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SEX DIFFERENCES IN BRAINAGE AND PREDICTORS  

Abstract  

Background: The brain-age-gap estimate (brainAGE) quantifies the difference between 

chronological age and age predicted by applying machine-learning models to neuroimaging da-

ta, and is considered a biomarker of brain health. Understanding sex-differences in brainAGE is 

a significant step toward precision medicine. 

Methods: Global and local brainAGE (G-brainAGE and L-brainAGE, respectively) were com-

puted by applying machine learning algorithms to brain structural magnetic resonance imaging 

data from 1113 healthy young adults (54.45% females; age range: 22-37 years) participating in 

the Human Connectome Project. Sex-differences were determined in G-brainAGE and L-

brainAGE. Random forest regression was used to determine sex-specific associations between 

G-brainAGE and non-imaging measures pertaining to sociodemographic characteristics and 

mental, physical, and cognitive functions. 

Results: L-brainAGE showed sex-specific differences in brain ageing. In females, compared to 

males, L-brainAGE was higher in the cerebellum and brainstem and lower in the prefrontal cor-

tex and insula. Although sex-differences in G-brainAGE were minimal, associations between G-

brainAGE and non-imaging measures differed between sexes with the exception for poor sleep 

quality, which was common to both. The most important predictor of higher G-brainAGE was 

non-white race in males and systolic blood pressure in females. 

Conclusions: The results demonstrate the value of applying sex-specific analyses and ma-

chine learning methods to advance our understanding of sex-related differences in factors that 

influence the rate of brain ageing and provide a foundation for targeted interventions.   
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Introduction 

Neuroimaging studies have been instrumental in identifying sex-differences in brain structure 

across the lifespan (Ge et al., 2021; Jahanshad & Thompson, 2017; Kaczkurkin et al., 2019; 

Ruigrok et al., 2014). Brain structure shows profound age-related changes throughout the 

lifespan (Dima et al., 2021; Frangou et al., 2021; Lebel & Beaulieu, 2011; Storsve et al., 2014; 

Tamnes et al., 2013; Wierenga et al., 2020), which are also modified by sex. Females show 

somewhat accelerated brain maturation during adolescence, suggesting a link with pubertal on-

set (Ball et al., 2021; Brouwer et al., 2021). In middle and late adulthood, sex differences in age-

related brain changes appear less pronounced (Bittner et al., 2021) but female brains may re-

tain more “youthful” transcriptomic and metabolic features than male brains (Beheshti et al., 

2021; Berchtold et al., 2008; Goyal et al., 2019; Goyal et al., 2017; Skene et al., 2017). In fe-

males, there are fewer age-related changes in in aerobic glycolysis (Goyal et al., 2019; Goyal et 

al., 2017) and in the expression of genes related to energy production and protein synthesis 

(Berchtold et al., 2008; Skene et al., 2017). These transcriptomic and metabolic findings show 

regional differences, with females retaining more youthful features primarily in prefrontal areas 

(Beheshti et al., 2021; Goyal et al., 2017). Whether this pattern is also reflected in macro-

structural brain morphometry is currently unknown. 

Besides sex, numerous factors are known to influence the rate of age-related brain changes. 

Those thought to accelerate brain ageing notably include smoking (Karama et al., 2015), alcohol 

use (Topiwala et al., 2017), obesity (Gurholt et al., 2021), hypertension (Gurholt et al., 2021), 

psychopathology (Wertz et al., 2021), poor inter-personal function (Hatton et al., 2018) and lo-

wer socioeconomic status (Chan et al., 2018). Conversely, the rate of brain ageing may be at-

tenuated in individuals with higher cognitive function and educational attainment (Elliott et al., 

2019) and better physical fitness (Steffener et al., 2016). Associations between accelerated 

brain ageing and indicators of age-dependent decline can be detected as early as the 3rd and 4th 

decade of life, even in generally healthy individuals (Belsky et al., 2015; Elliott et al., 2019). This 

evidence underscores the importance of focusing on young adulthood while testing for sex dif-

ferences in the relative importance of risk, as attenuating factors in this age-group may contrib-

ute towards targeted interventions for preventing deterioration in brain health later in life (Belsky 

et al., 2015; Elliott et al., 2019). 

Based on these considerations, the current study aims to advance knowledge on sex differ-

ences in the neuroanatomical pattern and in the predictors of brain ageing in young adulthood. 

