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Abstract 9 

1.Photo-identification of individual snow leopards (Panthera uncia) is the primary technique for 10 

density estimation for the species. A high volume of images from multiple projects, combined 11 

with pre-existing historical catalogs, has made identifying snow leopard individuals within the 12 

images cost- and time-intensive. 2. To speed the classification among a high volume of 13 

photographs, we trained and evaluated image classification methods for PIE v2 (a triplet loss 14 

network), and we compared PIE's accuracy to the HotSpotter algorithm (a SIFT based 15 

algorithm). Analyzed data were collected from a curated catalog of free-ranging snow leopards 16 

photographed across years (2012-2019) in Afghanistan and from samples in captivity provided 17 

by zoos from Finland, Sweden, Germany, and the United States. 3. Results show that PIE 18 
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outperforms HotSpotter. We also found weaknesses in the initial PIE model, like a minor 19 

amount of background matching, which was addressed, although likely not fully resolved, by 20 

applying background subtraction (BGS) and left-right mirroring (LR) methods. The PIE BGS LR 21 

model combined with Hotspotter showed a Rank-1: 85%, Rank-5: 95%, Rank-20: 99%. 4. 22 

Overall, our results recommend implementing PIE v2 simultaneously with HotSpotter on 23 

Whiskerbook.org. 24 

Keywords: background subtraction, deep learning, hotspotter, individual identification, PIE v2, 25 

snow leopards 26 

Introduction 27 

The snow leopard (Panthera uncia) is categorized by the International Union for Conservation of 28 

Nature (IUCN) as Vulnerable (McCarthy et al., 2017). Population estimates in sampled areas 29 

primarily rely on the use of camera-trap technology of individuals identified by their unique 30 

spotty phenotypes, in concert with capture-recapture modeling (Jackson et al., 2006; Royle & 31 

Young, 2008; McCarthy & Mallon 2016). Abundance estimates for snow leopards have shown 32 

to be fraught with errors from camera trap photo misclassification arising from a variety of 33 

reasons (Ellis 2018, Johansson et al.  2020), including the manual processing of photo sets, that 34 

have become increasingly large with the advent of affordable digital photography (Beery et al., 35 

2019; Falzon et al. 2019; Miguel et al. 2016). Current solutions for reducing the risk of 36 

misidentifying images of snow leopards are often resource-intensive, for example, using 37 

repetition and multiple observers to manually process large photo sets to limit the risk of false-38 

negative classification (Borchers & Fewster 2016; Choo et al. 2020; Foster & Harmsen 2012; 39 

Johansson et al. 2020).  40 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477059doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.20.477059
http://creativecommons.org/licenses/by-nc-nd/4.0/


To reduce misclassification errors, as well as time and labor in processing camera trap data, 41 

scientists are increasingly turning towards artificial intelligence and computer vision to identify 42 

animals through automated image classification by species (Beery et al., 2019; Falzon et al., 43 

2019; Nguyen et al., 2017; Norouzzadeh et al., 2019; Parham et al., 2018), and to perform 44 

identification based on individually distinct patterns (Wäldchen & Mäder, 2018; Weinstein, 45 

2018). The work presented here investigates the use of deep learning methodologies to support 46 

semi-autonomous methods for sorting and identifying snow leopard individuals within an 47 

accessible format.  48 

The Whiskerbook.org online platform (Whiskerbook 2021) provides a Web-based data 49 

management framework and a computer vision pipeline (Parham et al. 2018) for detection and 50 

individual identification of multiple species of large cats, including snow leopards. However, 51 

existing computer vision techniques on Whiskerbook.org, such as HotSpotter (Crall et al. 2013), 52 

have been recommended for use (Miguel et al. 2019) on snow leopards but not formally 53 

evaluated for accuracy, leaving questions about their overall accuracy and reliability for this 54 

species. Additionally, recent developments in machine learning have suggested that a new 55 

class of deep learning-based algorithms may improve automated matching capability (Moskvyak 56 

et al., 2019). 57 

Researchers seek to address conservation and management for this species and conduct 58 

analyses over biologically relevant scales, meaningful to goals across the snow leopard range. 59 

