting (r0) 711 

############################################################################### 712 

rm(list=ls()) 713 

 714 

# load some packages 715 

library(rstan) 716 

library(deSolve) 717 

library(coda) 718 

library(vioplot) 719 

library(loo) 720 
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 721 

############################################################################### 722 

# load data 723 

data<- read.table(file="file_name.txt", header=T) 724 

 725 

############################################################################### 726 

# declare stan BH model 727 

stanmodelcode_BH = ' 728 

  // function that caclulates BH population growth 729 

functions{ 730 

  real[] odemodel(real t, real[] N, real[] p, real[] x_r, int[] x_i){ 731 

    // p[1]=r0, p[2]=d, p[3]=K 732 

    real dNdt[1]; 733 

    dNdt[1] = ((p[1] + p[2])/(1 + ((p[1]/(p[3]*p[2])) * N[1])) - p[2])*N[1]; 734 

    return dNdt; 735 

  } 736 

} 737 

 738 

data{ 739 

  int n; 740 

  real log_N0; 741 

  real log_N[n]; 742 

  real t0; 743 

  real t[n]; 744 

} 745 

 746 

transformed data {  747 

  // not used here 748 

  real x_r[0]; 749 

  int x_i[0]; 750 

} 751 

 752 
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parameters{ 753 

  real log_r; 754 

  real log_d; 755 

  real log_K; 756 

  real log_N0sim; 757 

  real<lower=0> sdev; 758 

} 759 

 760 

 761 

transformed parameters{ 762 

  // all of this was in the model section previously 763 

  // I moved it here to be able to get waic because Nsim needs to be accessible in "generated 764 

quantities {}" 765 

   766 

  real p[3]; 767 

  real Nsim[n,1]; // simulated values, matrix. dim1 = time, dim2 = dim_ODE = 1 768 

  real N0sim_dummy[1]; // just a dummy because the ODE solver requires real[] instead of real 769 

   770 

  // parameters for integrator 771 

  p[1] = exp(log_r); 772 

  p[2] = exp(log_d); 773 

  p[3] = exp(log_K); 774 

  N0sim_dummy[1] = exp(log_N0sim);  // see above 775 

   776 

  // integrate ODE (maybe try: integrate_ode_bdf()??) 777 

  Nsim = integrate_ode_rk45(odemodel,N0sim_dummy,t0,t,p,x_r,x_i); 778 

} 779 

 780 

model{ 781 

  // priors 782 

  // note: it can be VERY helpful to estimate parameters on logscale,  783 

  // especially if they have different orders of magnitude. here it works on regular scale, though. 784 
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  log_r ~ normal(log(0.1), 1.5); 785 

  log_K ~ normal(log(500), 1); 786 

  log_d ~ normal(log(0.1),1.5); 787 

  log_N0sim ~ normal(log(2),1); 788 

  sdev ~ cauchy(0,1); 789 

   790 

  // likelihood, normal (maybe lognormal helpful) 791 

  log_N0 ~ normal(log_N0sim,sdev); 792 

  for (i in 1:n){ 793 

    log_N[i] ~ normal(log(Nsim[i,1]),sdev); 794 

  }   795 

} 796 

 797 

// cacluate log lik to get waic 798 

// from loo R package description 799 

generated quantities { 800 

  real log_lik[n]; 801 

  for (nn in 1:n){  802 

    log_lik[nn] = normal_lpdf(log_N[nn] | log(Nsim[nn,1]), sdev); 803 

  } 804 

} 805 

' 806 

############################################################################### 807 

# functions 808 

ode.model_BH = function(t,N,p){ 809 

  with(as.list(p),{ 810 

    dNdt = ((p[1] + p[2])/(1 + ((p[1]/(p[3]*p[2])) * N)) - p[2])*N 811 

    return(list(dNdt)) 812 

  }) 813 

} 814 

 815 

############################################################################### 816 
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# stan options 817 

chains = 1 818 

rstan_options(auto_write = TRUE) 819 

options(mc.cores = chains)  820 

iter   =  10000 821 

warmup =  1000 822 

thin   =     1 823 

 824 

# compile model 825 

s_model_BH = stan_model(model_code=stanmodelcode_BH) 826 

 827 

############################################################################### 828 

