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Abstract

Motivation: Because of the rapid generation of data, the study of compression algorithms to reduce
storage and transmission costs is important to bioinformaticians. Much of the focus has been on sequence
data, including both genomes and protein amino acid sequences stored in FASTA files. However, there
are few specialized compressors for structural protein data contained in PDB and mmCIF files. Current
standard practice is to use an ordinary lossless compressors such as gZip on a sequential list of atomic
coordinates, but this approach expends bits on saving an arbitrary ordering of atoms, and it also prevents
reordering the atoms for compressibility. In this article, we demonstrate for the first time that image-based
compression can significantly improve compression ratios. To this end, we implement a prototype
compressor ‘PIC’, specialized for point clouds of atom coordinates contained in PDB and mmCIF files.
PIC maps the 3D data to a 2D 8-bit greyscale image and leverages the well developed PNG image
compressor to minimize the size of the resulting image, forming the compressed file.
Results: PIC outperforms gZip in terms of compression ratio on proteins over 20,000 atoms in size, with
a savings over gZip of up to 37.4% on the proteins compressed. In addition, PIC’s compression ratio
increases with protein size.
Availability: Prototype Python source code is available for download at
https://github.com/lukestaniscia/PIC.
Contact: luke.staniscia@mail.utoronto.ca, ywyu@math.toronto.edu

1 Introduction
For over half a century, determining protein structure has been a primary
means of understanding function and behavior (Ramachandran, 1963; Ilari
and Savino, 2008). After proteins are characterized by researchers using
various methods such as X-ray crystallography, NMR spectroscopy, and
cryo-electron microscopy, various files are generated describing the protein
and stored in online repositories such as the Protein Data Bank (Rose et al.,
2016; Berman et al., 2012). One such file, the FASTA file, contains strings
of characters representing the amino acids that make up the protein and
its variants (Pearson, 1994). Other files, such as PDB (Protein Data Bank
format) and mmCIF files, contain structural information about the protein
(Westbrook and Fitzgerald, 2003). Although the Protein Data Bank is no
longer growing exponentially, the number of new structures deposited is
still quite formidable Berman et al. (2012).

FASTA files are used for storing both protein and genomic sequence
information, and much work has been done to create customized sequence
compression algorithms. It bears mentioning that the genomic sequence

compression literature has recently seen significantly more activity with
the advent of next-generation sequencing (Fritz et al., 2011; Daniels et al.,
2013; Yu et al., 2015; Hernaez et al., 2019), and many protein sequence
compressors take advantage of that work. For protein sequences, Hategan
and Tabus (2004) introduce a single and double pass version of a amino
acid sequence compressor for FASTA files that makes use of substitution
matrices. MFCompress was introduced by Pinho and Pratas (2013), and
expresses the amino acid sequences in their corresponding DNA bases,
divides the data into three streams, and compresses the resulting streams.
CoMSA is another compression algorithm for FASTA files introduced
by Deorowicz et al. (2018) based on a generalized Burrows-Wheeler
transform. Similarly to MFCompress, The Nucleotide Archival Format
(NAF) introduced by Kryukov et al. (2019) is another compressor that
works on amino acid sequences converted to their corresponding DNA
bases by dictionary encoding this transformed string.

In addition to directly transforming and compressing the sequences in
FASTA files, a significant amount of research has gone into read-reordering
algorithms for genomic sequences in the BEETL (Cox et al., 2012),
SCALCE, (Hach et al., 2012), MINCE (Patro and Kingsford, 2015), and
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2 Staniscia et al.

more. These methods are applicable when FASTA (and the related FASTQ)
files are used to store multiple small fragments (‘reads’) of sequences;
next-generation sequencing produces these reads in no particular order, so
the reads can be safely reordered without losing important information.
When properly performed, this reordering can significantly improve the
compression ratio of standard compressors.

