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Key points 

* Highly mutated HSPCs contribute significantly to circulating blood cells in MDS and 

CMML, prior to and following AZA treatment. 

* The mutational burden in matched bone marrow and peripheral blood cells in MDS and 

CMML was similar throughout myelopoiesis. 
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ABSTRACT  

Progressively acquired somatic mutations in hematopoietic stem cells are central to 

pathogenesis in myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia 

(CMML). They can lead to proliferative advantages, impaired differentiation and progressive 

cytopenias. MDS or CMML patients with high-risk disease are treated with hypomethylating 

agents including 5-azacytidine (AZA). Clinical improvement does not require eradication of 

mutated cells and may be related to improved differentiation capacity of mutated hematopoietic 

stem and progenitor cells (HSPCs). However, the contribution of mutated HSPCs to steady-

state hematopoiesis in MDS and CMML is unclear. To address this, we characterised the 

somatic mutations of individual stem, progenitor (common myeloid progenitor, granulocyte 

monocyte progenitor, megakaryocyte erythroid progenitor), and matched circulating 

(monocyte, neutrophil, naïve B cell) haematopoietic cells in treatment naïve and AZA-treated 

MDS and CMML via high-throughput single cell genotyping. The mutational burden was 

similar across multiple hematopoietic cell types, and even the most mutated stem and 

progenitor clones maintained their capacity to differentiate to mature myeloid and, in some 

cases, lymphoid cell types in vivo. Our data show that even highly mutated HSPCs contribute 

significantly to circulating blood cells in MDS and CMML, prior to and following AZA 

treatment. 
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INTRODUCTION  

Somatic mutations in hematopoietic stem cells (HSCs) are a central pathogenic event in 

myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML) where 

they induce proliferative advantages and impaired differentiation with subsequent cytopenias 

in peripheral blood (PB)1-6. Patients with high-risk disease who are ineligible for 

transplantation are treated with hypomethylating agents, usually 5-azacytidine (AZA). AZA 

treatment can improve PB counts and delay progression to AML in some patients7-9. However, 

AZA response does not require eradication of mutated HSCs. We and others have previously 

described cohorts with haematological response to AZA despite persistently high variant allele 

fractions in bone marrow (BM) 10,11. Colonies derived from in vitro assays of stem cell function 

following AZA treatment showed decreased mutational complexity, suggesting a shift in 

haematopoiesis from clones with high to low mutational burden in response to treatment11. 

However, in vitro colony-forming capacity might not correlate with in vivo hematopoietic 

potential, and the relative contribution of high vs low/unmutated HSCs to circulating blood cell 

types in vivo remains unknown. Single cell genotyping techniques can be used to resolve 

combinations of mutations in ex vivo cells 1,12-15. However, to our knowledge such techniques 

have not been applied to resolve the relative contributions of stem and progenitor cells with 

multiple mutations to circulating mature blood cells in MDS/CMML. Here we use a 

combination of index sorting and single cell genotyping to characterise the haplotype 

composition of individual stem (HSC/multipotent progenitors (MPP), MDS stem cells (MDS-

SC), progenitor (common myeloid progenitor (CMP), granulocyte monocyte progenitor 

(GMP), megakaryocyte erythroid progenitor (MEP)), and high-turnover circulating cells 

(monocyte, neutrophil, naïve B cell (nBC)) in treatment naïve and AZA-treated MDS and 

CMML. 
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METHODS  

BM and PB samples were collected with patient consent and institutional ethics approval. BM 

was enriched for CD34+ cells and target populations single-cell index sorted into 384-well 

plates (Figure S1). Target mutations were amplified in single cells by modifying TARGET-

Seq 15 followed by barcoding and Illumina sequencing (Figure S2; Supplemental Material). 

Capture sequencing was performed using a targeted panel for myeloid driver mutations 

(Supplementary Material). Raw data is available at SRA (accession: PRJNA798507) and 

https://flowrepository.org/id/FR-FCM-Z4PR. Mutational calling was performed via pairwise 

sequence alignments using SeqAn 16 and seqanpy (https://github.com/iosonofabio/seqanpy). 

Analysis code is available at https://github.com/julie-thoms/MDS_amplicons. 
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RESULTS and DISCUSSION  

We analysed matched stem and progenitor cells from BM and high-turnover differentiated cells 

from PB in three patients (Figure 1A, B, Table S1). Variant allele fractions (VAFs) were 

determined by capture sequencing in bulk samples from each cell type. The distribution of 

VAFs were similar across BM and PB cell types in all patients with the notable exception that 

nBCs in patient H198304 were predominantly wild-type (wt) (Figure 1C). We confirmed this 

exception using an orthogonal approach (Figure S3). We then modified TARGET-Seq  to 

determine VAFs of these known mutations in single cells (Figures 1D, S4). Allele fractions 

were highly correlated between bulk- and single-cell assessments (Figure S5; Pearson r = 

0.8989).  