  # BH fitting 829 

   830 

  # create data object for rstan 831 

  data_BH = list(n = length(act_times)-1, 832 

                 log_N0 = log(act_densities[1]), 833 

                 log_N  = log(act_densities[2:length(act_times)]), 834 

                 t0    = act_times[1], 835 

                 t     = act_times[2:length(act_times)]) 836 

   837 

  # initial values for rK fitting 838 

  init_BH=rep(list(list(log_r=log(0.1), 839 

                        log_K = log(500), 840 

                        log_d = log(0.05), 841 

                        log_N0sim=log(2), 842 

                        sdev=1)) 843 

              ,chains) 844 

   845 

  # do the rK fit 846 

  fit_BH = sampling(s_model_BH, 847 

                    data=data_BH, 848 
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                    iter=iter, 849 

                    warmup=warmup, 850 

                    thin=thin, 851 

                    chains=chains, 852 

                    init=init_BH 853 

  ) 854 

   855 

  # check model 856 

  print(fit_BH) 857 

 858 

S2 Swimming behaviour 859 

We collected data on swimming behaviour for each selection line in year 1 (cycles 53, 54, 55, 58, 74) 860 

and year 2 (cycles 103 and 116), using an automated video analysis pipeline (Fronhofer & Altermatt, 861 

2015; Pennekamp et al., 2015). To this end, 120-µL samples (ca. 20 individuals) from populations at 862 

equilibrium were placed on a microscope slide and videos were recorded under a stereomicroscope 863 

(Perfex SC38800 camera; settings: frames per second: 15; duration: 5 s; total magnification: 10x). 864 

One video per selection line and cycle was recorded, except for cycle 74 (n=4). We analysed the 865 

videos using the “bemovi” package (Pennekamp et al., 2015, see script below), which provided 866 

estimates of individual Paramecium swimming speed and the tortuosity of swimming trajectories, 867 

an indicator of changes in the swimming direction (standard deviation of the turning angle 868 

distribution). For analysis, averages of swimming speed and tortuosity were calculated for each 869 

sample. 870 

Results: Paramecium from range front lines had a significantly lower swimming speed (-41%) than 871 

those from the range core and control treatments (treatment: F2,12 = 33.5; p < 0.001; Fig. S2). Across 872 

selection lines and years combined, swimming speed in the assays was negatively correlated with 873 

dispersal rate observed in the selection lines (r = -0.72, n = 30, p < 0.0001), meaning that lines with 874 

a higher dispersal generally had a lower swimming speed. Tortuosity of swimming trajectories were 875 

negatively correlated with swimming speed (all replicates: r = -0.29, n=135, p = 0.0005), but did not 876 

significantly differ among treatments (p > 0.545). 877 

 878 

 879 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477128doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.20.477128
http://creativecommons.org/licenses/by-nc/4.0/


32 
 
 
 

 880 
Figure S2 Estimates of the (A) swimming speed and (B) tortuosity of swimming trajectories from core (blue), 881 
front (red) and control (grey) treatments. Full symbols represent the mean values for each selection line (n = 882 
15), with different symbols (point, star) corresponding to the first two years of the study. No measurements 883 
were taken in the year 3. Shaded panels show means and 95 % confidence intervals of the model predictions. 884 

 885 

References 886 
Fronhofer, E.A. & Altermatt, F. 2015. Eco-evolutionary feedbacks during experimental range 887 
expansions. Nature Communications 6. 888 
 889 
Pennekamp, F., Schtickzelle, N. & Petchey, O.L. 2015. BEMOVI, software for extracting behavior and 890 

morphology from videos, illustrated with analyses of microbes. Ecol. Evol. 5: 2584–2595. 891 