To achieve this, we availed of machine learning methods to yield estimates of the biological age 
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of the brain (brain-age) based on neuroimaging features. The gap between brain-age and 

chronological age, referred to here as the brain-age-gap estimate (brainAGE), enables infer-

ences about the apparent acceleration or delay in age-related biological processes. We used 

structural magnetic resonance imaging (MRI) data obtained from young adults (age range 22-37 

years) participating in the Human Connectome Project (HCP; 

https://www.humanconnectome.org/) to compute global (G-brainAGE) and local brainAGE (L-

brainAGE). G-brainAGE is a global index of age-related changes across the brain  (Cole & 

Franke, 2017; Cole et al., 2017; Franke et al., 2010) while L-brainAGE informs about regional 

age-related brain changes (Popescu et al.,  2021). We hypothesized that sex differences in L-

brainAGE might follow the same pattern observed in transcriptomic and metabolic data 

(Beheshti et al., 2021; Berchtold et al., 2008; Goyal et al., 2019; Goyal et al., 2017; Skene et al., 

2017), with females having more youthful brains particularly in prefrontal regions. The HCP also 

includes non-imaging variables (NIMs) pertaining to demographic characteristics, cognition, 

mental health, interpersonal relationships, physical fitness, and lifestyle characteristics that ena-

ble testing for sex differences in factors that may accelerate or protect against age-related brain 

changes. 

Methods 

Participants 

We used data from the S1200 public release of the Human Connectome Project (HCP; 

https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-

release) which comprises 1113 healthy young adults (606 females) with a mean age of 28.80 

years (range 22–37 years). 

Neuroimaging  

Whole-brain T1-weighted magnetic resonance imaging (MRI) scans were acquired in the HCP 

participants on a Siemens Skyra 3T scanner (Erlanger, Germany) (details in supplemental ma-

terial). Images were downloaded from the HCP repository and processed locally. 

Local brainAGE computation: The process for generating local brainAGE estimates followed 

the procedures developed by Popescu and colleagues (2021), which are described in the sup-

plemental material. Briefly, the T1-weighted images of the HCP participants were normalized 

using affine followed by non-linear registration, corrected for bias field inhomogeneities, and 

segmented into gray and white matter and cerebrospinal fluid components. The Diffeomorphic 

Anatomic Registration Through Exponentiated Lie algebra algorithm (DARTEL; Ashburner, 

2007) was applied to normalize the segmented scans into a standard MNI space (MNI-152 
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space). The gray and white matter outputs were used as input to a pre-trained, convolutional 

neural network (U-Net) to yield voxel-wise estimates of L-brainAGE using parameters provided 

by Popescu and colleagues (2021) (https://github.com/SebastianPopescu/U-NET-for-

LocalBrainAge-prediction). The model was trained and tested in a sample of T1-weighted brain 

scans from 4,155 healthy individuals aged 18-90 years. Importantly, the HCP dataset was not 

used in the development of the L-brainAGE model. Performance accuracy was ascertained us-

ing the voxel-level Mean Absolute Error (MAE), which quantifies the absolute difference be-

tween the neuroimaging-predicted age and the chronological age. The MAE was not adjusted 

for chronological age 

Global brainAGE computation: Downloaded T1-weighted images for HCP participants were 

processed using standard pipelines implemented in SPM12 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) and the computational anatomy toolbox 

(CAT12 version r1155; Gaser & Dahnke, 2016) (http://www.neuro.uni-jena.de/cat/). The output 

was used as the input features in a linear support vector regression with 10-fold cross-validation 

(Schölkopf & Smola, 2002) implemented in the freely available machine-learning software 

NeuroMiner (https://github.com/neurominer-git/NeuroMiner-1), which has been widely used for 

age prediction from neuroimaging data (Besteher et al., 2019; Koutsouleris et al., 2014; Löwe, 

et al., 2016) (details in supplemental material). The age-prediction models were conducted sep-

arately for male and female HCP participants. The MAE was used to ascertain model accuracy 

and was not adjusted for chronological age. G-brainAGE in each HCP participant was computed 

by subtracting their chronological age from the neuroimaging-predicted age. To account for re-

sidual associations with age, G-brainAGE was corrected separately in males and females by 

regressing out chronological age as per Le et al. (2018); unless otherwise specified, the cor-

rected G-brainAGE values were used in all subsequent analyses.  

For both L-brainAGE and G-brainAGE, positive values indicate higher brain-age relative to 

chronological age, while the opposite is true for negative values. 

