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Abstract 14 

Human disturbance and climate change can impact populations by disrupting movement 15 

corridors and reducing important habitat. Characterizing how animals respond to such 16 

environmental changes is valuable for conservation as many species, especially habitat 17 

specialists, can experience reduced genetic diversity when deleterious habitat change occurs, 18 

leading to an increased likelihood of extirpation. Mountain goats (Oreamnos americanus) 19 

exemplify this conservation challenge; their geographically isolated habitat can inhibit gene 20 

flow, making them susceptible to population declines in the face of anthropogenic-induced 21 

landscape change. To facilitate biologically informed population management of mountain goats 22 

in Glacier Bay National Park, Alaska, we characterized the fine-scale genetic population 23 

structure and examined how future climate change could impact the population density of these 24 

mountain goats. We used DNA samples to estimate diversity and depict the genealogical history. 25 

Climate response models allowed us to simulate changes to suitable habitat and predict how this 26 

might influence future population structure. Our results indicated that three genetically distinct 27 

subpopulations exist in Glacier Bay and that the population structure is reflective of the historic 28 

landscape patterns. Climate modeling predicted that demographic productivity was likely to be 29 

reduced for all subpopulations; additionally, we found that climate change likely degrades the 30 

suitability of movement corridors that facilitate gene flow between subpopulations, ultimately 31 

increasing the cost of travel. Understanding such fine-scale patterns are key to managing 32 

subpopulations, particularly with impending changes to the landscape. 33 

 34 
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1. INTRODUCTION 37 

The colonization of landscapes is a central question in biogeography (Lomolino et al. 2017) that 38 

can often be revealed by mapping the genetic diversity and differentiation of populations. For 39 

example, plotting genetic diversity across the landscape can retrace the route individuals took 40 

(i.e. stepping-stone model; Kimura and Weiss 1964, Baltazar-Soares et al. 2020), while more 41 

complex models can estimate divergence times and infer population size changes (i.e. Csilléry et 42 

al. 2010). When colonization follows a disturbance, quantifying the genetic response can aid in 43 

predicting changes to the demography of that population as the landscape continues to change. 44 

This information can help inform management decisions, for example, by minimizing 45 

disturbance to those subpopulations with lower genetic diversity (Bouzat 2010, Stronen et al. 46 

2019).  47 

Landscape disturbances come in a variety of forms, and while each type of disturbance 48 

has unique characteristics, there are similarities between regimes (Newman 2019). Glaciation 49 

and subsequent deglaciation events provide opportunities to learn about animal movement across 50 

broad scales (Hewitt 1999). The most recent large-scale ice age, during the Pleistocene Epoch, 51 

ended around 11,700 years ago, and led to a range of species’ responses, particularly in North 52 

America (Lister 2004, Pearson 2013, Bibi and Kiessling 2015, Puzachenko and Markova 2019). 53 

During the Last Glacier Maximum, two major refugia existed in western North America: 54 

Beringia and the Pacific Northwest (Hultén 1937, Pielou 1991). While those areas are widely 55 

accepted as refugia for species during this ice age, there is evidence of additional, smaller refugia 56 

along coastal Alaska and British Columbia (Shafer et al. 2010). Beyond the major ice ages, 57 

smaller-scale glaciation events have also occurred in North America. Notably, Glacier Bay 58 

National Park and Preserve (GBNPP), located in Southeast Alaska, experienced a small 59 

glaciation event, a product of the Little Ice Age, only ~300 years ago (Connor et al. 2009). The 60 

native wildlife was forced to leave the area that is now Glacier Bay fjord to escape the advancing 61 

glacier. Glaciers have since retreated, allowing flora and fauna to recolonize the landscape 62 