On the other hand, the primary data component of PDB and mmCIF
protein structure files is a point cloud of coordinates belonging to the
atoms that make up the protein. In the standard formats, each atom has
its own separate ASCII-formatted line entry in the file that contains the
type of atom, type of amino acid to which it belongs, atom and amino
acid identifiers, followed by three floating point Cartesian coordinates,
along with other information. The coordinates are measured in units of
Angstroms Å, where 1µm = 10, 000Å (Goodsell, nd). Unlike their
FASTA counterparts, little work has been done to create compressors
customized for the structural data contained in PDB and mmCIF files.

Valasatava et al. (2017) did a deep investigation on compressing
3D coordinates of atoms in proteins by investigating a full gamut
of compression techniques. Their final recommendation was to apply
“intramolecular compression”, which aims to reduce the size of each
protein via three steps: encoding, packing, and entropy compression.
The encoding step transforms floating point coordinates into alternate
representations, such as Integer, Delta, Predictive, Wavelet, and Unit
Vector encodings. Integer encoding multiplies the floating point location
coordinates by a power of 10 and rounds the result to the nearest integer.
This encoding strategy is often lossy as not all decimal places of precision
are kept in the integer encoded value. However, some amount of loss
of precision is acceptable because of both measurement error, and due
to the natural uncertainty of exact atom locations in a protein. We will
use a variant of integer encoding in our algorithm PIC; for details on the
other encodings, see (Valasatava et al., 2017). After packing the encoded
coordinate vectors using either recursive indexing or variable packing, the
resulting packed coordinates are entropy encoded using standard methods
like gZip (Deutsch et al., 1996) or brotli (Alakuijala et al., 2018), which
are both combinations of LZ77 dictionary based encoding and Huffman
encoding.

However, Valasatava et al. (2017)’s investigation focused primarily on
compression of atomic coordinates as sequential objects stored within a
text file, treating the data as sequential, much like in FASTA files without
reordering. Unlike protein/genomic sequences, of course, 3D atomic point
clouds are not naturally sequential, so carefully preserving the order of the
atoms as listed out in a PDB or mmCIF file is not as important (or some
would argue, important at all). Given the background above, one logical
next step would be to perform a principled reordering of the atoms to
improve compressibility, but of course, how to perform that reordering
is not clear a priori as point clouds are very different from sequenced
genomic reads in underlying structure. To resolve this question, we turn
to an alternate paradigm for compressing point cloud data sets proposed
in the field of LIDAR imaging. Houshiar and Nüchter (2015) proposed
a new compression algorithm for the 5D point cloud data generated by
LIDAR scans of real-world scenes. The LIDAR scans produced tuples
of data points containing coordinates of a point in space in the scene,
along with reflectance and colour data of the surface at that location. Their
compression algorithm converts the Cartesian coordinates to spherical
coordinates, maps the angular coordinates to the axes of an image, and
the radial component, colour, and reflectance data to pixel’s fields at
the mapped location. The radial component, colour, and reflectance
data are written to the R, G, and B components respectively of a single
coloured image as well as the greyscale intensity field of three separate
consecutive images. The resulting images were compressed using PNG,
JPEG 100 (lossless, perfect quality JPEG), JPEG2000, no compression
TIFF, LZW TIFF, and Pack Bits TIFF lossless image compressors. The

Fig. 1: Flow chart diagram of the PIC compression algorithm.

authors found that compressing three greyscale images using the PNG
compressor performed the best in terms of compression ratio.

In this manuscript, we take inspiration from the NGS read-reordering
literature and combine the intramolecular compression techniques of
Valasatava et al. (2017) with the image-centric methods of Houshiar and
Nüchter (2015). In section 2, we outline our new compression algorithm,
PIC, for the structural protein data contained in PDB and mmCIF files.
Design choices and methodology are examined in detail followed by a
pseudo-code outline of the compression algorithm. In section 3, we give
compression results for 20 proteins compressed using both PIC and gZip
and show PIC outperforms gZip in terms of compression ratio for all of
these proteins over 20,000 atoms in size. We also give the images that
constitute the compressed files for a few of the compressed proteins. In
section 4, we highlight some trends in the compression results and make
note of the advantages of the PIC compressor over gZip for structural
protein data compression.