Non-imaging Measures of Health and Behavior 

The HCP dataset provides comprehensive information about non-imaging measures (NIMs) re-

garding the participants’ physical and mental health, cognitive characteristics, and lifestyle. We 

excluded NIMs where >90% of the sample endorsed the same response, had >10% missing 

values, or were highly colinear (r >0.9) (Supplemental Table S1). Amongst the retained NIMs, 

we used age-adjusted measures when available and imputed missing values using the “mice” R 

package (Multivariate Imputation by Chained Equations; van Buuren & Groothuis-Oudshoorn, 
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2011). Based on prior literature (Chan et al., 2018; Elliott et al., 2019; Gurholt et al., 2021; 

Hatton et al., 2018; Karama et al., 2015; Steffener et al., 2016; Topiwala et al., 2017; Wertz et 

al., 2021), we distinguished between NIMs considered as factors that can potentially increase or 

decrease G-brainAGE (i.e., predictors) and those NIMs that can be considered functional corre-

lates of G-brainAGE. 

Predictors of G-brainAGE: NIMs considered as predictors of G-brainAGE pertained to (1) so-

ciodemographic characteristics (e.g., sex, education); (2) quality of interpersonal relationships 

(e.g., loneliness, emotional support); (3) mental health (e.g. personal and parental psycho-

pathology); (4) physical health (e.g. body mass index, blood pressure); (5) substance use (e.g., 

parental history and personal history of alcohol and substance use); and (6) female reproductive 

health (e.g. menstrual history and birth control use). In total, we considered 28 NIMs as predic-

tors of interest for G-brainAGE for both sexes and an additional 4 NIMs pertaining to reproduc-

tive health for females only. Detailed definitions of these NIMs and the instruments used for their 

assessment are provided in supplemental material and Supplemental Table S2. Their distribu-

tion in the sample is shown in Supplemental Table S4. 

Functional indicators of brain ageing: NIMs considered as functional indicators of brain age-

ing pertained to fluid and crystalized intelligence and physical fitness as captured by submaxi-

mal endurance, gait speed, and hand grip strength (Supplemental Table S3). These variables 

were chosen based on current consensus that they are reliable and sensitive measures of age-

related frailty (Belsky et al., 2015; Kennedy et al., 2014). Their distribution in the sample is 

shown in Supplemental Table S4. 

Statistical Approach  

Sex differences in G-brainAGE and L-brainAGE: Sex differences were computed on a subset 

of unrelated individuals (i.e., one randomly selected participant per family, n = 445). As G-

brainAGE was already corrected for age, chronological age was entered as a covariate in the 

models for L-brainAGE. Statistical significance was set at PFWE < .05 after family-wise error 

(FWE) correction. 

Selection of predictors of brain ageing: To enhance interpretability and reduce the number of 

statistical tests we focused on potential predictors (Supplemental Table S2) that had at least a 

nominal association with G-brainAGE in this sample. These same predictors were then tested 

for their association with L-brainAGE. Although, some predictors may be associated with L-

brainAGE alone, we selected to focus on those that seem to also have a global influence on 

brain-ageing as these are likely to be more meaningful for prevention and intervention strate-
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gies. Accordingly, and separately for each sex, we selected predictors that showed at least min-

imal univariate associations with G-brainAGE (rho > 0.1 or R2 > 0.01 for continuous and cate-

gorical variables, respectively). 

Predictor importance for G-brainAGE: The selected predictors were entered into sex-specific 

random forest (RF) regression models to test their association with G-brainAGE (Breiman, 

2001). RF regression is an ensemble machine learning method, which involves construction of 

multiple decision trees (i.e., forests) via bootstrap (bagging) and aggregates the predictions from 

these multiple trees to reduce the variance and improve the robustness and accuracy. For each 

bootstrapped sample, a portion of the observations (out-of-bag; OOB) are withheld and not used 

in the construction of the trees. RF allows for an importance measure to be determined for each 

predictor by measuring the effect of predictor permutation on the model’s mean decrease in ac-

curacy. RF with 10-fold cross-validation was implemented using the “randomForest” package in 

R using 500 trees and a minimum terminal node sample size of 5. Importance values were 

scaled to range from 0-100 and then, for each predictor, averaged across folds. The directionali-

ty of relationships between the predictors and G-brainAGE were determined by examining beta 

values obtained by linear regression. 