 892 

Script video analysis 893 

###################################################################### 894 

# R script for analysing video files with BEMOVI (www.bemovi.info) 895 

rm(list=ls()) 896 

# load package 897 

library(devtools) 898 

install_github("efronhofer/bemovi", ref="experimental") 899 

library(bemovi) 900 

 901 

###################################################################### 902 

# VIDEO PARAMETERS 903 

 904 

��� ���
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# video frame rate (in frames per second) 905 

fps <- 15 906 

# length of video (in frames) 907 

total_frames <- 150 908 

# magnification 909 

# this parameter sets "measured_volume" and "pixel_to_scale" for Perfex Pro 10 stereomicrocope 910 

with #Perfex SC38800 (IDS UI-3880LE-M-GL) camera and sample height = 0.5mm 911 

# if other devices are used, set the two paramneters manually 912 

# possible values: 0.8, 1, 2, 3 913 

magnification <- 1 914 

 915 

# specify video file format (one of "avi","cxd","mov","tiff") 916 

# bemovi only works with avi and cxd. other formats are reformated to avi below 917 

video.format <- "avi" 918 

# setup 919 

difference.lag <- 10 920 

thresholds <- c(90,255) # don't change the second value 921 

 922 

###################################################################### 923 

# FILTERING PARAMETERS 924 

# min and max size: area in pixels 925 

particle_min_size <- 5 926 

particle_max_size <- 1000 927 

 928 

# number of adjacent frames to be considered for linking particles 929 

trajectory_link_range <- 3 930 

# maximum distance a particle can move between two frames 931 

trajectory_displacement <- 30 932 

 933 

# these values are in the units defined by the parameters above: fps (seconds), 934 

#measured_volume (microliters) and pixel_to_scale (micometers) 935 

filter_min_net_disp <- 500 936 
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filter_min_duration <- 1 937 

filter_detection_freq <- 0.1 938 

filter_median_step_length <- 5 939 

###################################################################### 940 

# MORE PARAMETERS (USUALLY NOT CHANGED) 941 

 942 

# set paths to ImageJ and particle linker standalone 943 

IJ.path <- "/home/user_name /bin/ImageJ" 944 

to.particlelinker <- "/home/user_name/bin/ParticleLinker" 945 

 946 

# directories and file names 947 

to.data <- paste(getwd(),"/",sep="") 948 

video.description.folder <- "0_video_description/" 949 

video.description.file <- "video_description.txt" 950 

raw.video.folder <- "1_raw/" 951 

particle.data.folder <- "2_particle_data/" 952 

trajectory.data.folder <- "3_trajectory_data/" 953 

temp.overlay.folder <- "4a_temp_overlays/" 954 

overlay.folder <- "4_overlays/" 955 

merged.data.folder <- "5_merged_data/" 956 

ijmacs.folder <- "ijmacs/" 957 

 958 

# RAM allocation 959 

memory.alloc <- c(60000) 960 

 961 

# RAM per particle linker instance (in MB) 962 

memory.alloc.perLinker <- c(3000) 963 

 964 

###################################################################### 965 

# VIDEO ANALYSIS 966 

 967 

# identify particles 968 
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locate_and_measure_particles(to.data, raw.video.folder, particle.data.folder, 969 

difference.lag, thresholds, min_size = particle_min_size, max_size = 970 

particle_max_size, IJ.path, memory.alloc) 971 

 972 

# link the particles 973 

link_particles(to.data, particle.data.folder, trajectory.data.folder, linkrange = 974 

trajectory_link_range, disp = trajectory_displacement, start_vid = 1, memory = 975 

memory.alloc, memory_per_linkerProcess = memory.alloc.perLinker) 976 

 977 

# merge info from description file and data 978 

merge_data(to.data, particle.data.folder, trajectory.data.folder, 979 

video.description.folder, video.description.file, merged.data.folder) 980 

 981 

# load the merged data 982 

load(paste0(to.data, merged.data.folder, "Master.RData")) 983 

 984 

# filter data: minimum net displacement, their duration, the detection 985 

#frequency and the median step length 986 

trajectory.data.filtered <- filter_data(trajectory.data, filter_min_net_disp, 987 

filter_min_duration, filter_detection_freq, filter_median_step_length) 988 

 989 

# summarize trajectory data to individual-based data 990 

morph_mvt <- summarize_trajectories(trajectory.data.filtered, calculate.median=F, 991 

write = T, to.data, merged.data.folder) 992 

 993 

# get Sample level info 994 

summarize_populations(trajectory.data.filtered, morph_mvt, write=T, to.data, 995 

merged.data.folder, video.description.folder, video.description.file, total_frames) 996 