 

Stem cells with multiple mutations (Figure 2A) could be subject to negative clonal 

selection with a bias towards less mutated stem and progenitor cells contributing to circulating 

differentiated cells, or neutral selection with similar contributions irrespective of mutational 

burden (Figure 2B). To resolve this, we first classified BM cells from each of the three patients 

into healthy HSC/MPP, MDS-SC, CMP, GMP, or MEP using indexed fluorescence activated 

cell sorting (FACS) and assessed the presence/absence of known variants in each of these BM 

cell types and in matched PB neutrophils, monocytes and nBCs (Figure 2C-E).  

 

In patient H198302 (CMML; AZA therapy ~ 10 years; complete responder (IWG17); 

Table S1), we tracked four mutations (Figure 2C; SRSF2, CUX1 and biallelic TET2), with 

acquisition order inferred from VAF at diagnosis 11. Most stem cells carried two or three of the 

tracked mutations and we did not detect any wt HSC/MPP. Cells across the progenitor 

compartment were similar and mostly highly mutated - a pattern that was maintained 
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particularly in differentiated monocytes and neutrophils with a substantial proportion of the 

circulating cells derived from highly mutated progenitors.  

 

In patient H198303 (CMML; AZA therapy ~ 10 years; complete responder (IWG17); 

Table S1), we tracked two mutations detected at diagnosis 11 (Figure 2D; biallelic TET2). In 

the stem compartment, cells carrying biallelic TET2 mutations were frequent, but numerous 

cells carried either a single mutant allele or were wt. Progenitors were relatively homogenous, 

although mutational burden differed slightly from the stem compartment. The haplotype 

distribution in differentiated cells was again similar to progenitor cells, with the exception that 

we did not detect any wt neutrophils.  

 

In patient H198304 (MDS-EB1; no HMA therapy), we tracked four mutations (Figure 

2E; SRSF2, RUNX1 and biallelic TET2). Most stem cells carried two or three mutations, a few 

healthy HSC/MPPs had no mutations detected, and around 20% of MDS-SC carried an 

additional mutated RUNX1 allele. In the progenitor compartment all cell types were similar; 

most cells carried three mutations. In the differentiated compartment, myeloid populations 

contained cells with one, two, three, or four mutations, with a higher proportion of cells with 

all four alleles mutated than progenitors, suggesting that highly mutated stem cells can produce 

differentiated myeloid cells, and that cells carrying the additional RUNX1 mutation are 

advantaged in this regard compared to cells with TET2 and SRSF2 mutations alone. 

RUNX1_p.A187T lies within the DNA- and protein-binding runt homology domain and may 

alter transcriptional activity. Conditional RUNX1 knockout leads to myeloid proliferation 18; 

the patient's mutation may similarly favour myeloid expansion or differentiation. Consistent 

with bulk analysis, very few mutant cells were detected in nBCs, suggesting that the small wt 
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HSC/MPP population is the predominant origin of nBCs in this individual. Analysis of 

additional lymphoid populations in PB from this patient revealed that naïve T, but not NK, 

cells were also predominantly wt (Figure S3C-D), suggesting specific impairment of B- and T-

lineage maturation in the mutated cells.  

 

All patients had clones with biallelic TET2 mutations, with or without additional 

oncogenic mutations, and shared the following features: (a) Very few, if any, sampled HSCs 

(with or without aberrant CD45RA+ or CD123+ or IL1RAP+) were wild-type, (b) A high  

proportion of sampled HSCs and myeloid progenitors in the bone marrow had two or more 

mutations, (c) Few, if any of the sampled circulating neutrophils or monocytes were wild-type, 

(d) The mutation profiles of PB neutrophils and monocytes (very high-turnover cells) mirrored 

those that were present in corresponding myeloid progenitors in the bone marrow. Attrition of 

highly mutated cells during myeloid maturation was not observed in any of the three patients, 

irrespective of HMA therapy, suggesting that in vivo, highly mutated stem and progenitor cells 

retain the capacity to differentiate. However, there were individual differences. In particular, 

in patient H198304 the rarity of mutated nBC compared to mutant NK and myeloid cells might 

be attributed to the order of mutation acquisition 19-22, the presence of an additional undetected 

somatic mutation in mutant cells that specifically impacts B cells, or individual differences in 

the bone marrow microenvironment 23,24.  