Brain-ageing predictors and L-brainAGE: The sex-specific predictors selected for the G-

brainAGE analyses were entered into sex-specific, voxel-wise multiple regression models to ex-

amine their relationships with L-brainAGE, on the same subset used to test for sex differences 

in L-brainAGE. For both models, chronological age was entered as a covariate.  Statistical sig-

nificance was set at PFWE < .05. 

Functional indicators of brain-ageing: Associations between functional indicators of brain-

ageing were determined for G-brainAGE only using Spearman’s correlations. To account for 

dependence between observations due to relatedness in the HCP data, stratified bootstrapping 

was carried out with 100 iterations such that each bootstrapped sample consisted of unrelated 

individuals (i.e., one randomly selected participant per family, n = 445). 

Supplemental analyses for G-brainAGE: We used the procedures described above to identify 

predictors of G-brainAGE in the entire sample (i.e., including both sexes). 

Results 

Sex-differences in G-brainAGE and L-brainAGE 

Model performance for global brain-age prediction was similar in females and males; the MAE 

was 2.72 years for both sexes and the respective R2 was 93% and 96%. There was no residual 
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association between chronological age and G-brainAGE corrected for age-bias for either sex 

(Supplemental Figure S1). The mean and standard deviation (SD) of the uncorrected G-

brainAGE was 0.03 (3.25) years for females and -0.07 (3.31) years for males; the difference 

amounts to approximately 1 calendar month and was not significant when age-corrected G-

brainAGE values were used. 

However, compared to males, females had significantly lower L-brainAGE in anterior brain re-

gions, and specifically in the ventral and dorsal medial prefrontal cortex, the ventrolateral pre-

frontal cortex, and the insula, and significantly higher L-brainAGE in posterior regions that 

included the cerebellum and brainstem (PFWE < .05; Figure 1). Local MAE values showed a ven-

tral to dorsal and a posterior to anterior gradient of decreasing sex differences (Supplemental 

Figure S2). 

 

Figure 1. Sex differences in L-brainAGE. T-value overlay of statistically significant sex differences in L-
brainAGE (PFWE < .05 with familywise error-correction). Red/yellow: females > males; blue: males > fe-
males. Images are displayed in neurological orientation with MNI coordinates. 
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Predictor Importance for G-brainAGE in Females and Males 

Univariate associations with G-brainAGE identified largely different NIMs for females and males 

(Supplemental Table S5), which were then entered into sex-specific RF models. Accordingly, 

the RF model for females included 3 NIMs (i.e., systolic blood pressure, poor sleep quality and 

years of education; Figure 2A) and the corresponding model for males included 5 NIMs (i.e., 

race, poor sleep quality, childhood conduct problems, times used illicit drugs, and emotional 

support; Figure 2B). Figure 2 presents the importance of each predictor in the sex-specific mod-

els. Supplemental analyses including both sexes identified poor sleep quality, non-white race 

and time used illicit drugs as predictors of higher G-brainAGE (Supplemental Figure S3). 

 

Figure 2. Predictors of G-brainAGE in females and males. Relative importance of predictors derived 
from random forest regression based on mean decrease in prediction accuracy when removed from 
model, scaled to range from 0-100; predictors are displayed in descending order of importance; (A) In 
females, there is a positive relationship with G-brainAGE for systolic blood pressure and poor sleep quali-
ty, and a negative relationship for education level; (B) In males, there was a positive relationship with G-
brainAGE for non-white race, poor sleep quality, and times used illicit drugs, and a negative relationship 
for number of childhood conduct problems and emotional support. 

Voxel-level Associations Between L-brainAGE and Brain-ageing Predictors 

Sex-specific, voxel-wise multiple regression models between L-brainAGE and the same predic-

tors using in the preceding analyses for G-brainAGE did not identify significant associations in 

females at PFWE < .05; at the uncorrected level, some positive associations were noted for sys-

tolic blood pressure (Supplemental Figure S4). In males, significant positive associations at 

PFWE < .05 were found for black race and for poor sleep quality. The associations with Black 

race were widespread (Supplemental Figure S5A) while associations with poor sleep quality 

appeared mostly localized in the cerebellum (Supplemental Figure S5B).  

Functional Indicators of Brain-ageing 

In both sexes, there were minimal and non-significant associations between G-brainAGE and 

endurance, gait speed, grip strength, composite score for fluid intelligence, and composite score 

for crystalized intelligence (Figure 3A-E and Supplemental Table S6). 
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Figure 3. Scatter plots of the association of G-brainAGE and functional indicators. Results are 
shown for (A) endurance, (B) gait speed, (C) grip strength, (D) fluid cognition composite score, and (E) 
crystalized cognition composite score; green = males; purple = females. None of these associations were 
statistically significant. 