2 Algorithm
The PIC compression algorithm has has three main components, namely
mapping each atom to a position in an image, encoding information at that
position, and compressing the resulting image. A high-level overview is
given in algorithm 1 and figure 1, and details are furnished in the following
text.
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Image-centric compression of proteins 3

Algorithm 1 PIC compression algorithm

1: Read PDB/mmCIF file
2: Compute µ and r∗

3: for each atom in the protein do
4: Translate atom’s Cartesian coordinates by −µ
5: Convert the translated coordinates to spherical coordinates
6: Compute target encoding position (x, y)

7: Queue [(x, y), θ]

8: end for
9: while the queue is not empty do
10: Initialize a new image
11: for each data point in the queue do
12: if (x, y) is not available then
13: Compute (x∗, y∗)

14: end if
15: if an encoding position is available in the current image then
16: Pack θ based on the encoding position
17: At the encoding position, write packed θ
18: Remove the data point from the queue
19: end if
20: end for
21: end while
22: Crop the resulting image(s)
23: Compress the cropped image(s) using the PNG compressor on the

highest compression ratio setting
24: Construct the parameter file with the image count, compression

parameters, and µ to enable decompression

2.1 Mapping

Cartesian coordinates of atoms stored in the protein’s PDB or mmCIF file
are extracted and the global centroid µ of all the coordinates is computed.
The coordinates are translated by−µ so that the global centroid becomes
the new reference point or origin for the coordinates. This transformation
minimizes the instances of collisions when mapping the coordinates to the
image. To decompress the images, µ is stored along with the images.

The translated coordinates are then transformed to spherical
coordinates. Each spherical coordinate component is rounded to a
precision of one decimal place. Valasatava et al. (2017) noted that
experimental measurements that produce the Cartesian coordinates
determine an atom’s position with a degree of uncertainty, greater than
0.2Å. This allows for the exploitation of lossy compression to store the
coordinates only up to a tenth of an Å, which is generally sufficient
to preserve the essential structural information provided by lossless
representation.

The radial r and azimuth φ spherical coordinate components of each
atom are positionally encoded to the horizontal and vertical axis of an eight
bit pixel greyscale image as follows

(x, y) = (10r, εφ)

where ε is a user-defined parameter that sets the number of pixels per
azimuth angle degree. Letting r∗ be the maximal radial component across
all spherical coordinates, the dimensions of the resulting image are 10r∗×
360ε. Further note that while x ∈ Z≥0, y is not necessarily an integer.
However, ε is chosen such that 360ε, 8y ∈ Z≥0 for all y and ε ≥ 1.25.
This ensures there is at least one bit available per tenth of an azimuth
angle degree and each y coordinate has an integer bit-level position on the
vertical axis. In this way, we view each column in the image as a bit sting
that is being written to.

Care must be taken when choosing ε. Setting ε too large will produce a
large image, degrading the compression ratio. On the contrary, choosing a

small εwill induce more collisions when data is mapped to the image. This
results in increased compression time, as alternate data storage locations
need to be considered. A decrease in the compression ratio may also be
experienced in this case as more data points will need pointers to their
intended locations and additional images may need to be populated to
store all the required data.

The remaining elevation angle θ is stored in the image’s pixel intensity
values beginning at the data point’s (x, y) encoding position in the image.
Further details on how the elevation angle is formatted or packed and
stored in the image is described in section 2.2. This encoding scheme was
selected as it positionally encodes the spherical coordinates r and φ with
the largest range of values and encodes the smallest ranging coordinate θ
in the image’s pixel’s intensity values. Thus each coordinate takes up the
fewest amount of pixels when encoded into the image, allowing for more
data to be stored in the image before another image needs to be generated.