 

In summary, we characterised the mutational profile of thousands of individual stem, 

progenitor, and differentiated cells from three MDS/CMML patients and found that in vivo, 

highly mutated stem cells contribute to the circulating population prior to and following AZA 

treatment and were preferentially poised towards specific differentiation trajectories. These 
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findings are particularly relevant in an era of combining cytotoxic therapies designed to 

eliminate mutant cells with hypomethylating agents 25. Our findings emphasise that therapeutic 

principles and endpoints that apply in high-blast AML (clonal eradication and minimal residual 

disease monitoring for relapse) may not be appropriate when treating high-risk MDS/CMML 

where clinical response does not require eradication of mutant clones; indeed, eradication may 

be detrimental. Further studies will help determine the prevalence of this phenomenon among 

cohorts of MDS and CMML patients with different mutation profiles and whether it correlates 

with clinical outcomes.    
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FIGURE LEGENDS 

Figure 1 – Mutational burden in bone marrow progenitors and differentiated peripheral 

blood cells 

(A) Diagnosis and tracked mutations in the three patients included in this study. (B) Left: Blood 

differentiation hierarchy in MDS/CMML showing stem (healthy stem cells [HSC/MPP] and 

MDS stem cells [MDS-SC]), progenitor (CMP, GMP, MEP, CLP), and differentiated mature 

cells. Cell types coloured white were not characterised in this study. Right: Schematic showing 

collection and cell sorting strategies for peripheral blood (PB) and bone marrow (BM). PB was 

flow sorted into neutrophils (Neut: SSChi, CD45+, IgD-, CD16+, CD66b+), monocytes (Mono: 

SSClo, CD45+, IgD-, CD16+), and naïve B cells (nBC: SSClo, CD45+, IgD+, CD27-). Bone 

marrow mononuclear cells (BM-MNCs) were isolated on Ficoll and used directly for bulk 

capture sequencing. MACS-enriched CD34+ cells (BM-CD34+) were dropped into 384 wells 

plates for amplicon sequencing, with indexing for CD38, CD123, CD45RA, CD90, and 

IL1RAP and post-hoc assignment of cell type (HSC/MPP: LIN-, CD34+, CD38lo, CD45RA-, 

CD123-, IL1RAP- ; MDS-SC: LIN-, CD34+, CD38lo, [CD45RA+ or CD123+ or IL1RAP+]; 

CMP: LIN-, CD34+, CD38+, CD45RA-, CD123+; GMP: LIN-, CD34+, CD38+, CD45RA+, 

CD123+; MEP: LIN-, CD34+, CD38+, CD45RA-, CD123-) (C) Variant allele fraction (VAFs) 

determined by capture sequencing in bulk BM and PB cell types. (D) VAFs determined by 

amplicon sequencing in single cells. Each allele was analysed individually. Upper bar graph 

indicates the number of cells analysed for each mutation in each cell type. Lower graph shows 

average VAF (i.e., the proportion of reads containing the known mutation) across all cells with 

at least 10 reads mapping to that amplicon. Bars show standard error of the mean (sem).   
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Figure 2 – Fitness of highly mutated MDS and CMML stem cells to produce terminal 

blood types 

(A) Schematic showing hypothetical clonal evolution in MDS/CMML with sequential 

acquisition of mutations in four alleles (allele A, allele B, allele C, allele D; note that in some 

cases both alleles of a single gene may independently acquire mutations e.g., in the case of 

TET2). The combined genotype (haplotype) of each resulting cell population is indicated, with 

lower case letters indicating the presence of a mutated allele. (B) Models of terminal blood 

production in MDS/CMML. In the neutral selection model (left) stem cells with multiple 

mutations retain capacity to produce terminal blood types, although there may be a reduction 

in absolute cell number or functionality. In the negative clonal selection model (right), cells 

harbouring multiple mutant alleles are abundant in the stem cell compartment but have reduced 

differentiation capacity resulting in a higher frequency of wild-type cells in the circulating 

population. (C-E) Single cell haplotypes in three patients. Heatmaps (left panels) show the 

observed frequency of all combinations of mutations, while pie charts (right panels) show the 

proportions of cells across the haematopoietic hierarchy carrying zero, one, two, three, or four 

mutations in the specified alleles. (C) Patient H198302. Alleles shown are TET2_p.Q686* (b), 

TET2_p.L1065fs*1 (a), SRSF2_p.P95H (s), CUX1_p.Q1276* (c). (D) Patient H198303. 

Alleles shown are TET2_p.A1224fs*2 (b), TET2_p.K1090fs*15 (a). (E) Patient H198304. 

Alleles shown are SRSF2_p.P95R (s), TET2_p.G1218fs*8 (a), TET2_p.Y1337*, (b)  

RUNX1_p.A187T (r).  
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