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 2 

Abstract  26 
 27 

Kinase inhibitor tolerance of human glioblastoma is an unmet clinical challenge and a 28 

mechanistic enigma. Here, we demonstrate that glioblastoma cell tolerance to multi-kinase 29 

inhibition can be reverted by reactivation of Protein Phosphatase 2A (PP2A). To characterize 30 

kinase targets of clinical stage multi-kinase inhibitor UCN-01 synergizing with PP2A 31 

reactivation, we established a strategy, named Actionable Targets of Multi-kinase Inhibitors 32 

(AToMI). AToMI revealed AKT and mitochondrial pyruvate dehydrogenase kinases (PDK1-4) 33 

as the co-targets for UCN-01-elicited synthetic lethality with PP2A reactivation. Notably, 34 

heterogeneous glioblastoma and medulloblastoma models were tolerant to AKT and PDK1-4 35 

inhibitor monotherapies, and their combinations, but were effectively inhibited by triplet 36 

therapy including pharmacological PP2A reactivation. Mechanistically, overcoming the kinase 37 

therapy tolerance by the triplet therapy could be explained by combinatorial effects on 38 

signaling rewiring between AKT and PDK1-4, decrease in mitochondrial oxidative 39 

phosphorylation, and BH3-only protein mediated apoptosis priming. The brain-penetrant 40 

triplet combination had a significant in vivo efficacy in intracranial glioblastoma and 41 

medulloblastoma models. Collectively, we present a generalizable approach to identify 42 

actionable co-targets of multi-kinase inhibitors and demonstrate that overcoming of the 43 

kinase inhibitor tolerance in brain tumor cells requires triplet targeting of AKT, PDK1-4, and 44 

PP2A.  45 

  46 
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 3 

Introduction 47 

 48 

Even though kinase inhibitors have revolutionized cancer therapies, most tumors acquire 49 

resistance to kinase inhibitors (1,2). Especially in cancer types genetically associated with 50 

hyperactivation of kinase pathways, such as human glioblastoma, the clinically observed 51 

kinase inhibitor resistance is a mechanistic enigma (3-5). Acquired therapy resistance 52 

develops via two phases - first through adaptive development of a drug-tolerant cellular state, 53 

and later, stable resistance that often occurs through acquisition of genetic mutations (6). 54 

The emerging evidence strongly indicates that the drug-tolerance is initiated rapidly after 55 

drug exposure by non-mutational signaling rewiring, often mediated by phosphorylation 56 

dependent signaling pathways (7,8). Thereby, characterization of the phosphorylation-57 

dependent signaling rewiring events, and kinases/phosphatases controlling the rewiring, is 58 

expected to provide novel approaches for targeting the tumor relapse at its roots (9). 59 

 60 

In addition to the development of non-genetic therapy tolerance, lack of target specificity of 61 

kinase inhibitors is a major translational challenge (2). Recent studies demonstrate that only 62 

a few kinase inhibitors target selectively their intended kinase target, and that the therapeutic 63 

effects of many kinase inhibitors are mediated by inhibition of other than their assumed 64 

target kinase (10,11). The unselectivity of kinase inhibitors can be employed therapeutically 65 

in a case the multi-kinase inhibitor (MKI) (12). Of clinically approved MKIs, sunitinib has an 66 

FDA approval for the treatment of gastrointestinal stromal tumors and advanced renal cell 67 

carcinoma. Additionally, derivatives of the classical MKI staurosporine (STS), have reached the 68 

clinics. Midostaurin (PKC412) is approved for the treatment of FLT3-mutated acute myeloid 69 
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leukemia (12), whereas another STS derivative UCN-01 (7-hydroxystaurosporine), was tested 70 

in phase II clinical trials in metastatic melanoma and relapsed T-Cell Lymphomas 71 

(NCT00082017). However, it is well established that each of these clinically tested STS 72 

derivatives inhibit activities of up to 50 kinases with approximately similar efficiency 73 

(10,13,14). Further, the STS derivatives are compromised by their pharmacokinetic properties 74 

in a case of brain tumors as they do not cross the brain-blood barrier (BBB). Therefore, 75 

development of MKIs towards clinical use would benefit from a better understanding of the 76 

kinase targets mediating both the therapeutic and potential toxic effects in each disease 77 

application. On the other hand, systematic mapping of the kinase targets of each MKI might 78 

provide an opportunity for development of novel combination therapy approaches by 79 

combining more selective kinase inhibitors targeting only the preferred kinases with more 80 

preferential pharmacokinetic and pharmacodynamic profiles. However, generalizable 81 

strategies for analysis of actionable MKI targets are currently missing. 82 

 83 

Glioblastoma (GB) is the most common primary brain tumor in adults associated with high 84 

degree of therapy resistance, tumor recurrence and mortality (5,15). Extensive genome-wide 85 

profiling studies have established receptor tyrosine kinase RTK/RAS/PI3K/AKT signaling as 86 

one of the core altered pathways contributing to GB disease progression (3,16). AKT pathway 87 

fuels aerobic glycolysis (17), and GB cells are notorious for employing aerobic glycolysis in 88 

energy production and survival (18,19). However, targeting of these deregulated signaling 89 

mechanisms have achieved dismal clinical response rates in GB (4,20,21). Furthermore, 90 

disappointing results have been obtained from combination of kinase inhibitors, including 91 

also the MKIs (21). In addition to challenges with drug delivery across the BBB with a number 92 

of kinase inhibitors, the failure of kinase targeted therapies in GB has been proposed to be 93 
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linked to the prevalence of kinase pathway-mediated rewiring mechanisms (21), and general 94 

apoptosis-resistance of glioblastoma stem-like cells (GSCs) (15).  95 

 96 

Protein phosphatase-2A (PP2A) is a ubiquitous serine/threonine phosphatase. Some PP2A 97 

complexes act as tumor suppressors and their inhibition is required for human cell 98 

transformation (22,23). PP2A regulates several kinase pathways and drug resistance 99 

mechanisms, and PP2A inhibition in cancer cells has been shown to drive broad-range kinase 100 

inhibitor resistance (24). PP2A is frequently inactivated in GB by non-genetic mechanisms 101 

including overexpression of endogenous PP2A inhibitor proteins such as CIP2A, PME-1, SET 102 

and ARPP19 (25-27). We recently published proof-of-concept data that reversal of PME-1-103 

mediated PP2A inhibition strongly sensitized GB cells to several kinase inhibitors, including 104 

clinically tested STS derivatives (28). However, the translational value of these results 105 

remained questionable as PME-1 was experimentally inhibited by siRNAs and STS molecules 106 

that do not cross the BBB. Recently, a series of BBB permeable small molecule activators of 107 

PP2A (SMAPs) have been developed (29). However, their effects on kinase inhibitor resistance 108 

in GB has not yet been addressed. 109 

 110 

To leverage on the therapeutic potential of combination of MKIs with pharmacological PP2A 111 

reactivation for GB therapy (28), we established a generalizable multi-step strategy for 112 

characterization of Actionable Targets of Multi-kinase Inhibitors (AToMI). The results identify 113 

AKT and pyruvate dehydrogenase kinases (PDK1-4) as the targets of MKI UCN-01 in drug-114 

induced synthetic lethality (SL)(30) in combination with PP2A reactivation. As a translationally 115 

relevant outcome, we demonstrate that triplet targeting of AKT, PDK and PP2A induced 116 

robust synergistic cell death across heterogeneous GB and medulloblastoma (MB) cell lines, 117 
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and resulted in significant in vivo therapeutic effects on intracranial tumor models of GB and 118 

MB. Mechanistically, we identify a role for PP2A in regulating mitochondrial metabolism and 119 

blunting therapy-induced signaling rewiring. Collectively, these results support the clinical 120 

observations that combinations of kinase inhibitors alone are not sufficient for overcoming 121 

kinase inhibitor therapy tolerance in brain cancers, but indicate that this can be achieved by 122 

further combination of kinase inhibitors with pharmacological reactivation of PP2A.  123 
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Results 124 

 125 

Pharmacological reactivation of PP2A synergizes with a multi-kinase inhibitor UCN-01 126 