In the event that a data point is mapped to a position that does
not have availability to hold all the required information, an alternate
encoding position (x∗, y∗) is determined systematically. A position (x, y)

has availability if all bits at positions between and including (x, y) and
(x, y + l − 1/8), where l is the length of the encoded elevation angle
in bytes, have not had data previously written to them. Beginning at the
data point’s target encoding position (x, y), the positions (x, y + i/8

mod 360ε), 0 < i < 8 ·360ε = 2880ε are scanned subsequently to find
the first position with availability. This position is the alternate encoding
position. All encoding positions (x, y) also satisfy y < y + l − 1/8 <

360ε, ensuring no data points begin at the bottom of the image and finish
at the top to enable proper decompression of the image.

If (x∗, y∗) is the alternate encoding position for a data point with target
position (x, y), and y ≤ y∗ < y + 0.1ε, the encoded elevation angle is
stored begining at (x∗, y∗) as is. Otherwise, a pointer p is encoded and
stored along with the encoded elevation angle at (x∗, y∗). p points to the
largest y′ ∈ {i/8|0 ≤ i < 2880ε} that satisfies y ≤ y′ < y + 0.1ε,
namely y′ = y + 0.1ε − 1/8. The stored pointer is the integer p =

8(y∗ − y′). Note that p > 0 as y∗ > y′. The decompressor then knows
that the intended azimuth angle for the data point is that belonging to the
position (y∗ − p/8) = y′.

In the case that an alternate encoding position cannot be found in
the current image, another image is generated, if not already done by a
previous data point. The above mapping procedure is repeated in that image
to locate an encoding position for the data point. This process repeats until
an encoding position is determined for each atom’s coordinate.

2.2 Packing

Elevation angles are stored in pixels’ greyscale values begining at their
corresponding data point’s (x, y) encoding position. Each pixel has an
8-bit intensity field. Due to the variable lengths of the binary elevation
angles and use of pointers, the following packing scheme is used to store
the elevation angles so they can be properly decompressed.

If no pointer is needed, the elevation angle is integer encoded as 10θ

and converted into its binary representation. If the binary representation
has length less than dlog2(1801)e = 11 bits, 0 bits are added to the front
until the representation is 11 bits long. Two additional bits 1 and 0 are
added to the front of the resulting binary string in that order to signify the
start of a new data point and to notify the decompressor the data point has
no pointer, respectively.

If a pointer is required, a similar but expanded packing scheme is
used. The second bit is set to 1 instead of 0 to signify to the decompressor
that the data point has a pointer. The pointer p is converted to its binary
representation and prefixed with 0 bits until it has length dlog2(2880ε)e.
The adjusted binary representations of the pointer and elevation angles
follows the two bit prefix in that order.
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4 Staniscia et al.

Protein Atom Original Rounded Coordinates gZip PIC Compression Images Decompression
ID Count File Text Binary Size CR Size CR Time Number Space Time