 997 

# create overlays for validation 998 

create_overlays(trajectory.data.filtered, to.data, merged.data.folder, 999 

raw.video.folder, temp.overlay.folder, overlay.folder, 2048, 2048, 1000 
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difference.lag, type = "label", predict_spec = F, IJ.path, 1001 

contrast.enhancement = 1, memory = memory.alloc) 1002 

 1003 

S3 Trait correlations 1004 

 1005 

 1006 

Figure S3 Overall correlation between (A) dispersal - r0, (B) dispersal -	! and (C) r0 - ! obtained with Bayesian 1007 

inference. Symbols are the average values for a given selection line and year, with blue, red and grey 1008 
corresponding to core, front and control treatment, respectively. Different symbols refer to the three 1009 
different years: circle (year 1), star (year 2), cross (year 3). The black point represents the ancestral values 1010 
(overall mean) of the founder population. The ellipses are bound to non-linear space and correspond to the 1011 
10, 25, 50, 75 an 95 % CI of the correlation of pairs of traits.  The shaded areas in the insert panels represent 1012 
the posterior distribution of the overall correlation coefficients (across selection treatments and years). The 1013 
dot-dashed lines show the posterior distribution of the year 1 correlation coefficients, dashed lines of the 1014 
year 2, and dotted lines of the year 3. The black line in the inserts highlights the 0 value, and thus the absence 1015 
of correlation.  1016 
 1017 

Script correlation analysis 1018 

########################################################################### 1019 

# Stan code  1020 

model_simple <- " 1021 

// Pearson Correlation 1022 

data {  1023 

  int<lower=0> n; 1024 

  vector[2] x_obs[n]; 1025 

} 1026 

��� ��� ���
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parameters { 1027 

vector[2] mu; 1028 

vector<lower=0>[2] lambda; 1029 

real<lower=-1,upper=1> r; 1030 

}  1031 

transformed parameters { 1032 

vector<lower=0>[2] sigma; 1033 

cov_matrix[2] T; 1034 

 1035 

 // Reparameterization 1036 

sigma[1] = sqrt(lambda[1]); 1037 

sigma[2] = sqrt(lambda[2]); 1038 

 T[1,1] = square(sigma[1]); 1039 

T[1,2] = r * sigma[1] * sigma[2]; 1040 

T[2,1] = r * sigma[1] * sigma[2]; 1041 

T[2,2] = square(sigma[2]); 1042 

} 1043 

model { 1044 

// Priors 1045 

mu ~ normal(0, 10); 1046 

lambda ~ normal(0,1); 1047 

  // Data 1048 

  x_obs ~ multi_normal(mu, T); 1049 

}" 1050 

# selecting the variable of interest, e.g. trait_1 and trait_2 1051 

data <- cbind(dataset$trait_1, dataset$trait_2) 1052 

# sampling 1053 

samples <- stan(model_code=model_simple,    1054 

  data=list(x_obs=data, n = dim(data)[1]),  1055 

  init=list(list(r=0, mu=c(0, 0), lambda=c(1, 1))),  # If not specified, gives random inits 1056 

  pars= c("r", "mu", "sigma"), 1057 

  iter=10000, 1058 
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  warmup = 2000, 1059 

  chains=1 1060 

  ) 1061 

 1062 

S4 Founder population trait values and correlations 1063 

Prior to the start of the long-term experiment, we characterised the 20 founder strains for dispersal 1064 

and population growth characteristics (r0, !), with 3-4 replicates per strain, as described in the main 1065 

text. Using a Bayesian approach (Rosenbaum et al., 2019), we determined median values and 95% 1066 