 127 

Based on our previous data demonstrating that PME-1 effects in GB cell kinase inhibitor 128 

resistance are mediated by PP2A (28), we hypothesized that the recently developed PP2A 129 

reactivating compounds (SMAPs) (29) could provide a pharmacological approach to induce 130 

synthetic lethal (SL) drug interaction (30) with UCN-01 in GB cells (Fig. 1A). To test the 131 

hypothesis, we directly compared the synergy with UCN-01 and PP2A reactivation by either 132 

PME-1 depletion (31), or SMAP (NZ-8-061) treatment, on colony growth potential of T98G 133 

cells. As shown in Fig. 1B, PME-1 depletion (either by siRNA or by CRISPR/Cas9) or NZ-8-061 134 

did not induce any significant growth defect but induced potent SL with UCN-01. The 135 

interaction between NZ-8-061 and UCN-01 was dose dependent and observed by using both 136 

compounds at concentrations that showed negligible monotherapy activity (Fig. 1C, D, S1A). 137 

Validating the particular potential of PP2A reactivation in kinase inhibitor sensitization (9), 138 

NZ-8-061 displayed synergistic activity with as low as 0.5-1 µM concentration, that is 139 

approximately 10-fold lower concentrations that has been previously shown to be required 140 

for monotherapy effects for the compound (25,32). To rule out that the synergy between NZ-141 

8-061 and UCN-01 would be mediated by any potential non-selective targets of NZ-8-061, we 142 

used SMAPs DBK-794 and DBK-1154 derived from dibenzoapine tricyclic family, i.e. chemically 143 

different from NZ-8-061 (Fig. 1E). Both DBK-794 and DBK-1154 were originally used to 144 

demonstrate direct interaction between SMAPs and PP2A, and for mapping of their 145 

interaction region (32). Importantly, these chemically diverse PP2A reactivators all resulted 146 
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in identical drug interaction with UCN-01 (Fig. 1C, D, F, S1B). Together with identical synergy 147 

observed by genetic PP2A reactivation (Fig. 1B) (28), and induction of synergy with non-toxic 148 

low micromolar SMAP concentration (Fig. 1D), the use of SMAPs with different chemistry 149 

mitigate concerns that the SMAP effects would be related to potential non-selective effects 150 

reported using toxic (10-30 µM) concentrations of NZ-8-061 (a.k.a DT-061) (33). Induction of 151 

caspase 3/7 activity indicated that the mode of cell death by SMAP+UCN-01 combination was 152 

apoptosis (Fig. 1G), and the drug interaction was validated in multiple GB cell lines (Fig. 1H, 153 

S1B). Importantly, synergy between UCN-01 and NZ-8-061 was not observed in non-154 

cancerous fibroblasts providing evidence for cancer selectivity of the drug interaction (Fig. 155 

S1D). The synergistic drug interaction in GB cells was also seen in hypoxic environment, which 156 

is a common resistance mechanism in GB (Fig. S1C).  157 
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 158 

Figure 1. PP2A reactivation and UCN-01 exert a synergistic effect in GB. A) Schematic 159 
illustrating PP2A reactivation predisposed to MKI-induced synthetic lethality in GB. B) 160 
Representative images of colony formation assay in T98G cells under PME-1 siRNA-mediated 161 
depletion, PME-1 KO or NZ-8-061 treatment. Cells were treated with 25 nM UCN-01 (UCN) or 162 
left untreated (NT). Western blot analysis of PME-1 depletion or KO (lower panel). C) Viability 163 
of T98G cells treated with increasing concentration of NZ-8-061 either alone or in 164 
combination with 25 nM UCN-01 (UCN) for 72 h. Data as mean ± SD (n = 3 independent 165 
experiments; ***P < 0.001, Student's t-test). D) Synergy plot showing the most synergistic 166 
area (yellow box) between NZ-8-061 and UCN-01 in T98G cells. The Bliss synergy score is 167 
calculated over the whole dose-response matrix. E) Structures of two different classes of 168 
SMAPs exhibiting similar drug synergy with UCN-01. F) Viability of T98G cells treated SMAPs, 169 
10 µM DBK-794 and 5 µM DBK-1154, alone or in combination with 25 nM UCN-01 for 72 h. 170 
Data as mean ± SD (n = 2 independent experiments; **P < 0.01, ***P < 0.001, Student's t-171 
test). G) Caspase 3/7 activity in T98G cells treated with 8 µM NZ-8-061 alone or in combination 172 
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with 25 nM UCN-01 (UCN) for 24 h. The caspase inhibitor Z-VAD-FMK (20 µM) was added at 173 
the same time. Data as mean ± SD (n = 3 independent experiments; ***P < 0.001, Student's 174 
t-test). H) Representative images (left) and quantified data of colony formation assay (right) 175 
in U251, U118, A172 and U87 cells treated with 8 µM NZ-8-061 alone or in combination with 176 
UCN-01 (UCN; 200 nM, 25 nM, 50 nM and 500 nM, respectively). Data as mean ± SD (n = 2 177 
independent experiments; *P < 0.05, **P < 0.01, ***P < 0.001, Student's t-test). 178 
 179 

Strategy for characterization of Actionable Targets of Multi-kinase Inhibitors (AToMI) 180 

 181 

Results above demonstrate strong synergistic activity between PP2A reactivation and multi-182 

kinase inhibition by UCN-01. However, as UCN-01 targets approximately 50 different kinases 183 

at nanomolar concentrations (10,13),  it remains unclear which one(s) of these kinases are 184 

involved in SL phenotype observed in combination with PP2A reactivation. To systematically 185 

map the UCN-01 co-target interactions, we devised a functional screening platform consisting 186 

of the following steps:  187 

1) Chaperone interaction assay (34) to compare direct kinase binding between UCN-01 and 188 

other STS derivatives displaying differential synergism with PP2A reactivation in GB cells.  189 

2) siRNA screening for synergistic interaction between PP2A reactivation and targeting of the 190 

individual kinase hits from the step 1.  191 

3) Bioinformatics analysis of actionable kinase networks based on steps 1 and 2 for 192 

identification of selective small molecule inhibitors for the critical kinase nodes in the 193 

network.  194 

4) Small molecule kinase inhibitor validation experiments.  195 

As this strategy could be generally suitable for functional filtering of targets of MKIs, we 196 

hereby refer to the screening platform as characterization of Actionable Targets of Multi-197 

kinase Inhibitors (AToMI) (Fig. 2). The individual technologies used in AToMI are 198 
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interchangeable with the most suitable technologies for any other application AToMI would 199 

be used for. 200 

 201 

AToMI screening for UCN-01 target kinases involved in GB cell synthetic lethality in 202 

combination with PP2A reactivation 203 

 204 

By using AToMI, we compared the kinase target profiles of STS analogues CEP-701, K252a, 205 

and UCN-01, previously shown to induce SL in PME-1 depleted T98G cells (28), as well as 206 

K252c and Rebeccamycin that did not induce SL when combined with PP2A reactivation (28). 207 

The differential synergistic activities of these STS derivatives in combination with NZ-8-061 208 

was confirmed by colony growth assay (Fig. S2A). All five compounds were screened for their 209 

direct kinase protein binding against 300 kinases by chaperone interaction assay (34) (Fig. 2A, 210 

S2B, Table S1). This assay measures the interaction of kinases with their chaperone Cdc37 in 211 

the presence (or absence) of kinase inhibitors. Binding of the inhibitor to its target leads to 212 

thermodynamic stabilization of the target, which can be detected as weaker interaction 213 

between the kinase and Cdc37 (35).Using log2 -0.5-fold reduction in chaperone binding as a 214 

threshold for interaction, a total of 29 candidate kinases were identified to differentially 215 

interact with STS derivatives that synergized with PP2A (CEP-701, K252a, and UCN-01), but 216 

not with rebeccamycin or K252c (Table S2). 217 

 218 

In the siRNA screening step of AToMI, the goal was to identify among the shared targets of 219 