Discussion 

The present study used machine learning methods to test for sex-differences in G-brainAGE 

and L-brainAGE and in the predictors of higher G-brainAGE in young adults. While G-brainAGE 

showed negligible sex-differences, L-brainAGE estimates indicated a more “youthful” appearing 

brain pattern in females compared to males in prefrontal cortical regions, while the opposite was 

the case for cerebellar regions. Poor sleep quality emerged as an important predictor of higher 

G-brainAGE in both men and women, while other predictors were sex-specific. Notably, non-

white race was the most important contributor to higher G-brainAGE in males, while higher sys-

tolic blood pressure was the most important contributor to higher G-brainAGE in females.  

Sex-differences in Regional but not Global Ageing Patterns in Young Adults 

G-brainAGE is a summary index of the global pattern of apparent brain structural ageing with 

positive and negative values being respectively indicative of accelerated or delayed ageing. In 

the current sample, the mean uncorrected G-brainAGE in both sexes was close to zero, sug-

gesting that their global ageing pattern was congruent with their chronological age. These find-

ings are aligned with prior studies demonstrating that sex-differences in G-brainAGE that 

emerge during adolescence appear to attenuate in early and middle adulthood (Bittner et al., 

2021; Brouwer et al., 2021). Application of U-Net, a novel machine learning algorithm applied to 
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brain structural data, enabled us to obtain regional estimates of brain-ageing, thus revealing 

fine-grained sex differences. The L-brainAGE findings suggest that female brains are more 

“youthful” than male brains in prefrontal cortical regions, while male brains are more youthful in 

cerebellar regions. Ventral cerebellar regions showed a higher degree of MAE in brain-age es-

timates than in prefrontal cortical regions, which may have a bearing on the results (Supple-

mental Figure S2). However, the pattern identified here closely mirrors the regional gradient of 

aerobic glycolysis in the human brain, whereby resting glucose consumption is about ten times 

higher in prefrontal regions compared to the cerebellum (Goyal et al., 2014; Vaishvani et al., 

2010) This regional pattern parallels sex-differences in the expression of genes involved in neu-

ronal integrity, protein synthesis and energy production (Berchtold et al., 2008; Goyal et al., 

2019; Goyal et al., 2014; Skene et al., 2017). Expression of these genes is higher in females 

than males across adulthood (Berchtold et al., 2008; Skene et al., 2017) and has been associ-

ated with more youthful metabolic ageing patterns in females than in males (Goyal et al., 2019). 

Our results therefore suggest the possibility that the sex-differences in regional rate of age-

related brain structural changes may reflect transcriptomic and metabolic mechanisms that 

could be examined further in future studies. 

Functional Association of G-brainAGE  

We found no association between G-brainAGE with cognitive ability or measures of physical 

fitness, which is perhaps not unexpected since there was little evidence of accelerated global 

brain ageing in the current sample. 

Lower Sleep Quality as a Predictor of Higher G-brainAGE in Females and Males 

Sleep is essential in maintaining homeostasis via multiple cellular, immune, and metabolic 

pathways (Zielinski, McKenna, & McCarley, 2016). Within the brain, sleep exerts powerful ef-

fects on molecular, cellular and network mechanisms of plasticity (Abel, Havekes, Saletin, & 

Walker, 2013). Even minor decrements in sleep quality disrupt circadian rhythms, impair the 

clearance of misfolded proteins, and induce molecular and cellular changes conducive to neu-

roinflammation and oxidative stress (reviewed by Bishir et al., 2020). The current findings rein-

force this prior literature in demonstrating an association between poor sleep quality and higher 

G-brainAGE. Although a similar proportion of female (32.84%) and male (30.57%) participants 

reported sleep problems (Supplemental Table S4), poor sleep quality appeared to play a more 

important role for G-brainAGE and L-brainAGE in males. Compared to females, males have 

less slow-wave-sleep, which shows steeper age-related decline beginning in early adulthood 

(Yetton et al., 2018). Prior studies suggested an association between this age-related reduction 
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in sleep quality with greater cortical thinning (Goldstone et al., 2018) which is captured by the G-

brainAGE measure here. Additionally, the L-brainAGE analyses highlight the importance of cer-

ebellar age-related reduction in males. These findings resonate with those of Zhou and col-

leagues (Zhou et al., 2017) who reported an association between increased brain-ageing in 

terms of cortico-cerebellar connectivity and poor sleep. However, we acknowledge that this ex-

planation is only speculative since sleep architecture was not captured in the present study.  