Size (KB) Size (KB) Size (KB) (KB) (KB) (min:sec) Used Used (%) (min:sec)
2ja9 1458 163.3 24.1 6.6 6.3 3.834 10.0 2.412 0:0.5 1 [0.9] 0:1.3
2jan 12591 1101.2 206.1 56.7 54.1 3.813 61.2 3.368 0:3.2 1 [2.7] 0:5.8
2jbp 27367 2397.4 447.8 133.4 130.2 3.439 108.8 4.117 0:10.2 1 [11.1] 0:10.5
2ja8 32000 2831.2 507.6 144.0 139.6 3.637 138.0 3.678 0:13.2 1 [6.5] 0:14.3
2ign 41758 3579.1 666.7 187.9 180.8 3.688 147.3 4.526 0:25.4 1 [9.5] 0:24.0
2jd8 50351 4457.6 828.1 226.6 219.7 3.769 196.8 4.207 0:41.9 1 [7.7] 0:35.9
2ja7 63924 5605.5 1077.0 287.7 278.6 3.866 258.8 4.161 1:6.9 1 [10.2] 1:2.1
2fug 73916 6386.9 1180.7 360.3 347.5 3.398 283.3 4.168 1:34.0 1 [10.7] 1:26.4
2b9v 80710 6818.4 1279.8 393.5 379.4 3.373 289.0 4.428 1:48.0 1 [10.3] 1:48.4
2j28 95358 8152.3 1526.2 429.1 412.2 3.702 346.6 4.403 2:35.6 1 [13.7] 2:43.3
6hif 118753 12726.2 2105.2 534.4 516.2 4.078 372.2 5.656 4:21.7 2 [34.0, 0.1] 5:3.4
3j7q 140540 16027.2 2529.7 737.8 707.6 3.575 475.6 5.318 6:18.4 1 [20.3] 7:36.2
3j9m 158384 17995.2 2845.4 772.1 765.8 3.716 525.7 5.413 8:18.4 1 [21.7] 9:54.6
6gaw 178372 20825.4 3179.9 869.6 862.1 3.688 587.6 5.411 10:49.1 1 [23.5] 12:55.6
5t2a 200172 22787.6 3253.9 900.8 872.4 3.73 651.7 4.993 15:17.6 2 [31.1, 1.7] 16:36.6
4ug0 218776 24906.9 3841.4 1066.5 1056.7 3.635 707.3 5.431 17:50.7 2 [33.8, 1.7] 20:9.5
4v60 241956 24377.8 4207.8 1179.5 1167.2 3.605 730.2 5.762 18:34.3 2 [45.6, 2.1] 23:19.8
4wro 260090 35661.1 4363.1 1267.9 1246.2 3.501 848.8 5.14 25:33.1 1 [29.6] 30:3.3
6fxc 281510 31329.0 5067.1 1477.9 1424.2 3.558 917.7 5.522 29:24.4 2 [34.6, 1.0] 32:55.4
4wq1 299951 40130.9 5042.1 1462.3 1438.0 3.506 968.8 5.204 33:10.3 2 [34.7, 0.2] 39:54.2

Table 1. PIC compression algorithm, ε = 2.5, results. Rounded Coordinates Text Size and Binary Size are the sizes of the text and binary files, respectively, that
contain only the Cartesian coordinates found in the original file, rounded to one decimal place. The binary file is then gZipped. The gZip and PIC compression
ratios (CR) are the ratios of the Rounded Coordinates Text Size to the size the gZip file and PNG image output(s) from the PIC compressor, respectively. Bolded
values are the best of gZip and PIC. Compression and decompression times are for the PIC algorithm, though because our PIC implementation is not optimized for
speed, these numbers should only be used to compare against Table 2. Image Space Used is a tuple that gives the proportion of the image space that was used to
encode the protein coordinate data, or part thereof, in each image constructed by the PIC compressor.

For 0 ≤ i < 8l, bit i of the packed string is mapped to the bit at
position (x, y+ i/8) in the image. This packing scheme ensures that each
data point has one of two possible lengths, the exact length of which can
be determined by the second bit located at (x, y + 1/8). This is a key
feature that allows for the proper decompression of the image.

2.3 Cropping and Compression

The resulting image(s) are cropped and compressed using the PNG lossless
image compressor on the highest compression ratio setting. These image(s)
make up the compressed version of the protein’s point cloud of atom
coordinates in the PDB or mmCIF file.

Images are cropped to remove any all-black rows and columns on the
edge of the image. To decompress the images, two cropping parameters
are stored along with each image generated to reverse the cropping.

Other lossless image compressors investigated in Houshiar and
Nüchter (2015) were also examined. Similarly to the results found by
Houshiar at al., PNG was selected for use in the algorithm as it offers
the highest compression ratios of the aforementioned compressors at
comparable compression times.

2.4 Decompressed File

The original and decompressed files are identical up to the coordinates of
the atoms. As noted in section 2.1, since there is a tolerance of up to 0.2Å

in each coordinate component, each decompressed coordinate is within a
euclidean ball of radius 0.2

√
3Å about the original coordinate.