CEP-701, K252a, and UCN-01, individual kinases whose co-inhibition resulted in a synergistic 220 

inhibition of cell viability with PP2A reactivation (Fig. 2B). The screen was conducted with a 221 

custom human kinase siRNA library, which had three non-overlapping siRNAs targeting each 222 
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kinases. In addition to 29 candidate kinases from the step 1, the siRNA library was extended 223 

to include 8 additional kinases frequently altered in GB (3,16) (Table S3). The siRNAs were 224 

reverse transfected to T98G cells, and cells were subsequently exposed to PP2A reactivation 225 

by NZ-8-061 treatment (Fig. 2B). In the validation screen, we included selected 25 kinases in 226 

combination with PME-1 siRNA to evaluate similarity in drug sensitization between chemical 227 

(NZ-8-061) and genetic (PME-1 siRNA) PP2A reactivation (Fig. 2B). The efficacy of PME-1 228 

depletion by tree independent siRNAs was validated by western blotting from parallel 229 

samples (Fig. S2C). For each kinase siRNA, Gene Activity Ranking Profiles and synergy scores 230 

were computed as described in the methods section of siRNA screens. Notably, regardless of 231 

the marked differences in the targeting approaches, most of the kinases targeted in both 232 

screens were found to synergize both with NZ-8-061 treatment and PME-1 depletion (Fig. 233 

2D), validating both the shared PP2A-induced mode of action, and the broad impact of PP2A 234 

activity in kinase inhibitor tolerance in GB. 235 

 236 

STRING protein-protein interaction network analysis of the AToMI SL kinases from the step 2 237 

revealed enrichment of RTK/RAF/MAPK (PDGFR, RAF1, BRAF, MAPK1) and PI3K/AKT/mTOR 238 

pathways (PIKCA, AKT1, AKT3), as well as mitochondrial pyruvate dehydrogenase kinase 239 

(PDK1 and PDK4) among the kinases, connected to PP2A B-subunits, previously shown to 240 

mediate SL between STS and PME-1 depletion (Fig. 2E) (28). As each of these kinase modules 241 

were represented also among the kinases that were shared between the NZ-8-061 and siPME-242 

1 synergy targets, we proceeded to testing these GB signaling nodes by selective small-243 

molecule inhibitors. Selectivity of the chosen small-molecule inhibitors was evaluated based 244 

recently published target selectivity databases, and for some compounds also by Chaperone 245 

interaction assay (Table S4) (10,14). To facilitate translation of the results, we also considered 246 
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oral bioavailability and BBB permeability of the compounds in drug selection. The selected 7 247 

kinase inhibitors were screened for cell viability effects in T98G cells with two SMAPs, NZ-8-248 

061 and DBK-1154 (25). As a control, we used an inactive SMAP analog DBK-766, that binds 249 

PP2A but is unable to reactivate it even at a concentration of 20 µM in vitro (32). The results 250 

show that both NZ-8-061 and DBK-1154 sensitized T98G cells to MK-2206 and AKT1/2i (AKT 251 

signaling) (36), and DCA (PDK1-4 inhibitor) (19,37) used at concentrations that engage their 252 

aimed target kinase (Fig. S2D, E). Importantly, the inactive SMAP (DBK-766) did not synergize 253 

with any of these kinase inhibitors (Fig. 2F). Further, RAF inhibitors (LY3009120 and 254 

Vemurafenib), PI3K inhibitor (LY294002), or MINK1 inhibitor (mubritinib) did not display 255 

significant combinatorial effect with PP2A reactivation (Fig. 2F). Importantly, another PDK 256 

inhibitor, lipoic acid (37), recapitulated the synergy with SMAPs (Fig. S3A, B). In addition, 257 

further validating the role of PP2A as a target for SMAPs in inducing the synergistic drug 258 

interaction, PP2A reactivation by PME-1 inhibition also synergized with MK-2206 and DCA 259 

treatments (Fig. S3C, D).  260 

 261 

Collectively, these results demonstrate the usefulness of AToMI screening for identification 262 

of individual actionable target kinases for MKIs. Regarding the UCN-01 target kinases involved 263 

in SL with PP2A reactivation, AToMI screening resulted in selection of pharmacological 264 

inhibitors of AKT pathway and mitochondrial PDK1-4 kinases for further functional validation.  265 

 266 
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 267 

Figure 2. AToMI screening for UCN-01 target kinases involved in GB cell synthetic lethality 268 
in combination with PP2A reactivation. A) Heat map representation of interaction of STS 269 
derivatives, CEP-701, K252a, UCN-01, rebeccamycin and K252c, with 300 protein kinases by 270 
chaperone interaction assay. Color scale bar indicates log2 fold changes of kinase/Cdc37 271 
interactions between inhibitor and DMSO treatments. SL - synthetic lethality, NE - no effect. 272 
B) Schematic illustrating of the performed kinase siRNA screens in T98G cells under NZ-8-061-273 
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treatment or PME-1 depletion. C) GARP scores of siRNA screen in T98G cells under NZ-8-061-274 
treatment or PME-1 depletion (left axis). Kinases were ordered according to synergy scores 275 
(right axis). D) Heat map representation of kinases involved in synthetic lethality in NZ-8-061-276 
treated and PME-1-depleted T98G cells. Color bar indicates the synergy scores. E) STRING 277 
interactive mapping of screen kinase hits onto PP2A network. F) Viability of T98G cells and G) 278 
established GB, E98 and U87MG, and patient-derived GSCs, BT3-CD133+ and BT12, cell lines 279 
treated with the selected kinase inhibitors alone or in combination with 8 µM NZ-8-061, 6 µM 280 
DBK-1154 or 10 µM DBK-766 for 72 h. Human fibroblasts were used as a negative control cell 281 
line. Data as mean ± SD (n = 3 independent experiments). *P < 0.05, **P<0.01, ***P<0.001 282 
by Student's t-test.  283 
 284 

Triplet therapy induces cytotoxicity across heterogeneous GB cell lines  285 

 286 

Cellular heterogeneity and high intrinsic therapy resistance of glioblastoma stem-like cells 287 

(GSCs) are major challenges related GB therapies (15). Therefore, we evaluated the synergy 288 

between AKT and PDK inhibitors with SMAPs across two additional established GB cell lines, 289 

and two patient-derived mesenchymal type GSC lines (BT-CD133+, BT12) (25,38). Notably, 290 

western blot analysis revealed constitutive, but highly heterogeneous AKT and PDK1-4 activity 291 

across most of the brain tumor cell models used in this study (Fig. S4A). Consistently with high 292 

intrinsic kinase inhibitor resistance of GB cells (25,39), none of the kinase inhibitors as 293 

monotherapies, and used at doses that effectively inhibited their intended targets (Fig. S2D, 294 

E), did induce cytotoxic response (Fig. 2G). Further, albeit combination with SMAPs sensitized 295 

GB and GSC cells to a certain extent to AKT or PDK1-4 inhibition, the maximal co-inhibition of 296 

cell viability with double combinations was highly variable across the cell lines, and only some 297 

instances could be considered cytotoxic (Fig. 2G). Notably, the inactive SMAP analog DBK-766 298 

did not synergize with any tested kinase inhibitor in any of the GB cell lines, and the human 299 

fibroblasts did not show any signs of synergy between kinase inhibition and SMAPs (Fig. 2G). 300 

 301 
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As these results indicate that single kinase inhibitors, even when combined with PP2A 302 

reactivation, cannot be used as a general strategy against heterogeneous GB cell populations, 303 

we decided to combine both AKT pathway and PDK1-4 inhibition together with PP2A 304 

reactivation as a triplet therapy. The rationale behind the triplet combination was that non-305 

genetic signaling rewiring induced by single therapies (7,8) could be avoided by simultaneous 306 

targeting of two major kinase signaling nodes and by lowering the serine/threonine 307 

phosphorylation activity by PP2A. Even though both AKT inhibitors exhibited similar 308 

efficiency, we chose MK-2206 for the triplet therapy because of its frequent use in clinical 309 

trials (36). To assess long-term cytotoxic effects of the combinations, the triplet therapies 310 

were tested by using colony growth assays. Notably, fully supportive of therapy-induced 311 

therapy tolerance, all cell lines, except for T98G, were found to be resistant to cytotoxic 312 

effects of combined PDK (DCA) and AKT (MK-2206) inhibition (Fig. 3A, B). NZ-8-061 was found 313 

to potentiate effects of MK-2206 or DCA variably across the cell lines; most notably seen in 314 