The project needs to reconcile previously classified and curated snow leopard photo-ID catalogs 60 

with individuals from newly collected datasets. To do so, we need to automate a pipeline that is 61 

both more efficient in terms of expert time and reduces misidentification errors. 62 

This work is novel as the first attempt at testing and thoroughly evaluating two computer vision 63 

algorithms to understand their performance at matching individual snow leopard sightings. The 64 
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first is the Hotspotter algorithm (Crall et al. 2013), a SIFT-based comparison of significant visual 65 

texture areas, previously deployed on Whiskerbook.org for species like  jaguar (Panthera onca). 66 

The second is called Pose Invariant Embeddings (PIE v2; Moskvyak et al. 2019), a 67 

convolutional neural network (CNN), in this case, InceptionV3 optimized with a triplet loss 68 

network, which was first tested on manta ray bellies (Mobula spp.) and humpback whale 69 

(Megaptera novaeangliae) flukes (Blount, 2018).  70 

Understanding algorithm performance can inform the usability of the Whiskerbook.org platform 71 

and aid researchers in not only rapidly matching individuals across photo ID catalogs (a 72 

significant potential time and cost-saving on the road to more extensive and more 73 

comprehensive catalogs and modeling efforts) but also at improving the effectiveness of mark-74 

recapture models that ultimately inform snow leopard conservation.  75 

Materials and methods 76 

Camera Trap Imagery  77 

We conducted our experiments and evaluations with curated photos of well-known individuals 78 

photographed between 2012 and 2019 from the Wildlife Conservation Society (WCS) program 79 

in Afghanistan, as recorded in the Whiskerbook.org platform (Blount, 2021). Additional data for 80 

captive snow leopard data were contributed from seven European zoos (Helsinki and Ätheri 81 

Zoos in Finland, Kolmården Zoo, Nordens Ark and Orsa Bear Park in Sweden, and Köln and 82 

Wuppertal Zoos in Germany) and two zoos in the United States (WCS managed Bronx and 83 

Central Park zoos in New York City). Our project had access to 22,120 annotations (i.e., 84 

machine learning-detected bounding boxes around snow leopards in photos) (Fig 1) from 359 85 

snow leopard encounters within hourly intervals. However, these numbers are inflated by their 86 

data capture technique: camera traps, which generate a high volume of imagery in a brief 87 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477059doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.20.477059
http://creativecommons.org/licenses/by-nc-nd/4.0/


timeframe and at a single location. For example, limiting the data to only individuals sighted 88 

three or more times (three annotations of a side is a minimum requirement for PIE model 89 

training) reduces the number of annotations to 12,311 and the number of distinct encounters to 90 

116. Further data filtering used in machine learning training and analysis (e.g., to prevent 91 

overrepresentation of highly sighted individuals) reduced these numbers even further. While we 92 

believe this to be the largest data set yet assembled for analysis of computer vision on snow 93 

leopard individual ID, although the available data is still relatively small. 94 
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 95 

Fig 1. An annotated snow leopard. Annotations were generated by a machine learning-based 96 
computer vision model and associated with identifying known individuals by human 97 
confirmation. Annotations served as the fundamental data learned from ML and compared by 98 
each algorithm. Photo courtesy of WCS Afghanistan. 99 

 100 

Performance Metric 101 

We evaluate the performance of each algorithm individually by computing the top-k accuracy on 102 

a test set where k = 1, 5, 10 and represents the rank of the correct match (i.e., an annotation of 103 

the same individual represented by a query annotation) in a list of proposed matches. A top-1 104 

rank, therefore, is the correct result returned by the algorithm as the most likely match for a 105 

candidate annotation. A top-5 rank is the correct result ranked fifth most likely as returned in the 106 

candidate list and so forth.  107 

 108 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.477059doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.20.477059
http://creativecommons.org/licenses/by-nc-nd/4.0/


Min-3/Max-10 109 

For training machine learning algorithms like PIE, we often utilize a Min-3/Max-10 data subset. 110 

This data subset represents the individuals with at least three photos of the same viewpoint 111 