CI for each strain (Table S1, see also section S1). Figure S4 illustrates the (bivariate) trait space 1067 

occupied by the mix of the strains in the founder population. For example, Fig. S4A shows 1068 

considerable genotypic variation in both dispersal and r0. Certain strains have very high r0 and very 1069 

low dispersal, and several strains have relatively high dispersal and intermediate levels of r0. As 1070 

shown in the main text, these two types of strains are targeted by short-term selection in the range 1071 

core and front treatments, respectively. There are no strains with very high levels of both dispersal 1072 

and growth, and such variants also do not seem to evolve in the long term (see Fig. 4), suggesting 1073 

that this part of the trait is unavailable to the genetic backgrounds used in this experiment. 1074 

 1075 
 1076 
Figure S4 Trait relationships in the base population (mix of the 20 founder strains) for (A) dispersal - r0, (B) 1077 

dispersal - ! and (C) r0 - !. Each point represents the median trait values of a strain with the 95% CI (see also 1078 

Table S1). 1079 
 1080 
References 1081 
Rosenbaum, B., Raatz, M., Weithoff, G., Fussmann, G.F. & Gaedke, U. 2019. Estimating Parameters From 1082 
Multiple Time Series of Population Dynamics Using Bayesian Inference. Front. Ecol. Evol. 6. 1083 
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S5 Trait relationships relative to the control treatment  1084 

In the main text, Figure 4A-C illustrates short- and long-term trends in pairwise trait associations, in 1085 

relation to the model predictions. The long-term trends are inferred from the comparison of 1086 

measurements taken at different time points (year 1, 2, 3, see main text), and we can therefore not 1087 

a priori exclude the possibility that the (evolutionary) change in a trait is confounded with a 1088 

measurement year effect. Ideally, to avoid this problem, samples would be frozen each year and all 1089 

samples measured at the same time in a single assay at the end of the long-term experiment. 1090 

However, freezing of samples was not possible for our lines. Instead, we accounted for potential 1091 

year effects by expressing the performance of range core and range front lines relative to the control 1092 

treatment. This was done by subtracting the means of the control lines from the values of individual 1093 

core or front lines from the same year. Patterns for these standardized trait associations (Fig. S5) 1094 

are very similar to those shown in Fig. 4A-C. Thus, our main conclusions regarding the divergence of 1095 

selection lines were unlikely to be affected by measurement year effects. 1096 

 1097 

Figure S5 Trait relationships between (A) dispersal - r0, (B) dispersal - ! and (C) r0 - !, expressed relative to 1098 

the control treatment (core/front minus control values), for each of three years. Symbols are the average 1099 
values for each selection line. Negative values correspond to decreased trait values compared to the control 1100 
treatment of the same year, positive indicated increased values and 0 corresponds to no changes. Different 1101 
symbols refer to the three different years: circle (year 1), star (year 2), cross (year 3). 1102 
 1103 

S6 Complementary experiments 1104 

After the long-term experiment was completed, additional tests were performed with the evolved 1105 

selection lines. First, we performed a ‘treatment-reversal’ experiment. To this end, we divided the 1106 

evolved lines in two new replicates. The first replicate was continued in the original treatment, 1107 

whereas the second replicate was subjected to the other (opposite) treatment. This experiment was 1108 

run for 9 cycles and dispersal measured, following the protocols described in the main text. 1109 
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  1110 

Results: Range front lines continued to show higher dispersal than range core lines, when switched 1111 

to ‘range core’ selection conditions (Fig. S6.1A). Conversely, range core lines continued show very 1112 

low dispersal, when switched to ‘range front’ selection conditions (Fig. S6.1B). 1113 

 1114 
Figure S6.1 Treatment-reversal experiment. (A) Front and core evolved lines exposed for 9 cycles to core 1115 
treatment. (B) Front and core evolved lines exposed for 9 cycles to front treatment. 1116 
 1117 