(Milner et al. 2007, Boggs et al. 2010).  63 

The origin of many recolonized species in GBNPP is unknown. Brown bears (Ursus 64 

arctos) and black bears (Ursus americanus) recolonized GBNPP from both the northeast and 65 

northwest after the Little Ice Age with Glacier Bay fjord and glacier-covered mountains acting as 66 

barriers to dispersal (Lewis et al. 2015, 2020). While other mammals might have recolonized in a 67 

similar way, the habitat associations of a species likely play a role in their movement across the 68 

landscape. Bears, for example, might travel along coastlines or through forests, while alpine 69 

ungulates such as mountain goats (Oreamnos americanus) likely select high elevation, 70 

mountainous terrain leading to different movement patterns (Rice 2008). However, marine 71 

waterways and steep glacier covered mountains or icefields likely inhibit movement of mountain 72 

goats. Interestingly, while mountain goat habitat selection models suggest avoidance of glaciers 73 

in coastal Alaska (Shafer et al. 2012), both expert opinion and landscape modeling suggested a 74 

minimal effect of glaciers on movement in the Cascade Mountains (Shirk et al. 2010). 75 

Reconstructing the historical colonization of a species can help predict future movements 76 

in response to disturbance and is particularly relevant as land management agencies develop 77 

plans to mitigate impacts to vulnerable and climate sensitive wildlife populations. Climate 78 

change is expected to result in widespread changes in glaciers and landscape configurations and 79 

learning about those processes in a place like GBNPP, where major deglaciation has occurred in 80 
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recent times, provides an important opportunity to gain insights about how predicted climate 81 

change may impact ecological systems more broadly. Here, we used non-invasive genetic 82 

samples to examine the population genetic structure of mountain goats in and surrounding 83 

GBNPP. We use a Bayesian computational approach to reconstruct the demographic history and 84 

climate projections to model how these subpopulations and movement corridors might be 85 

impacted by climate change. 86 

 87 

2. METHODS 88 

2.1 Study area and sample collection 89 

Glacier Bay National Park and Preserve is located in Southeast Alaska and is characterized by 90 

glacial- and river-made valleys surrounded by mountain peaks and fjords (Boggs et al. 2010). 91 

Within the boundary of GBNPP, four mountain goat study areas were identified based on 92 

geographic patterns of distribution, abundance, and management interest. These study areas were 93 

Mount Wright, Tidal Inlet, Marble Mountain, and Table Mountain (Figure 1). We included 94 

samples from the adjacent Haines-Skagway and the Bering Glacier areas (Figure 1). These latter 95 

two areas were studied because they were considered putative source populations for Glacier 96 

Bay.  97 

 During the summers of 2017 through 2020, we collected pellet samples from GBNPP. 98 

Once a pellet group was determined to be fresh using protocols from Poole et al. (2011), we 99 

swabbed the outside of multiple pellets from the same pellet group and stored the swabs in a vial 100 

of Longmire’s solution, a lysis buffer designed to preserve DNA and prevent contamination 101 

(100mM Tris, 100mM EDTA, 10mM NaCl, 0.5% SDS, 0.2% sodium azide). Samples were 102 

stored at -20 degrees C. Tissue samples adjacent to GBNPP were collected by Alaska 103 

Department of Fish & Game (ADFG) through harvest and research sampling following field 104 

sampling methods described in Shafer et al. (2011) and White et al. (2021a, 2021b). 105 

2.2 DNA extraction and lab methods 106 

DNA was extracted using a Qiagen DNeasy Blood and Tissue Kit (Qiagen Inc., Valencia, 107 

California, USA), following the manufacturer’s protocols. We amplified 17 polymorphic 108 

microsatellites over 3 multiplex PCR pools using previously published non-invasive genotyping 109 

protocol (White et al. 2021a). We used the software program Geneious (v 10.1.2, Kearse et al. 110 

2012) to manually call alleles requiring a minimum strength of 250 RFUs. Pellet samples were 111 

genotyped in triplicate and samples where fewer than two of the replicate genotypes matched 112 

were dropped following the approach of White et al. (2021a). Samples with genotypes less than 113 

80% complete were dropped from the analysis. Positive and negative controls were included in 114 

all steps. 115 

2.3 Genetic variation 116 

We used the R package ALLELEMATCH (Galpern et al. 2012) to determine if individuals were 117 

sampled multiple times (alleleMismatch = 2). To test for deviations from Hardy-Weinberg 118 

Equilibrium (HWE) and linkage disequilibrium (LD), we used the R package genepop (Rousset 119 