E98 cells for MK-2206, and in BT3-CD133+ cells for DCA (Fig. 3A, B). However, the triplet 315 

therapy was the only drug combination that was found effectively eradicating all GB and GSC 316 

lines without notable effects on fibroblasts (Fig. 3A, B). This supports our hypothesis that 317 

triplet therapy is needed to tackle the heterogeneity of the therapy responses in GB.  318 

 319 

Medulloblastoma (MB) is another brain tumor in which kinase inhibitors have been proven 320 

clinically ineffective (40). However, AKT, PDK and PP2A have all been implicated as potential 321 

targets for future MB therapies (40,41). Therefore, we studied whether the results above 322 

could be expanded from GB to MB. Reassuringly, when tested on two MB cell models, DAOY 323 

and D283-Med, representing SHH subtype and Group 3/4, respectively, we observed similar 324 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477108doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.20.477108
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

synergistic drug interaction between MK-2206, DCA and SMAPs (NZ-8-061 and DBK-1160) as 325 

across the GB cell lines (Fig. 3C). In addition, in colony growth assay in DAOY cells, we 326 

confirmed that combination of AKT and PDK inhibition was not sufficient for potent 327 

cytotoxicity, whereas combination with SMAP DBK-1160 resulted in very potent SL phenotype 328 

(Fig. 3D). 329 

 330 

To better understand the qualitative differences between GB cell responses to mono, double, 331 

and triplet therapies, we performed an Incucyte long-term confluency analysis in E98 cells 332 

treated with drugs twice for two weeks, with one week drug holiday in between (Fig. 3E). 333 

Although the E98 cells responded to all therapies during the first dosing period, the long-term 334 

data confirmed full resistance to each of the monotherapies. On the other hand, doublet 335 

combinations were found to be more efficient than monotherapies, but with all doublet 336 

combinations the effect was only cytostatic, as the cells were able to regain their proliferation 337 

after the drug wash-outs (Fig. 3E, see days 6-13 and 21-24). However, the triplet therapy 338 

treated cells were not able to escape the therapy during the follow-up and showed clear signs 339 

of cytotoxic response after initiation of the second dosing period (Fig. 3E, F).  340 

 341 

Collectively, these results provide a strong validation to the AToMI screening results across 342 

genetically heterogeneous GB, GSC and MB cell lines. Importantly, the results clearly 343 

demonstrate that efficient shutdown of therapy tolerance across GB and MB cell lines 344 

requires combined inhibition of two kinases, and reactivation of PP2A phosphatase activity. 345 
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 346 

Figure 3. Triplet combination of NZ-8-061 with DCA and MK-2206 exert a synergistic 347 
cytotoxic effect in molecularly heterogeneous GB and MB cell lines. A) Representative 348 
images of colony growth assay in T98G, E98, BT3-CD133+, BT12 and fibroblasts under triplet 349 
combination treatment as indicated. B) Heat map representation of quantified colony growth 350 
assay data in the indicated cell lines treated with MK-2206 (MK; 2.5 or 5 µM), DCA (D; 5 or 10 351 
mM) or NZ-8-061 alone or in double or triplet combination. Human fibroblasts were used as 352 
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a negative control cell line (n=2 independent experiments). C) Cell viability in DAOY and D283-353 
Med medulloblastoma cells treated with DMSO, 8 µM DBK-116 or 10 µM NZ-8-061 alone or 354 
in combination with 5 µM MK-2206 (MK), 20 mM DCA, or MK + DCA for 72 h. Data as mean ± 355 
SD (n = 3 independent experiments: *P<0.05, **P<0.01, ***P<0.001 by Student's t-test). D) 356 
Representative images of colony growth assay in DAOY cells under triplet combination as 357 
indicated. E) Proliferation of E98 cells treated with DMSO, 7 µM MK-2206 (MK), 20 mM DCA, 358 
10 µM NZ-8-061 (NZ) alone or in double or triplet combinations. Data as mean ± SEM (n = 6 – 359 
12 wells per condition). *P < 0.05, **P<0.01, ***P<0.001 by Kruskal-Wallis test to DMSO 360 
group. F) Representative pictures of E98 cells from (E) at day 24.  361 
 362 

The triplet therapy blunts therapy-induced signaling rewiring and potentiates apoptosis 363 

induction 364 

 365 

Fully consistent with the therapy-induced signaling rewiring hypothesis, we found that while 366 

MK-2206 efficiently inhibited the AKT S473 phosphorylation, it simultaneously enhanced, at 367 

least to certain extent in all cell lines, phosphorylation of a direct mitochondrial PDK1-4 target 368 

PDHE1α (Pyruvate Dehydrogenase E1 Subunit Alpha 1) (37) (Fig. 4A-C). In contrast, inhibition 369 

of PDK by DCA completely abolished phosphorylation of PDHE1α S300, but enhanced 370 

phosphorylation of AKT in T98G cells (Fig. 4A-C). However, combination of MK-2206 and DCA 371 

was able to shut-down phosphorylation of both proteins across all cell lines (Fig. 4A-C). NZ-8-372 

061 treatment instead affected AKT and PDK signaling in very heterogeneous manner, 373 

depending on the kinase inhibitor combination, and the cell line. In other cell lines, except for 374 

T98G, DCA + NZ-8-061 combination inhibited AKT S473 phosphorylation, but instead resulted 375 

in less efficient PDHE1α S300 inhibition than with DCA alone (Fig. 4C). On the other hand, NZ-376 

8-061 did rescue the compensatory PDHE1α S300 phosphorylation induced by MK-2206. NZ-377 

8-061 also expectedly inhibited AKT phosphorylation across the cell lines, but very 378 

interestingly also synergized with DCA in AKT inhibition (Fig. 4A-C).  379 

 380 
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To correlate these findings to the apoptotic potential of the combination therapies, we 381 

examined PARP cleavage from the same cellular lysates. The data reveals that neither NZ-8-382 

061 at doses that synergize in drug combinations, nor total shutdown of AKT and PDK 383 

signaling (MK-2206 + DCA) (Fig. 4B, C), was alone sufficient for maximal apoptosis induction 384 

in any of the studied GB cell lines (Fig. 4D). However, the highest apoptotic response was 385 

consistently seen across all cell lines upon the triplet therapy treatment (Fig. 4D). Lastly, DAOY 386 

MB cells displayed similar therapy-induced signaling rewiring between AKT and PDK pathways 387 

than in GB cells, but combination with DBK-1160 blunted the rewiring and resulted in potent 388 

apoptosis induction (Fig. S4B).  389 

 390 

Collectively, these observations confirm prevalent therapy-induced signaling rewiring and 391 

heterogeneity in the combinatorial drug responses across the GB cells. Importantly, SMAP 392 

treatment was found to inhibit therapy-induced signaling rewiring, and thereby convert 393 

cytostatic kinase inhibitor responses to cytotoxic effects across GB cells. The results also 394 

strongly indicate that the discovered kinase pathway inhibition tolerance mechanism is 395 

shared between GB and MB. 396 
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 397 

Figure 4. Inhibition of drug-induced signaling rewiring and apoptosis sensitization by the 398 
triplet therapy. A) Immunoblot assessment of phosphorylated AKT (S473), phosphorylated 399 
PDHE1α (S300), and cleaved PARP after treatment with MK-2206 (MK), DCA or NZ-8-061 400 
alone or in double or triplet combination for 24 h in T98G, E98, BT3-CD133+ and BT12 cells. 401 
Normalized quantifications from (A) for B) phosphorylated AKT (S473) to total AKT, C) 402 
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phosphorylated PDHE1α to GAPDH, and D) cleaved PARP to β-actin. Data as mean ± SD (n = 3 403 
independent experiments: *P < 0.05, **P<0.01, ***P<0.001 by Student's t-test). 404 
 405 