Secondly, we wanted to test whether the observed treatment effects in the long-term experiment, 1118 

as measured in single-line assays, were strong enough to be picked up by selection. To this end, we 1119 

mixed range core and front lines at different ‘initial’ proportions, and then exposed these mixes 1120 

(together with pure 100% core and front controls) to a range core or range front treatment for 3 1121 

cycles. 1122 

 1123 

Results: Under range core selection (Fig. S6.1A), we find a decrease in dispersal in the mixes, 1124 

reaching levels as low as those observed for pure range core lines, whereas pure front lines continue 1125 

to show high dispersal. Conversely, under range front selection (Fig. S6.1B), we find an increase in 1126 

dispersal in the mixes, reaching levels comparable to values observed for the pure range front lines. 1127 

Pure range core lines also show an increase in dispersal, but still disperse less than the mixes or the 1128 

pure front lines. These results indicate a match between selection history and selection treatment, 1129 

meaning that front lines have a selective advantage under front selection and core lines under core 1130 

selection. Indeed, in similar experiments (F. Manzi & O. Kaltz, unpublished), we find that such 1131 

observed phenotypic changes go hand in hand with the fixation of range core or front lines. 1132 
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 1133 
Figure S6.2 Mixed-lines experiment, with (A) range core selection or (B) range front selection treatment. Solid 1134 
connecting lines are pure (100%) evolved core and front selection lines, respectively. Dashed red lines are 1135 
mixes of core and front lines, with the initial proportion of front lines ranging from 1.6% to 52%. Each dashed 1136 
line represents a single experimental 'mixed' replicate, the solid 'pure' lines represent averages (± SE) over 3 1137 
experimental replicates. 1138 
 1139 

S7 Strain winning probability 1140 

The model predictions show strong variation in the winning probability among the 20 strains, i.e. 1141 

the probability of strains fixation in the population for each of three treatments at the end of the 1142 

experiment. Although the model is deterministic, we parametrize the model with draws from 1143 

posteriors (section S4 above). Thus, the model takes into account the data uncertainty and gives a 1144 

distribution of likely outcomes. Details of the model are given in the main text. 1145 

 1146 

 1147 
Figure S7 Histograms of strain winning probability for Front, Core and Control treatment with a quasi-1148 
extinction threshold of 0.7. Strain winning probability corresponds to the fixation probability among the 20 1149 
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strains in 10000 model runs. The true potential winner candidates with the right COI genotype are highlighted 1150 
in red for the Front, blue for the Core and grey for the Control treatment. 1151 
 1152 

S8 Quasi-extinction threshold 1153 

The quasi-extinction threshold implies that strains go extinct if they exhibit densities below this 1154 

value. The model scenario that fits the observed data indicates a large extinction threshold of 0.7, 1155 

leading to a similar selection on dispersal and growth rate. Under these conditions, selection favours 1156 

strains with high dispersal but also a relative high growth rate. When running additional model 1157 

scenarios with decreased quasi-extinction threshold, selection for growth rate overrides selection 1158 

for dispersal. Despite the bottlenecks occurring during the dispersal phase, strains with low dispersal 1159 

can still reach the new patch and regrow to high density. Under these alternative conditions few 1160 

extinctions occur and all strains can reach the new patch, but it is the strain with the highest growth 1161 

rate (AMF_11_1A) that becomes fixed in all treatments. 1162 

 1163 

 1164 
 1165 
Figure S8.1 Histograms of strain winning probability for Front, Core and Control treatment with a quasi-1166 
extinction threshold 0.001. 1167 
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 1168 
Figure S8.2 Histograms of strain winning probability for Front, Core and Control treatment with a quasi-1169 
extinction threshold 0.1. 1170 
 1171 

 1172 
Figure S8.3 Histograms of strain winning probability for Front, Core and Control treatment with a quasi-1173 
extinction threshold 0.5. 1174 
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Table S1 Details and trait values for each of the 20 strains of the founder population.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

* identified as Paramecium multinucleatum  

** determined in Killeen, J., Gougat-Barbera, C., Krenek, S. & Kaltz, O. (2017). Evolutionary rescue and local adaptation under different rates of temperature increase: a combined analysis of changes in phenotype 

expression and genotype frequency in Paramecium microcosms. Molecular Ecology, 26, 1734-1746.  