(either left or right), also limited to a maximum of ten photos per individual/viewpoint. The 112 

training phase requires a minimum of three photos (two photos for ML to learn from) and the test 113 

phase (at least one for ML to test it against). A maximum of ten photographs is allowed for data 114 

set balance and prevent highly sighted individuals from causing the ML system to optimize on 115 

highly sighted individuals yet perform poorly on infrequently sighted individuals. In our 116 

experience, a max-10 limit will suppress the Top-k performance ranking but create an ML model 117 

that performs better in real-world matching across various individuals. After applying these filters 118 

to the curated data on Whiskerbook.org, this resulted in 829 images of 217 individual snow 119 

leopards. 120 

Feature detection  121 

Before the classification algorithms can act, the snow leopard needs to be detected in the 122 

images. A machine learning detector, a customized PyTorch implementation of YOLO v2 123 

(Redmon et al. 2016), created the snow leopard annotations as the first step in the Wildbook 124 

Image Analysis (WBIA) pipeline (Parham et al. 2018). The task of the detector localizes animals 125 

in images, focused mainly on accurate bounding boxes over the ground-truth detections (made 126 

a priori by humans for a test set) while minimizing false positives and false negatives. We 127 

trained a model to predict the snow_leopard class (a species-labeled bounding box) using a 128 

training dataset of 2,000 images and 2,078 annotated bounding boxes (2 empty images, 34 129 

images with two boxes, and 23 images with two boxes). 130 
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Network architecture, data pre-processing, training, and 131 

evaluation.  132 

With a machine learning detector trained and configured to extract snow leopard annotations, 133 

we then used those annotations and related metadata (in particular the known identifications 134 

based on coat patterning) in the WBIA pipeline (Parham et al. 2018) to first custom train the 135 

Pose Invariant Embeddings (PIE) algorithm (Moskvyak et al. 2019).136 

We used a Min-3/Max-10 data constraint for PIE ML training and divided the training and test 137 

data (Table 1).  138 

Table 1. Initial data division for machine learning training with PIE. 139 

Set Individuals Annotations 

train 91 745 

test 35 84 

total 126 829 

 140 

Models were trained and tested by tuning the number of required epochs and further assessing 141 

for any indication of overfitting based on model outputs and error results. Overfitting may occur 142 

if the model becomes too detail-oriented, fitting the data precisely, thus modeling extraneous 143 

noise in the training data instead of the general features of interest. 144 

After performing the first round of PIE algorithm modeling, we observed PIE converging 145 

extremely quickly while training on this data. We believe this is partly due to territoriality (Only 146 

one location may have snow leopards photographs) and that much of the training data was from 147 

camera traps (compared to captive zoo data). We theorized that these two factors resulted in 148 

"background matching" as an effective strategy for the PIE model during training, essentially 149 

recognizing each snow leopard by recognizing the scenery where it most often appeared. 150 
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Researchers investigated background matching as a potential cause of overfitting by modeling 151 

two datasets, one using a subset of individuals (n=14) that occurred at multiple locations and a 152 

subset of individuals, including those that also had multiple sightings at the same location 153 

(n=29).  154 

Background Matching 155 

We used two methods to minimize potential overfitting due to background matching in the PIE 156 

model developed during training. The first method is appropriately named "background 157 

subtraction" and removes the background algorithmically. Wild Me had already trained a 158 

background subtraction model for snow leopards as part of detector training in the WBIA 159 

pipeline (Parham et al. 2018), so we modified the PIE training pipeline so that each training 160 

image was pre-processed with background subtraction (Fig 2). 161 

 162 

 163 

Fig 2. A background-subtracted snow leopard photo used to train the final PIE model. Credit: 164 
Wild Me 165 
 166 