Sex-specific Predictors of G-BrainAGE 

The sex-specific analysis was more informative than when males and females were combined, 

underscoring the advantage of this approach. Numerically fewer predictors showed an associa-

tion with G-brainAGE in females compared to males, with higher systolic blood pressure having 

the largest contribution to G-brainAGE and L-brainAGE in females but not in males. This obser-

vation accords with findings in a large longitudinal population-based sample (n = 7485; age 

range 20-76 years) where genetic risk factors and hypertension in early adulthood were the only 

predictors of late-life decline in females (Anstey et al., 2021). This relative paucity of potentially 

modifiable predictors of brain ageing in females in early adulthood could potentially contribute to 

their higher rates of dementia (Niu et al., 2017). We did not find significant associations between 

G-brainAGE and variables reflecting reproductive activity in the young females in this sample. 

Estrogens are considered neuroprotective (Gould et al., 1990; McCarthy, 2008) and may con-

tribute to decelerate brain ageing in older females (Maki & Resnick, 2001). In the present study, 

sex hormone levels were not available, thus precluding direct assessment of their association 

with G-brainAGE. Nevertheless, it is possible that hormonal effects on brain morphology are 

less important in early adulthood but may be preconditions for maintaining a more youthful brain 

and/or might delay brain ageing processes much later in life. Longitudinal studies taking a 

lifespan perspective would be required to address these issues.  

Educational level made a minor contribution to G-brainAGE in females but had no significant 

association with G-brainAGE in males. Although earlier research had suggested that education-

al attainment slows the rate of brain ageing (Steffener et al., 2016), this finding is consistent with 

the more recent evidence available that suggests that educational attainment has minimal, if 

any, influence on brain ageing (Nyberg et al., 2021).   

In males, race emerged as the most important contributor to G-brainAGE and L-brainAGE; be-

ing non-white was associated with higher G-brainAGE. Prior studies have suggested that there 

is a greater burden of age-related disorders in middle-aged and older non-white individuals, par-

ticularly those of African ancestry, which has been considered indicative of greater age-related 
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decline in brain organization (Amariglio et al., 2020; Gottesman et al., 2015). Biomarker-based 

indices of biological ageing also show a similar racial pattern (Levine & Crimmins, 2014). The 

advantage of the current study is that the sex-specific analyses undertaken highlight the im-

portance of racial difference for males. The reasons for these racial differences in ageing remain 

poorly specified but are commonly attributed to the greater social and economic adversity expe-

rienced by non-white groups (Williams & Sternthal, 2010).  

Limitations  

In addition to issues raised in previous sections, several strengths and limitations are worth fur-

ther discussion. The study is cross-sectional and as such it does not address either causality or 

the longitudinal evolution of the reported findings. Participant sex was based on self-report and 

was not genetically determined; we consider the frequency of discrepancies between genetic 

versus reported sex to be too low to significantly influence the reported results. Sex, as defined 

here, incorporates societal and lifestyle differences that may differ between females and males. 

However, the sex-specific analyses performed in terms of predictors of G-brainAGE address 

this issue to some extent. The list of environmental exposures considered was substantial but 

not exhaustive. The HCP dataset does not include information on physical activity, which is 

considered protective based on its association with better cognitive performance in older adults 

(Colcombe & Kramer, 2003; Hughes et al., 2009), preserved gray matter (Colcombe et al., 

2003), brain metabolic activity (Engeroff et al., 2019), and with lower brainAGE (Bittner et al., 

2021). The analytical approach is a particular strength of this study as it combined two different 

machine learning methods to identify the regional age-related patterns of brain structure and the 

predictors of global age-related brain structure.  

Conclusions 

The results presented here demonstrate the value of applying sex-specific analyses and ma-

chine learning methods to assess factors that influence the rate of age-related brain structural 

changes and their regional pattern. These findings might be useful in improving our understand-

ing of sex-related differences in ageing and in identifying modifiable factors that influence the 

rate of age-related biological processes. Further investigations in longitudinal cohorts are need-

ed to determine how sex and gender might affect the trajectory of human brain ageing. 
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