Triplet therapy inhibits mitochondrial OXPHOS and primes to BH3 protein-mediated 406 

apoptosis  407 

 408 

The above results revealed an interesting crosstalk between cytoplasmic AKT and 409 

mitochondrial PDK1-4 signaling. PP2A inhibition by CIP2A was recently implicated in 410 

regulation of mitochondrial oxidative phosphorylation (OXPHOS) (42). Specifically, PP2A 411 

reactivation by CIP2A inhibition resulted in inhibition of maximal mitochondrial respiration, 412 

decrease in spare oxidative capacity, and decrease in ATP production (42). To analyze whether 413 

apoptosis-sensitizing effect of pharmacological PP2A reactivation observed above would be 414 

associated with defects in OXPHOS, the T98G cells were exposed to either MK-2206 or DCA 415 

alone, or in combination with NZ-8-061, and analyzed by Seahorse Real-Time XF Analyzer (see 416 

Materials and Methods for details). As excepted, DCA alone increased ATP production, as it 417 

reactivates the OXPHOS in the mitochondria (Fig. 5A, B) (37,43). On the contrary, MK-2206 418 

reduced ATP production and mitochondrial-linked respiration (Fig. 5B). Interestingly, NZ-8-419 

061 used at SL inducing non-toxic concentration had a broad-spectrum effect on 420 

mitochondrial metabolism. Especially interesting drug interaction was inhibition of DCA-421 

induced OXPHOS (Basal, Maximal, and Spare), indicating that PP2A reactivation can prevent 422 

compensatory mitochondrial survival mechanism. NZ-8-061 alone, and in combination with 423 

MK-2206, also profoundly increased proton leak indicating for mitochondrial membrane 424 

damage (Fig. 5A, B).  425 

 426 
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Based on recently published results, the inner mitochondrial impairment on OXPHOS, and 427 

increased proton leakage, potently interact with BH3-only protein mediated apoptosis 428 

regulation in the outer mitochondrial membrane (44). Therefore, we also characterized the 429 

impact of drug combinations on mitochondrial cytochrome c release. In line with other 430 

findings (Fig. 3C and 4D), we observed limited cytochrome c release by single drug treatment 431 

with NZ-8-061, DCA or MK-2206 or with double NZ-8-061 + DCA or NZ-8-061 + MK-2206 432 

combinations (Fig. 5C). In contrast, the triplet therapy induced strong cytochrome c release 433 

(Fig. 5C). As cytochrome c release is controlled by BH3-only proteins on the outer 434 

mitochondrial membrane (45), we eventually wanted to clarify the functional interaction 435 

between cytoplasmic AKT, and mitochondrial PDK1-4 kinases on regulation of mitochondrial 436 

apoptosis by dynamic BH3 profiling. BH3 profiling uses a library of synthetic peptides to 437 

elucidate mechanisms by which cell evade apoptosis and dissect the functional relevance of 438 

each BCL2 family member (46,47). BH3 profiling revealed a limited impact on apoptotic 439 

priming by PDK1-4 inhibition, but a marked increase in the cells’ susceptibility towards BIM, 440 

HRK, and MS1 mediated cytochrome c release when AKT was inhibited (Fig. 5D). Notably, 441 

there was a marked enhancement and broadening of BH3-mediated apoptosis priming when 442 

AKT and PDK1-4 were co-inhibited, providing an additional explanation for their synergistic 443 

pro-apoptotic effect (Fig. 5E). Results related to the impact of triplet therapy on BH3 profiling 444 

were inconclusive presumably due to high apoptotic activity (data not shown). 445 

 446 

Collectively, these data identify multiple mitochondrial converge points between AKT, PDK1-447 

4 and PP2A signaling. They also reveal the mechanistic basis for the high apoptotic activity of 448 

the triplet therapy due to NZ-8-061-elicited inhibition of the compensatory OXPHOS, and 449 

inner mitochondrial membrane proton leakage, combined with synergism between MK-2206 450 
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and DCA on BH3 priming. Notably, the synergistic interaction between inner mitochondrial 451 

dysfunction (OXPHOS and proton leakage) and BH3 priming in apoptosis induction is 452 

consistent with recent findings in other cancer types (44). 453 

 454 
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Fig. 5. Triplet therapy inhibits mitochondrial OXPHOS and primes to BH3 protein-mediated 455 
apoptosis A) Mitochondrial stress test Seahorse profile in T98G cells treated with 10 mM DCA 456 
or 7 µM MK-2206 (MK) alone or in combination with 10 µM NZ-8-061 (NZ) for 24 h. B) 457 
Mitochondrial parameters from (A). Data as mean ± SD (n = 3 independent experiments; *P < 458 
0.05, **P<0.01, ***P<0.001 by Student's t-test). C) Cytochrome c release from T98G cells 459 
treated with 5 µM MK-2206 (MK), 20 mM DCA or 8 µM NZ-8-061 (NZ) alone or in double or 460 
triplet combination for 24 h. Data as mean ± SD (n = 3, *P < 0.05, **P<0.01, ***P<0.001 by 461 
Student's t-test). D) Priming of T98G cells to apoptosis induction by indicated BH3 peptides.  462 
5 µM MK-2206 (MK), 20 mM DCA were used alone or combination for 24 h. Data as mean ± 463 
SD (n = 3, *P < 0.05, **P<0.01, ***P<0.001 by Student's t-test) E) Schematic illustration of 464 
mitochondrial mechanisms for triplet therapy-induced apoptosis based on Fig. 4 and 5. 465 
Inhibition of PDK1-4 induces compensatory OXPHOS but this is blunted by SMAP treatment 466 
which additionally induces mitochondrial membrane proton leakage. PDK1-4 and AKT 467 
inhibition synergizes on BH3-meidated apoptosis priming and SMAP treatment inhibits 468 
signaling rewiring between the kinases. Whereas in response to doublet drug combinations 469 
cells can induce some compensatory survival mechanism, these are simultaneously inhibited 470 
in triplet therapy treated cells resulting in terminal apoptosis induction.  471 
 472 

Validation of therapeutic potential of the triplet therapy in orthotopic GB and 473 

medulloblastoma models 474 

 475 

In vivo relevance of the results was investigated in subcutaneous and intracranial models 476 

using both E98 GB cells and DAOY MB cells. First, we wanted to provide in vivo validation to 477 

AToMI screening results that the SL effects of SMAPs with UCN-01 can be recapitulated by 478 

combination of AKT and PDK inhibition. As UCN-01 does not cross the BBB, these experiments 479 

were performed using subcutaneous xenografts, and instead of NZ-8-061, we used DBK-1160 480 

as a SMAP due to its better pharmacokinetic profile based on our previous studies (data not 481 

shown). Fully validating the results from AToMI approach, the orally dosed triplet therapy 482 

(DBK-1160 + MK-2206 + DCA) was equally efficient, or even superior to combination of DBK-483 

1160 and UCN-01 (Fig. 6A, B). The robust in vivo antitumor effect of the triplet therapy in 484 

DAOY model was readily seen also when comparing the sizes of the excised tumors (Fig. 6C).  485 
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 486 

To molecularly profile the triplet therapy effect in the treated tumors, the vehicle and the 487 

triplet therapy treated tumors (n=5 for both) were subjected to mass spectrometry 488 

phosphoproteomics analysis using TMT-labeling. Upon filtering the data for those 489 

phosphopeptides there were quantifiable from at least three tumors per group, and with FDR 490 

of 5% for significance of the difference in phosphopeptide expression between the groups 491 

(Table S5), the Reactome pathway analysis validated the impact triplet therapy on both 492 

apoptosis and cell cycle, but on the other hand revealed a very strong enrichment of targets 493 

involved in “Signaling by Rho GTPases” (Fig. 6D, S5, Table S6). Furthermore, fully consistent 494 

with our model that efficient therapy response in brain tumors requires wide-spread kinase 495 

inhibition, we found inhibition of phosphorylation of several kinases from the triplet therapy 496 

treated tumors (Fig. 6E, Table S5). Notably, among those were inhibition of the 497 

phosphorylation of the activation loop of AKT1, 2 and 3, which together with enrichment of 498 

mTOR signaling based on phosphopeptide data (Fig. 6E, Table S5), perfectly supports our 499 

mechanistic data demonstrating importance of the shutdown of rewiring to AKT signaling (Fig. 500 