The second method involved mirroring left-side photos so that each image appears to have a 167 

right-side viewpoint of the animal. This mirroring is a configuration parameter while training PIE 168 
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that can be turned on or off. It has previously been used on complicated matching problems to 169 

get as much image-level consistency as possible: PIE is generally able to match diverse 170 

viewpoints, but standardizing them may also increase accuracy.  171 

Results 172 

Detection Algorithm 173 

The Precision-Recall performance curves of the trained snow leopard detection model were 174 

computed on a held-out 20% test set (413 annotations) to assess the accuracy and report 175 

comprehensive detection success (Fig. 3). The various colors of the curves show different 176 

thresholds of non-maximum suppression (NMS) applied to the network's final bounding box 177 

predictions. A common way to summarize the localization accuracy is with Average Precision 178 

(AP) as determined by the area-under-the-curve. For example, the best performing configuration 179 

with an NMS of 30% achieves an AP of 94.45%. The corresponding colored points on each 180 

curve signify the closest point along the line to the top-right corner of the precision-recall 181 

coordinate system, signifying a perfect detector. Furthermore, the yellow diamond specifies the 182 

highest precision for all configurations, given a desired fixed recall of 80%. 183 
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 184 

Fig 3. The detector Precision-Recall curves for snow leopards. 185 

Delving deeper on the Precision-Recall curves, the maximum recall values (x-axis intercept) 186 

represent the absolute maximum percentage of annotations that the detector configuration can 187 

"recover" or "recall" from the ground-truth detections. Therefore, a recall of 90% indicates that a 188 

given detection configuration found 90% of the ground-truth annotations. The recall is a 189 

fundamental measurement for false negatives and implies a miss rate of 10% per sighting. The 190 

precision value indicates the percentage of correct detections (thereby measuring the number of 191 

false positives) and how many additional incorrect detections. A true-positive in our detection 192 

scenario is defined by the amount of intersection-over-union (IoU) percentage between a 193 

prediction and a matched ground-truth bounding box. For all plots in this section, we fix the 194 

acceptable IoU threshold to be 50% or greater. Non-maximum suppression (NMS) is a common 195 

technique for filtering duplicate detections by eliminating highly overlapping and lower-scoring 196 

predictions. A high NMS value will remove many bounding boxes from the output based on their 197 

percentage of overlap area (leading to an increase in precision but a decrease in recall). True 198 
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negatives are undefined, which is why a receiver operating characteristic (ROC) curve is not 199 

provided in this report. 200 

 The confusion matrices give the accuracy for the best-colored point (left) and the yellow 201 

diamond (right) (Fig 4). It is worth mentioning that the 80% recall is arbitrary and can be 202 

adjusted based on the performance targets of the final project. 203 

 204 

Fig 4. Confusion matrices for the best-colored point (left) and the yellow diamond (right) from the 205 
Precision-Recall performance curves (Fig. 2). False negatives occur when not detecting a snow 206 
leopard when one is present in the image, and false positives are spurious detections when no 207 
snow leopard is present in the image, such that a bounding box is generated where there is no 208 
snow leopard within it. 209 

We can see that the best performing and our chosen configuration (highest AP at nearly 95%) 210 

has an NMS threshold of 40% and a score threshold of 44% (Fig  3 and 4). With this 211 

configuration, the overall detector makes 32 errors out of 413 overall annotations, with 22 of 212 

those incorrect detections being false negatives (not detecting a leopard when one is present). 213 

For 22 false negatives, there are 15 false positives (spurious detections of snow leopards that 214 
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were not in the image, a bounding box is generated where there is no animal) (Fig 3). If we relax 215 

the miss-rate requirement to 10%, we make fewer false detections (a total of 9 down from 15), 216 

but we end up missing 41 animals (false negatives), and the overall accuracy drops by over 3% 217 

(Fig. 4, right plot).  218 

Manual observers can remediate false positives and negative errors by cleaning the detection 219 

algorithm results. The cleaning can simultaneously deal with errors due to two detections being 220 

formed on the same individual, separate annotations creating new encounters for a second or 221 

third snow leopard or missing annotations. From user experience accounts, field camera trap 222 

data often contain many images of the same individual within an hourly interval, where the 223 

impacts of false negatives are likely not as significant on a larger dataset. For example, the 224 

detection algorithm may not classify several photos within an encounter of 30 photos, and the 225 

annotated sample for that individual is still substantial. Experienced observers report that false 226 

negatives seem to arise from low-quality captures, such as those inordinately far away from the 227 

camera trap or bad quality captures that are blurry or less recognizable.  228 

 Investigation of Overfitting 229 

After running an initial set of PIE models, the neural network reached its most accurate state 230 

rapidly, after seeing each image only 10-30 times (in machine learning terms, after 10-30 231 