Strain Origin (provided by) 

In OK 

lab 

since 

COI 

genotype 

COI genotype detected 

at cycle 30 

Median 

dispersal 

95% CI 

dispersal 
Median r0 

95% CI  

r0 

Median 

! 

95% CI  

! 

AMF_11_1A Russia (A. Potekhin) 2014 b05 range core and control 0.060 0.044; 0.141 0.162 0.075; 0.479 263.5 204.0; 357.4 

AMF_11_1B Russia (A. Potekhin) 2014 b04	 not	detected	 0.068	
0.052;	
0.144	

0.093	 0.063;	0.391	 299.5	 229.	7;	386.2	

AMF_11_5A Russia (A. Potekhin) 2014 * not detected 0.311 0.275; 0.424 0.093 0.074; 0.275 318.3 270.1; 368.4 

AMF_11_5B Russia (A. Potekhin) 2014 b07 range front 0.124 0.088; 0.292 0.042 0.026; 0.219 183.3 116.7; 399.1 

c109 Unknown 2014 b01 not detected 0.185 0.159; 0.285 0.096 0.061; 0.353 288.0 223.3; 371.7 

c2 Isolated from commercial mix 2004 b07 range front 0.069 0.049; 0.176 0.065 0.033; 0.393 162.0 106.5; 393.3 

cra Kraków, Poland 2006 b07 range front 0.095 0.060; 0.320 0.039 0.008; 0.213 148.2 44.2; 830.9 

cyp Cyprus	 2003 b07 range front 0.148 0.111; 0.319 0.034 0.016; 0.279 165.6 87.3; 620.0 

goe_1 Stuttgart, Germany 2008 a18** not detected 0.248 0.212; 0.373 0.056 0.037; 0.239 277.3 196.7; 415.2 

goe_11 Stuttgart, Germany 2007 b01 not detected 0.202 0.174; 0.302 0.075 0.049; 0.358 279.3 199.5; 403.2 

goe_14 Stuttgart,	Germany	 2007 b07 range front 0.272 0.235; 0.397 0.100 0.068; 0.405 251.0 203.7; 309.2 

k2_41c Japan, parents KNZ 5 & KNZ 2 2001 b07 range front 0.123 0.090; 0.270 0.042 0.030; 0.102 251.9 181.6; 403.3 

K4_12 Japan, parents KNZ 5 & KNZ 2 2001 b07 range front 0.057 0.038; 0.171 0.044 0.019; 0.286 201.3 116.6; 667.8 

K6_14 Japan, parents KNZ 5 & KNZ 2 2001 b07 range front 0.207 0.169; 0.355 0.079 0.060; 0.272 348.3 273.9; 432.9 

k7 Japan, parents KNZ 5 & KNZ 2 2001 b05 range core and control 0.051 0.037, 0.121 0.135 0.084; 0.330 293.4 256.0; 334. 2 

k8 Japan, parents KNZ 5 & KNZ 2 2001 b07 range front 0.411 0.370; 0.537 0.073 0.058; 0.239 249.1 204.4; 298.5 

K9_48c Japan, parents KNZ 5 & KNZ 2 2001 b07 range front 0.137 0.114; 0.224 0.063 0.048; 0.202 329.1 239.9; 446.2 

m3 Isolated from commercial mix 2004 b07 range front 0.361 0.319; 0.495 0.059 0.045; 0.204 309.0 231.1; 427.8 

tueb 
Tübingen, Germany (H-D 

Görtz) 
2001 b07 range front 0.082 0.051; 0.282 0.032 0.018; 0.216 223.0 82.9; 662.9 

ven Venice, Italy 2006 a01**	 not	detected	 0.253	
0.220;	
0.363	

0.083	 0.063;	0.286	 353.7	 276.	8;	446.0	
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