Protein Compression Decompression
ID Time Time

(min:sec) (min:sec)
2ja9 0:0.3 0:1.1
2jan 0:1.6 0:3.8
2jbp 0:3.3 0:7.5
2ja8 0:4.6 0:8.1
2ign 0:7.6 0:14.2
2jd8 0:10.5 0:20.4
2ja7 0:15.2 0:33.0
2fug 0:20.8 0:45.4
2b9v 0:27.4 0:58.6
2j28 0:37.9 1:21.1
6hif 1:21.3 2:11.8
3j7q 1:45.1 3:1.5
3j9m 2:13.7 3:56.1
6gaw 3:14.8 5:9.1
5t2a 5:7.6 6:24.0
4ug0 5:42.6 7:44.6
4v60 6:8.4 9:18.6
4wro 6:43.3 11:6.3
6fxc 9:33.1 12:31.5
4wq1 10:48.9 14:59.6

Table 2. PIC compression algorithm, ε = 2.5. Compression and
decompression times are for the PIC algorithm reconstructing only the 3D
Cartesian coordinates, metadata is not maintained. Note that because our PIC
implementation is not optimized for speed, these numbers should only be used
to compare against Table 1; when metatdata is not maintained, the runtime
is significantly decreased, suggesting that most of the runtime is spent on
reconstructing the initial arbitrary ordering of atoms in the text format.
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Image-centric compression of proteins 5

(a) 3D structure Divne (2006) (b) PIC compressor output 1/1

Fig. 2: 3D structure and PIC compressor PNG image output for 2ign. Some attributes and symmetries in the 3D structure are observed in the corresponding
PIC-compressed image. The upper and lower parts of the 3D structure of protein 2ign can be seen in PIC generated image as two separate masses of black
pixels, one over the other.

(a) 3D structure Kato et al. (2014) (b) PIC compressor output 1/2 (c) PIC compressor output 2/2

Fig. 3: 3D structure and PIC compressor PNG image output for 4v60. Some attributes and symmetries in the 3D structure are observed in the corresponding
PIC-compressed image. The spiked edge of the 4v60 protein can be seen on the right side of the first outputted image from the PIC compressor.

3 Results
Table 1 gives statistics and compression results on 20 proteins compressed
using gZip and PIC where ε = 2.5 and the decompressed files are
identical to the original with the lossy coordinate transform. Table 2 gives
similar results where only the 3D coordinates are reconstructed in the
decompressed file and metadata is not maintained from the original file.
Figures 2 and 3 compare the 3D structures of proteins to the images created
by the PIC compressor. Figures 4 and 5 visualize some of the results found
in table 1.

As can be seen from table 1, the proposed PIC algorithm has superior
compression ratio performance than the standard gZip text compressor
for all proteins over 20,000 atoms in size—importantly, note that this is
after the integer compression/precision reduction, so this is an apples-to-
apples comparison. This is seen visually in figure 4, as all except two
points belonging to the two proteins with the fewest number of atoms lie
above the diagonal, the region where PIC has better compression ratio
performance. In figure 5, the gZip compression ratio decays while PIC’s
compression ratio increases with atom count.

Furthermore, unlike most compression algorithms, we can visually
inspect the transformed image because it is itself a projection mapping of
the original 3D structure. In figures 2 and 3, we show the PIC outputted
images. For easier viewing, these images are inverted, five-fold contrast
enhanced versions of the actual images outputted by the PIC compressor.

These results were obtained by running the PIC.py script in the
command terminal with the "-e" option. The experiments were ran on
an Apple MacBook Pro with a 3.5 GHz dual-core processor and 16 GB of
memory.

4 Discussion
As expected, as atom count increases, more images are populated by PIC
and more of the image space of the constructed images is used. In addition
to the increased data load in only a slightly larger image width wise, this
is due to an increased number of collisions as atom count increases. This
causes the use of pointers, increasing the average number of bits used per
data point, and, when no alternate location can be found in the current
image, the population of a new image, increasing the image count.