4). Inhibition of AKT signaling was evident also based on kinase target motif enrichment 501 

analysis where canonical AKT target motifs (R-x-R-x-x-S/T and R-x-x-S/T) were clearly enriched 502 

in the phosphopeptides downregulated by the triplet therapy (Fig. 6I). Beside AKT, among the 503 

dephosphorylated kinases were also the pro-survival downstream targets of ERK MAPK, RSK1 504 

and 3, as well as transcriptional elongation promoting kinase CDK9, that is essential for brain 505 

tumor-initiating cells (48), and a synergistic drug target with SMAPs (49). Additional 506 

exploration of the data by NetworKIN analysis, revealed enrichment of CDK1 and CDK5 targets 507 

(Fig. S6A). CDK5 is a known neuronal kinase activated in GB and MB, and CDK1 regulation links 508 

very well to enrichment of cell cycle/mitosis based on phoshopeptide data (Fig. 6D). 509 
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Interestingly, but consistent with the therapy-induced non-genetic signaling rewiring, we also 510 

identified a number phosphopeptides upregulated in the triplet therapy treated tumors (Fig. 511 

6F; upper right corner and Table S5). Related to kinase signaling, we noticed that several 512 

kinases involved in the pro-apoptotic JNK and p38 MAPK signaling were hyperphosphorylated 513 

in the treated tumors (Fig. S6B), and both JNK1 and JNK2 were among the top enriched kinase 514 

target motifs based on NetworKIN analysis (Fig. S6A). As both JNK and p38 are involved 515 

apoptosis regulation by BH3 proteins (50), these data provide a plausible link between the 516 

proposed mechanism for triplet therapy induced brain tumor cell killing (Fig. 5E), and the 517 

observed in vivo therapeutic effects (Fig.6F). 518 

 519 

Finally, in intracranial model the triplet therapy was tested on luciferase-expressing E98 cells 520 

that carry characteristics of GSCs and has very infiltrative growth pattern in vivo (25). In 521 

addition to these faithful human GB characteristics, E98 cells displayed indistinguishable 522 

triplet therapy response as compared to patient derived GSC cell lines in vitro (Fig. 3). 523 

Importantly, we observed significant inhibition of tumor growth by orally dosed triplet 524 

therapy initiated upon appearance of detectable tumors at day 10 (Fig. 6G). For DAOY cells, 525 

we relied on mouse survival as the end-point measurement of the therapy effect, since no 526 

tumor growth visualization approaches were available for these tumors. Remarkably, more 527 

than 50% of the vehicle treated mice died during the therapy, whereas in the triplet therapy 528 

group only one mouse had to be sacrificed due to neurological symptoms (Fig. 6H). Following 529 

cessation of therapy after 30 days, due to local regulations, we observed a significant increase 530 

in mouse survival in the triplet therapy group, associated with 26-day prolongation of the 531 

median probability of survival (Fig 6H). No obvious toxicities were observed during triplet 532 

therapy treatment periods in either subcutaneous or intracranial models (Fig. S7). However, 533 
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as expected, the SMAP treatment resulted in reversible increase in liver weight, as has been 534 

reported earlier (32). 535 

 536 

Collectively, the subcutaneous tumor results provide in vivo validation that AKT and PDK are 537 

the target kinases for the SL-inducing effect of UCN-01 in PP2A reactivated brain tumor cells. 538 

The results further validate the translational relevance of the results in independent 539 

orthotopic tumor models of common human brain tumors. 540 

 541 
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Fig. 6. Validation triplet combination therapy in vivo. A-B) Quantification of tumor volume 542 
from E98 (A) and DAOY (B) s.c. tumors in mice treated with DBK-1160 (1160; 100 mg/kg twice 543 
a day) and UCN-01 (UCN; 3 mg/kg once a day) or MK-2206 (MK; 100 mg/kg every second day) 544 
and DCA (100 mg/kg twice a day), or vehicle control. Each group had n=8 mice in E98, n=10 545 
mice in DAOY experiments. Mean ± SD. *P < 0.05 by two-way ANOVA test. C) Representative 546 
images from H&E staining of DAOY s.c. tumors from (B, n=5). Scale bar, 1000 µm. D) Reactome 547 
processes based on significantly (p< 0.05) regulated phosphopeptides from triplet therapy 548 
treated DAOY xenografts in (B). E) Kinases dephosphorylated by triplet therapy in DAOY 549 
xenografts from (B). F) Volcano plot showing differentially regulated phosphopeptides from 550 
(B). Icelogo kinase motif enrichment analysis from the dephosphorylated peptides (in red) 551 
(p≤0.01, log2FC ≤ -0.5) revealed enrichment of canonical AKT sites (R-x-R-x-x-S/T and R-x-x-552 
S/T). G) Bioluminescence follow up of an orthotopic E98 glioblastoma tumor comparing the 553 
vehicle or triplet combination therapies (DBK-1160 (100 mg/kg twice a day) + MK-2206 (100 554 
mg/kg every second day) + DCA (100 mg/kg twice a day)). Mean ± SEM. (n=10 mice per group). 555 
**P < 0.01 by Student's t-test. H) Kaplan–Meier survival analysis of xenograft orthotopic DAOY 556 
model treated with triplet combination (DBK-1160 (100 mg/kg twice a day) + MK-2206 (100 557 
mg/kg every second day) + DCA (100 mg/kg twice a day)). Vehicle n=6, Triplet combo n=8 558 
mice per group. Mantel-Cox test. * P <0.05. 559 
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Discussion  560 

 561 

Kinase inhibitor resistance of brain tumors is a notable unmet clinical challenge (4,21,40). 562 

Considering that hyper activated kinase signaling is one of the hallmarks of GB (3,15), clinical 563 

resistance of GB to kinase inhibitors constitutes a mechanistic enigma. One of the potential 564 

reasons for ineffectiveness of kinase inhibitors in inhibition of oncogenic phosphorylation in 565 

GB is that phosphatases have not been taken into the account when designing the GB therapy 566 

strategies. There is a very strong theoretical basis for synergistic activities of simultaneous 567 

kinase inhibition and phosphatase activation in phosphorylation-dependent cancers (9,29), 568 

but the therapeutic impact of such combinatorial approach in overcoming therapy tolerance 569 

in brain cancers has been thus far unclear. Our results, using a panel of heterogeneous GB 570 

and MB cell lines, provide convincing proof-of-principle evidence that overcoming kinase 571 

inhibitor tolerance in brain cancers requires simultaneous multi-kinase inhibition and PP2A 572 

phosphatase activation. 573 

 574 

MKIs provide an attractive approach to simultaneously inhibit several oncogenic kinases, and 575 

some MKIs (e.g., Sunitinib, PKC412), are clinically used as cancer therapies (12). However, 576 

similar to more selective kinase inhibitors, all tested MKIs have thus far failed in GB clinical 577 

trials (4). STS derivatives targeting more than 50 kinases (13) could provide a wide enough 578 

polypharmacological kinase inhibitor spectrum to target GB driver mechanisms, even in the 579 

case of heterogeneous GB cell populations. However, use of STSs as GB therapeutics is 580 

compromised by their inability to cross BBB. To overcome these limitations, and to better 581 

understand GB relevant STS target kinases, we developed the AToMI approach. As a result, 582 
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we found 29 kinases which selectively bound to STS derivatives and synergized with PP2A 583 

reactivation by either PME-1 inhibition or by SMAPs (Fig. 2A, S2B). Notably, the kinases which 584 

synergized with PP2A reactivation represent the commonly hyper activated pathways in GB. 585 