"training epochs"), whereas 70-250 epochs would be a more usual period for this convergence. 232 

Subsequent training only decreased the algorithm's performance on held-out test data, meaning 233 

its long-term behavior was more akin to memorizing its training set than learning a generalized 234 

matching strategy (this is the machine learning definition of "overfitting"). 235 

We investigated overfitting by measuring the algorithms' accuracy matching 14 individuals which 236 

were seen at multiple locations (PIE results: Rank 1- 68%, Rank-5 86%), and comparing with 237 

the initial model where there were also 29 individuals seen at the exact location with the same 238 
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background (PIE results: Rank 1- 77%, Rank-5 93%, and Rank-20 96%) (Fig 5). The algorithms' 239 

top-1 and top-5 accuracies for snow leopard individuals detected at different locations are lower 240 

than the first modeling attempt, which we can determine were due to the background assisting 241 

in the classification of the image. These results clearly show the significance of background 242 

matching in increasing classification accuracy, despite the filtering criteria having used only half 243 

as many individuals across multiple locations. Since there were fewer individuals, we expected 244 

the individuals to classify with higher accuracy if the algorithm successfully identified the 245 

individual snow leopard in the image.  246 

 247 

 248 

Fig 5. Accuracy on a PIE model without background subtraction or L/R mirroring. Left is without 249 
location filtering; right is only multi-location individuals that moved between trapping stations. 250 

Background Subtraction 251 

The deployed model was then trained using imagery subjected to background subtraction and 252 

L/R mirroring. We found that turning on the LR parameter significantly changed the training 253 

behavior, causing slower convergence with fewer signs of over-fitting. We have speculated that 254 

this mirroring could double the number of background textures available for background 255 
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matching. It is also possible that the slower convergence was due to the randomness in the 256 

initial configurations of the neural network during each training run. 257 

We believe the PIE model with the mirrored and background-subtracted model has theoretical 258 

advantages and has shown higher accuracy, so we have chosen it for deployment in the 259 

Whiskerbook platform.  260 

Min-2 Accuracies 261 

The results shared so far are on datasets with at least three photos per individual + viewpoint 262 

(e.g., individuals with at least three left side photos), here referred to as "min-3 accuracy". We 263 

also computed accuracies on the more conservative filter of "min-2", which is the minimum 264 

required for a human reviewer to perform ID. These results include the scenario where the 265 

algorithm matches a new animal for the first time against only one existing catalog photo. The 266 

results sought to classify 40 individuals with PIE BGS-LR (Rank-1 72%, Rank-5 89%, Rank-20 267 

94%), PIE without background subtraction (Rank-1 64%, Rank-5 86%, Rank-20 95%), as 268 

compared to Hotspotter (Rank-1 69%, Rank-5 82%, Rank-20 84%). The results showed that the 269 

PIE model with background subtraction performed the best on the min-2 side-by-side matching 270 

(Fig. 6). Overall, the BGS-LR model performs slightly better when compared to other models.  271 

 272 
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Fig 6. Comparison of our two PIE models on data with a minimum of two left-side photos per 273 
individual. The model on the left used background subtraction and L/R mirroring; the model on 274 
the right used neither technique. HotSpotter (HS) is shown in both cases; differences in HS 275 
accuracies are due to random noise as HotSpotter match scores are not strictly deterministic. 276 
 277 

PIE and Hotspotter Model Accuracy 278 

Since Whiskerbook.org contains a multi-species, multi-feature, and multi-algorithm technical 279 

foundation (Blount et al., 2021), more than one algorithm can be run in parallel when identifying 280 

the individual animal in a photo. Therefore, we plotted the best PIE model alongside the older 281 