The lower compression and decompression times in table 2 compared
to those in table 1 show that PIC is fast at the compression and
decompression of the 3D Cartesian coordinate point clouds. Majority of
the increases in the compression and decompression times as reported
in 2 are due to manipulations and carry through of the metadata to
the decompressed file. This includes matching up decompressed atom
coordinates with the corresponding atom metadata and reordering atom
data to the proper locations in the file amongst other data such as header
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6 Staniscia et al.

Fig. 4: PIC compression ratios plotted against gZip compression ratios for each protein compressed in table 1. Points in the region above the diagonal
indicates a protein with better compression ratios using PIC than gZip. Vice versa below the diagonal.

Fig. 5: PIC and gZip compression ratios for the proteins compressed in table 1 plotted against the number of atoms that make up the compressed protein.
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information. Thus PIC is an efficient compression algorithm for structural
protein data without arbitrarily specified ordering.

Furthermore, as noted in the respective figures, our prototype PIC
implementation is not optimized for speed. It is not intended as a drop-
in replacement for gZip, but is instead meant to show that image-centric
compression of protein atomic point clouds can provide significant space
savings. The Python implementation takes on the order of minutes for a
single compression/decompression, which is significantly slower than the
order of seconds for gZip compression.

Other values of ε investigated include {1.25, 5, 10}. Only the results
for ε = 2.5 are show as this value produced the best compression ratios.
As stated in section 2.1, higher ε increased image sizes and consequently
decreased the compression ratios. Setting ε = 1.25 increased compression
times as collisions increased due to the decreased image size and alternate
mapping locations needed to be considered. Compression ratios also
decreased slightly as gains in the compression ratios from decreased image
sizes were overcame by the additional use of pointers and higher number
of images generated by the PIC algorithm. Importantly, in this prototype
study, we have given results from only a single set of parameters for all
sizes of proteins for principled benchmarking. In future work, it may be
preferable to set parameters dynamically for each protein and to store them,
as in standard practice in many file compression formats.

This is promising as the structures of more complex proteins are
deconstructed, stored in databases, and transmitted amongst researchers.
Further, as the PIC algorithm leverages the standard and widely used PNG
image compressor, the algorithm can be easily implemented on a variety
of platforms and systems.

5 Conclusion
In this paper, we have introduced PIC, an new compression algorithm
that leverages positional encoding techniques and the well-developed,
widely available PNG image compressor to encode and compress structural
protein data in PDB and mmCIF files. The algorithm encodes two of the
three dimensions of an atomic coordinate from the point cloud stored in
the file to a position in the image space and stores the remaining dimension
in pixels’ intensity values around that location. The resulting image is then
compressed with the lossless image compressor PNG. We showed PIC has
a compression ratio superior of that of gZip for proteins with more than
20,000 atoms, and improves with the size of the protein being compressed,
reaching up to 37.4% on the proteins we examined.

More important than just providing a prototype, we demonstrate in
this paper that the paradigm of image-centric compression is superior
in efficacy than simply applying a standard sequential compressor to
the atomic point clouds. This result is consistent with both point-cloud
compression in LIDAR imaging and read-reordering for NGS sequence
compression. Importantly, this improvement in compression ratios persists
even though we store the necessary metadata to undo any atom-reorderings;
still, we would recommend that the ordering information be entirely
discarded, as it is for LIDAR and read re-ordering—we only kept all of
that information to ensure that we performed a fair comparison in our
benchmarks.

Ultimately, we hope that this study points the way for future image-
centric compression of protein structures. The PIC algorithm itself,
if reimplemented in a faster language, is certainly competitive on
compression ratios already, and furthermore is easy to implement because
the PNG image format is already implemented on many platforms. As
structural protein files with increasing complexity are deconstructed, added
to databases, and transmitted amongst researchers, targeted compression
techniques will become ever more necessary.
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