For example, AKT pathway is one of the most dysregulated pathways in GB, and it was well 586 

presented in the siRNA screen as depletion of AKT1, AKT3 and PIK3CA all synergized with PP2A 587 

reactivation (Fig 2C, D). Another strongly GB associated signaling mechanism was 588 

mitochondrial glycolysis, as depletion of both PDK1 and PDK4 synergized with PP2A 589 

reactivation (Fig 2C, D). PDK kinases are key regulators of metabolic shift from OXPHOS to 590 

glycolysis, which promotes GB tumor growth and resistance to therapies (18,19). However, 591 

similar to other kinase inhibitor therapies, also AKT and PDK1-4 targeting monotherapies have 592 

failed to demonstrate significant survival effects in clinical trials for GB (37,51-53). Our 593 

subsequent kinase inhibitor combination experiments, using inhibitors at doses that inhibit 594 

their target kinases, validate the ineffectiveness of AKT and PDK1-4 targeting in eradicating 595 

heterogeneous GB cell lines (Fig. 3A, B). While all double therapies tested here, involving 596 

either two kinase inhibitors, or one kinase inhibitor combined with SMAP, resulted at best in 597 

cytostatic effect, the triplet therapy induced cytotoxic response considered as clinically 598 

efficacious (Fig. 3A, B). Collectively, these results validate the usefulness of AToMI approach 599 

for future studies aiming to characterize actionable targets of MKIs in different indications. 600 

The AToMI approach also facilitated the identification of BBB permeable kinase inhibitors 601 

with similar biological activity than UCN-01. This allowed validation of all main conclusions of 602 

this study in vivo in two brain cancer orthotopic models displaying both significant therapeutic 603 

effect with the triplet therapy.  604 

 605 
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Phosphorylation-dependent signaling rewiring after therapy is a prevalent mechanism for 606 

cancer cells to escape apoptotic cell killing (7,8). Consistent with this model, we found that 607 

AKT inhibition by MK-2206 induced phosphorylation of the PDK1-4 target PDHE1α in GB and 608 

MB cells (Fig. 4A-B, S4B). We also validate in vivo inhibition of signaling rewiring to AKT and 609 

mTOR in triplet therapy treated MB tumors (Fig. 6D-F). Notably, the therapy-induced signaling 610 

rewiring between AKT and PDK pathways was abolished when MK-2206 and DCA were 611 

combined, yet it failed to induce efficient apoptosis across the GB and MB cell lines, except 612 

for the most sensitive T98G cells (Fig. 3A-C, 4D). PP2A reactivation by SMAPs altered brain 613 

tumor cells response to MK-2206 and DCA in multiple ways. Consistent with the established 614 

role of PP2A as an AKT phosphatase (23), SMAPs reduced the basal AKT S473 phosphorylation, 615 

but surprisingly also strongly synergized with DCA in AKT dephosphorylation in most of the 616 

studied cell lines. In addition, PP2A reactivation inhibited signaling rewiring by restraining MK-617 

2206-induced PDHE1α S300 phosphorylation. Interaction between PP2A and PDK was also 618 

observed at the level of mitochondrial metabolism. NZ-8-061 decreased basal, spare, and 619 

maximal respiratory capacity, and blunted the DCA-induced increase in OXPHOS. Importantly, 620 

previous data indicate OXPHOS induction in response to inhibition of glycolysis (such as is 621 

seen in DCA-treated cells) as a rescue mechanism protecting cells from apoptosis (54). 622 

Furthermore, NZ-8-061 caused mitochondrial inner membrane proton leak which decreases 623 

mitochondrial membrane potential leading to higher probability of apoptosis (55).  624 

 625 

Collectively, our data identity a strategy for killing of heterogeneous brain tumor cells based 626 

on MKI combined with PP2A reactivation. Specifically, through AToMI approach we identify 627 

AKT and PDK1-4 as the critical UCN-01 target kinases involved in synthetic lethality when 628 

combined with either genetic or pharmacological PP2A reactivation. Notably, our results are 629 
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relevant across heterogeneous GB and MB models including patient-derived GSCs. Further, 630 

PP2A activation was found to sensitize GB cells against majority of the kinases tested by the 631 

AToMI approach (Fig. 2D), hence providing a rich source for kinase inhibitor combinations to 632 

be validated in the future studies. Combined with the previously demonstrated role for PP2A 633 

in impacting lung cancer cell responses to over dozens of kinase inhibitors (24), our results 634 

indicate that the uniform kinase inhibitor resistance observed in GB and MB clinical trials (4), 635 

could be to significant extent contributed to non-genetic PP2A inhibition by its inhibitor 636 

proteins (25,28,40,56). In this regard, diagnostic definition of PP2A inhibitor protein status 637 

would greatly simplify biomarker-based analysis of PP2A activity in brain tumors because it 638 

sidesteps the need for analyzing all the possibly relevant PP2A subunits. Specifically, the 639 

current results encourage future brain tumor clinical trials with combinations of clinically 640 

tested AKT and PDK1-4 inhibitors (20,51,53) in a significant proportion of brain cancer 641 

patients with low tumor expression of PME-1 (28). Finally, our results strongly indicate that 642 

rapidly developing PP2A reactivation therapies (29) will constitute an attractive future 643 

therapy option for brain tumors when combined with multi-kinase inhibition.  644 

  645 
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Methods 646 

 647 

Cell culture and reagents 648 

Established human GB cell lines U87MG (gift from Ari Hinkkanen, University of Eastern 649 

Finland, Joensuu, Finland), A172, U118, U251 (gift from Pirjo Laakkonen, University of 650 

Helsinki, Helsinki, Finland), E98-FM-Cherry (gift from William Leenders, Radboud Institute for 651 

Molecular Life Sciences, Nijmegen, The Netherlands) and human fibroblasts (gift from 652 

Johanna Ivaska, Turku Bioscience, Turku, Finland) were cultured in DMEM (Sigma-Aldrich). 653 

T98G (VTT Technical Research Centre, Turku, Finland), DAOY (ATCC) and D283-Med (ATCC) 654 

were cultured in Eagle MEM (Sigma-Aldrich). All growth mediums were supplemented with 655 

10% (except fibroblasts supplemented with 20%) of heat-inactivated fetal bovine serum (FBS) 656 

(Biowest), 2 mM L-glutamine and penicillin (50 U/mL)/ streptomycin (50 μg/mL). All cell 657 

cultures were maintained in a humified atmosphere of 5% CO2 at 37°C. 658 

 659 

The patient-derived GSCs BT3-CD133+and BT12 (Kuopio University Hospital, Kuopio, Finland) 660 

(25,38) were cultured in DMEM/F12 (Gibco) and supplemented with 2 mM L-glutamine, 2% 661 

B27-supplement (Gibco), penicillin (50 U/mL) / streptomycin (50 μg/mL), 0.01 μg/mL hFGF-β 662 

(Peprotech), 0.02 μg/mL hEGF (Peprotech) and 15 mM HEPES-buffer (Gibco). For assays 663 

requiring adherent cell, such as colony growth, GSC populations were cultured on Matrigel 664 

(Becton Dickinson) coated plates. 665 

 666 

The following chemicals were purchased from indicated distributors: AKT1/2 inhibitor, 667 

staurosporine, CEP-701, UCN-01, PKC412, sodium salt of dichloroacetate (DCA) and lipoic acid 668 
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from Sigma-Aldrich; FRAX486 and Vemurafenib from SelleckChem; K252a and rebeccamycin 669 

from Enzo Life Sciences; K252c from Tocris Bioscience; MK-2206 from MedChemExpress. 670 

Compound were dissolved in DMSO (Sigma-Aldrich) or mQ (for DCA) and stored at -20°C. 671 

SMAPs (NZ-8-061, DBK-794, DBK-1154, DBK-1160 and DBK-766) were kindly supplied by Prof. 672 

Michael Ohlmeyer (Icahn School of Medicine at the Mount Sinai, NY, USA), were dissolved in 673 

DMSO and stored at room temperature protected from light. 674 

 675 

Cell viability assay 676 

Optimized numbers of cells (2.5 x 103 to 5 x 103) were plated onto 96-well plates (Perkin 677 

Elmer) and allowed to adhere. After 24 hours, cells were treated with vehicle (DMSO) or the 678 

indicated concentrations of compounds. After 72 hours, cell viability was measured using 679 