HotSpotter algorithm's performance (Fig. 7), as well as the accuracy of both algorithms 282 

combined (i.e., top-1 of PIE + HotSpotter means the percentage of cases where at least one of 283 

the algorithms found the correct match at the top rank). Combining the two algorithms 284 

significantly improves overall match accuracy: 285 

● Top-1: 85% 286 

● Top-5: 95% 287 

● Top-20: 99% 288 
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 289 

Fig 7. Accuracy plot of the deployed matching algorithm. Left-side annotations of individuals 290 
contain at least three left-side photos. Right-side performance is roughly equivalent (this model 291 
mirrors left-side photos, so every animal it sees is from a right-side perspective, but queries are 292 
pre-filtered by viewpoint not to compare lefts and rights). 293 
 294 

The accuracy plots from all modeling attempts were summarized and compared across trained 295 

PIE model variations (Table 2). Two things determine the accuracy of an ID algorithm: the 296 

algorithm and the data. We have compared two PIE models, one trained with background 297 

subtraction and L/R mirroring (the final, deployed model, dubbed "PIE-BGS-LR" here), and one 298 

without either option ("PIE-vanilla"), as well as HotSpotter. We have considered three subsets of 299 

the same data, all identified snow leopard photos on Whiskerbook.org. The subsets are either 300 

min-3 or min-2, where the numeral indicates the minimum number of left-side sightings of the 301 

same individual required for those photos to be included in the subset (right-side matching 302 

behavior is comparable but not shown here). Additionally, datasets labeled "multiloc" indicate 303 

that the researchers filtered the data to only include animals seen at multiple locations while 304 

satisfying the min-X requirement. 305 
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Table 2. Accuracy summary of algorithms on various data filters. BGS stands for "Background 306 

Subtraction". "LR" stands for left-right mirroring. PIE-Vanilla indicates unmodified annotation 307 

used in a PIE model.  *: NA accuracies are shown where the result would be a trivial 100% 308 

because fewer than 20 individuals meet the criteria. 309 

Algorithm Dataset Number of 
Annots. 

Number of 
Individuals 

top-1  
ACC 

top-5  
ACC 

top-20 
ACC 

PIE-BGS-LR min-2 212 40 72% 89% 94% 

PIE-vanilla min-2 212 40 64% 86% 95% 

HotSpotter min-2 212 40 69% 82% 84% 

PIE-BGS-LR min-3 190 29 74% 92% 96% 

PIE-vanilla min-3 190 29 77% 93% 96% 

HotSpotter min-3 190 29 75% 84% 87% 

PIE-BGS-LR + 
HotSpotter 

min-3 190 29 85% 95% 99% 

PIE-BGS-LR min-3, multiloc. 104 14 67% 90% NA* 

PIE-vanilla min-3, multiloc. 104 14 68% 86% NA* 

HotSpotter min-3, multiloc. 104 14 72% 79% 85% 

Discussion 310 

Our results provide a first look at the matching accuracy of two independent, production-ready 311 

pattern-matching algorithms for snow leopards. The results demonstrate that their use in 312 

combination can further improve researchers' ability to identify matching snow leopards across 313 

large catalogs rapidly. Combining PIE and Hotspotter for classification yielded an accuracy of 314 

Rank 1- 85% correctly identified individuals on our dataset. As individual algorithms, PIE has 315 

shown to have higher accuracy in matching these data than HotSpotter, and it is currently the 316 

best-performing algorithm we are aware of for identifying snow leopard individuals in camera 317 
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trap photos. However, HotSpotter's results are only slightly less performant, and since they are 318 

independently obtained, they add value in concert with PIE within the program.  319 

Previous attempts at using deep learning for snow leopards advanced the methods to 320 

automatically detect snow leopards in photos (A. Miguel et al., 2016) and optimize classification 321 

using background erasing to assist Hotspotter algorithms to focalize on regions of interest 322 