CellTiter-Glo assay (Promega) according the manufacturer’s instructions using a BioTek 680 

Synergy H1 plate reader (BioTek). 681 

 682 

Colony formation assay 683 

Optimized numbers of cells (3 x 103 to 10 x 103) were seeded in either 12-well plates and 684 

allowed to adhere. Matrigel matrix coated plates were used for patient-derived glioma stem 685 

cells. After approximately 24 hours cells were treated with drugs. After 72 hours of 686 

incubation, drug-containing media were replaced with non-drug containing medium and 687 

incubated until the control wells were confluent. Cells were fixed with ice cold methanol and 688 

stained with 0.2% crystal violet solution in 10% ethanol for 15 min at room temperature. 689 

Plates were dried and scanned with Epson Perfection V700 Photo scanner. Quantification of 690 
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colonies were done with ImageJ by using the Colony area plugin (57). Data were normalized 691 

and presented as a per cent of the control. 692 

 693 

Colony formation assays at hypoxic conditions were performed in InvivO2 400 incubator 694 

(Ruskinn Technology) at following conditions 1% O2, 5% CO2 and 90% humidity. 695 

 696 

Caspase-3 and -7 activity assay 697 

T98G cells (2.5 x 103) were plated in 96-well plates (Perkin Elmer) and allowed to adhere. After 698 

24 hours, cells were treated with drugs for the next 24 hours. Pan-caspase inhibitor Z-VAD-699 

FMK (10 mM, Promega) was added at the same time as drugs. Caspase-3 and -7 activity was 700 

measured by Caspase-Glo 3/7 Assay (Promega) according the manufacturer’s instructions 701 

using a BioTek Synergy H1 plate reader. 702 

 703 

Western blotting and antibodies 704 

Standard immunoblotting analysis was performed using the following primary antibodies: 705 

AKT (Cell Signaling, 9272S, 1:1,000), phospho Akt S473 (Cell Signaling, 9271, 1:1,000), PME-1 706 

(Santa Cruz, sc-20086, 1:1,000), β-actin (Sigma-Aldrich, A1978, 1:10,000), phospho PDHE1-A 707 

type I (S300) (Millipore, ABS194, 1:1,000), cleaved PARP1 (E51) (Abcam, ab32064, 1:1,000) 708 

and GAPDH (Hytest, 5G4cc, 1:10,000). Secondary antibodies were purchased from LI-COR, 709 

mouse (926-32212) and rabbit (926-68021). The membranes were scanned using an Odyssey 710 

scanner (Li-Cor Biosciences). Quantification of protein abundance was assessed with Image 711 

Studio Lite (version 5.2) on three immunoblots from independent lysates. 712 

 713 

Chaperone binding assay 714 
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LUMIER (LUminescence-based Mammalian IntERactome) with BACON (bait control) assay 715 

was performed as previously described (35). In short, 3xFLAG-tagged bait proteins are 716 

transfected into 293T cells expressing the Chaperone-Renilla (prey) luciferase in a 96-well 717 

plate. After two days, cells are treated with kinase inhibitors (or DMSO) for 1 hour before cell 718 

lysis. The cell lysates expressing each bait protein are applied to anti-FLAG coated 384-well 719 

plates, which captures the bait protein. The amount of luminescence in the well, after 720 

washing off nonspecifically binding proteins, indicates the interaction between the bait 721 

protein with the prey protein. After the luminescence measurement, the amount of bait 722 

protein is measured with ELISA, using a different, polyclonal anti-FLAG antibody conjugated 723 

to horseradish peroxidase. 724 

 725 

Long-term growth assay 726 

E98 cells (3 x 103) were plated into 96-well plate. On the next day cells were treated with 727 

DMSO, MK-2206 (7 µM), DCA (20 mM), NZ-8-061 (10 µM) alone, or in their double or triplet 728 

combinations (6-12 wells/condition). Every 3-4 days medium was replaced with fresh media 729 

with or without drugs. The confluency of the wells was determined daily using IncuCyte ZOOM 730 

live cell analysis system (Essen Bioscience). 731 

 732 

Mitochondrial respiration measurement 733 

Agilent Seahorse XF Cell Mito Stress Test (Agilent Seahorse Bioscience) was applied to T98G 734 

cells according the manufacturer’s instructions. In short, T98G cells were seeded at 1 x 104 735 

cells per well in a Seahorse 96-well XF Cell Culture microplate in 100 µL of the growing 736 

medium. On the next day cells were treated with DMSO, DCA (10 mM), MK-2206 (7 µM) alone 737 

or in combination with NZ-8-061 (10 µM) for the next 24 hours. On the day of analysis, the 738 
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growth media were replaced with 120 µL of XF assay media (non-buffered DMEM 739 

supplemented with 10 mM glucose, 1 mM sodium pyruvate and 2 mM glutamine) and 740 

incubated at 37°C in a non-CO2 incubator for one hour before running assay. Mitochondrial 741 

function of the cells was analyzed by sequential injections of modulators, oligomycin, 742 

carbonyl cyanide-4 (trifluoromethoxy) phenylhydrazone (FCCP), and rotenone/antimycin A, 743 

at Seahorse XFe96 analyzer (Agilent Seahorse Bioscience). The Seahorse XF Mito Stress Test 744 

Report Generator was used to calculate the Seahorse XF Cell Mito Stress Test parameters 745 

from Wave software (version 2.6.153). The data were normalized to total protein per well 746 

using BCA assay (Thermo Fisher Scientific). 747 

 748 

BH3 profiling 749 

BH3 profiling was performed as previously described (46,47). In brief, T98G cells were 750 

pretreated with DMSO, MK-2206 (5 µM), DCA (20 mM), NZ-8-061 (8 µM) alone, or in their 751 

double or triplet combinations for 24 hours. On the next day, cells were permeabilized with 752 

0.002% digitonin and treated with a library of synthetic peptides. Peptides used were BIM at 753 

0.01 µM, BAD, HRK and MS1 at 10 µM. The BIM peptide assesses the functionality of BAX and 754 

BAK. BAD binds and antagonizes BCL-2, BCL-xL, BCL-W, and BFL-1. HRK specifically binds and 755 

antagonizes BCL-xL. MS1 binds and antagonizes MCL-1. A pore-forming peptide, alamethicin 756 

(positive control), or DMSO (negative control) served as controls. Cells were incubated with 757 

the peptides for half an hour at 25°C and subsequently fixed with 4% paraformaldehyde for 758 

10 min. Finally, intracellular cytochrome c was stained with an immunofluorescence-labeled 759 

antibody (BioLegend Alexa Fluor 647 anti-Cytochrome c Antibody, clone 6H2.B4). Relative 760 

cytochrome c release was assessed by formula 1 – [(sample-pos.ctrl.)/(neg.ctrl.-pos.ctrl.)]. 761 

 762 
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Bioinformatics analysis 763 

Cytoscape network analysis software (version 3.9.0) (58) was used to visualize the STRING 764 

interactive map of hit kinases (59). For calculation and visualization of synergy scores, dose-765 

response matrix of NZ-8-061 and UCN-01 combination data were applied to SynergyFinder 766 

(version 2.0) web-application (60). 767 

 768 

Statistical analyses 769 

For cell culture experiments, three biological replicates have been performed, and each 770 

condition was tested in triplicate, unless otherwise specified. Data are presented as mean ± 771 

SD and statistical analyses were carried out using a two-tailed Student's t-test assuming 772 

unequal variances. For in vivo experiments, the following statistical tests were chosen 773 

depending on the results of the preliminary Shapiro-Wilk test of data normality. Two way 774 

ANOVA with Tukey’s multiple comparisons test were used to assess differences between 775 

three or more experimental groups. Lonk-rank (Mantel-Cox) test was used in survival analysis. 776 

These univariate statistical analyses were performed using GraphPad Prism 9 software 777 

(GraphPad Software). P < 0.05 was considered statistically significant. 778 

 779 

Supplementary Materials 780 

Supplementary Methods and Figures S1-7.  781 
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