(Beery, 2016; A. C. Miguel et al., 2019). These prior advancements improved our understanding 323 

of snow leopard individual identification capabilities and seeded the formal evaluation and 324 

proliferation of tools based on these successes.   325 

One shortcoming identified and addressed within the study showed a limited background 326 

matching for the PIE model (Fig 8 helps visualize the impact). Rapid convergence indicated that 327 

the "matching problem" was abnormally easy on this data, which is generally a result of 328 

insufficient volume of training data, lack of diversity, or both. Background subtraction and left-329 

right mirroring were included in the PIE algorithm model testing to resolve these issues.  330 

The issue of background is significant for the snow leopard, as a territorial species, where field 331 

observations at one camera trapping site sometimes reveal many animals. Observers have 332 

reported two territorial males, two territorial females, and several younger cats at a single 333 

camera trapping site. Matching several individuals would be most effective when the algorithm is 334 

making intelligent ID predictions based on the natural patterning of the animal. However, if the 335 

model filters the imagery and makes intelligent decisions on the landscape features, it is not 336 

always a bad thing, where there may be minor effects that filter and rank the list of candidate 337 

individuals based on some background and location information.  338 

These location-based limitations arise from compiling results based on a relatively small dataset 339 

from collated zoo data and field camera trap observations from one location in Afghanistan. 340 

Rapid convergence during PIE training suggests that more extensive and more diverse data 341 
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may produce a more robust model. The snow leopard-PIE training pipeline developed here can 342 

be reused to train future models comparatively easily after more users begin to use the system 343 

and additional data can be then utilized. The existing model may also help bootstrap that data-344 

curation process. There is a significant opportunity for regional and global-scale research 345 

collaborations with snow leopard research institutions to curate and individually identify data that 346 

would build on these existing models towards more sophisticated refinement and better 347 

performance. 348 

We expect the PIE model deployed to Whiskerbook.org to save time during snow leopard 349 

matching, especially considering related Whiskerbook.org features. Features currently available 350 

include settings that allow for a  location-filtering option (where users can limit a match query to 351 

animals sighted in a certain area), one-to-one image matching or one-to-many matching (for 352 

previously classified individuals), side-by-side comparison with HotSpotter results, and the 353 

overall high accuracy of PIE on our existing datasets documented here. The algorithm tools 354 

within Whiskerbook are also complemented by a "visual matcher" interface for manual 355 

classification by an observer, allowing for more easy side-by-side comparison of photos against 356 

each camera trap station's photos at different dates.  357 

Future research may seek to assess further the manual observer's ability to classify images 358 

utilizing the features (Visual Matcher, Hotspotter, and PIE) within Whiskerbook using captive 359 

snow leopard individuals from zoo collected data. A study of this design could advance the 360 

results that demonstrated high misclassification rates from manual human labor on a set of 361 

captive snow leopards with known identities (Johansson et al., 2020). Johansson et al. (2020) 362 

showed that manual observers correctly classified 87.5% of all capture occasions, where 363 

misclassification errors would compound to inflate population abundance estimates 33% above 364 

actual population size. The algorithms demonstrated in this paper perform nearly at the level we 365 

would expect of a human observer, and the algorithms can serve as artificially intelligent 366 
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observers and speed up the classification pipeline. Future research may seek to hypothesize 367 

and demonstrate manual observers' increased capabilities using artificial intelligence and 368 

features afforded in  Whiskerbook to bridge the accuracy gap towards more precise estimates.  369 

Data Availability 370 

Research-related requests for annotations and data used for ML training in this paper can be 371 

requested in COCO format (Lin et al. 2020) via the corresponding author and must be expressly 372 

and independently permitted by author Eve Bohnett or through an established collaboration on 373 

Whiskerbook.org. Data can also be reviewed and shared via a collaboration request to user Eve 374 

Bohnett inside the Whiskerbook.org system. 375 

Code Availability 376 

All software used in this analysis is available in the Wild Me open source repository at: 377 

https://github.com/wildmeorg 378 

The base application for algorithm analysis as defined in Parham et al. 2018 is: 379 

https://github.com/WildMeOrg/wildbook-ia 380 

Specific algorithm plugins for the three algorithms evaluated here can be found at: 381 

https://github.com/WildMeOrg/wbia-plugin-pie-v2 382 
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