2008). We checked for allelic dropout using the program Micro-Checker (v2.2.3 Van Oosterhout 120 

et al. 2004). For each study area we estimated the mean and private allelic richness using ADZE. 121 
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GENHET (Coulon 2010) and adegenet (Jombart 2008) were used to estimate individual- and 122 

subpopulation-level heterozygosity, respectively. We estimated the effective population size (Ne) 123 

using NeEstimator (v2.1, Do et al. 2014), and used the program SPAGeDi (Hardy and Vekemans 124 

2002) to calculate the FST and Nei’s D. We calculated spatial autocorrelation using the parameter 125 

Moran’s I at 5 km distance bins. 126 

2.4 Population structure and demographic history 127 

We visualized clusters of samples using a principal components analysis (PCA) and plotted 128 

individual principal component scores against latitude and longitude as a proxy for isolation-by-129 

distance. The Bayesian clustering program STRUCTURE (Pritchard et al. 2000, Falush et al. 130 

2003, 2007, Hubisz et al. 2009) was used to identify subpopulations using the admixture model 131 

with independent runs from K=1 to K=20 and a burn-in period of 5 x 105 and 1 x 106 MCMC 132 

iterations. We used a combination of Evanno et al. (2005) and Puechmaille (2016) methods 133 

determine the optimal K. Admixed individuals were considered when q < 0.8. 134 

The Bayesian approximate computation software DIYABC (v2.0, Cornuet et al. 2014) 135 

was run to reconstruct the demographic history both within GBNPP and GBNPP and adjacent 136 

populations (Bering Glacier and Haines-Skagway) where we assessed four different 137 

recolonization scenarios (Figure S1, S2). We simulated 1 x 105 datasets for each scenario and 138 

recorded the following summary statistics: mean number of alleles, genic diversity, mean Garza-139 

Williamson’s M, and FST. Parameters were adjusted based on their posterior distribution and the 140 

optimal model was selected by using measures of posterior probabilities of scenarios. Time 141 

estimates in number of generations were converted to years by multiplying by a generation time 142 

of 6 years following Martchenko et al. (2020). 143 

2.5 Climate change predictions 144 

We used a population model developed by White et al. (2018) to simulate demographic 145 

responses of each genetically distinct subpopulation to predicted changes in climate. This 146 

approach simulates climate effects by modeling how changes in mean July/August temperature 147 

and total annual snowfall [derived from precipitation as snow (PAS)], influence sex- and age-148 

specific survival (White et al. 2011); a key predictor of population performance (Hamel et al. 149 

2006). Temperature and PAS predictions were generated with the ClimateNA software package 150 

(v5.10, Wang et al. 2016), and baseline values were calculated by taking the average temperature 151 

and PAS over the past 20 years. Five GCM models were used to predict the changes in 152 

temperature and PAS: CCSM4, GFDL-CM3, GISS-E2-H, IPSL-CM5B-LR, and MRI-CGCM3 ( 153 

White et al. 2018). For each model we considered two emission scenarios (RCP 4.5 and RCP 154 

8.5), and predicted out to year 2025, 2055, and 2085. Snowfall variability was modeled using 155 

total annual snowfall measurements collected at the Gustavus Airport during 1965-2019. 156 

Subpopulation size for each study area was derived based on aerial survey data collected during 157 

2012 (Lewis and White 2015) and adjusted for sightability bias following analytical methods 158 

described in White et al. (2016). The stable age distribution was used to determine the age and 159 

sex structure for each initial population size following White et al. (2018). Age-specific density 160 

dependent fecundity and kid survival was also parameterized as per White et al. (2018). We ran 161 

each model 1000 times and calculated how many times the subpopulation size fell below N = 2 162 

by the year 2085 to estimate the probability of quasi-extinction, a general metric of population 163 

performance over time. 164 
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 We used ecological niche modelling (ENM) and Least Cost Path (LCP) analysis to 165 

predict how movement corridors might change in response to climate change. We used 166 

coordinates of both the invasive and non-invasive research samples collected in the field 167 

combined with a suite of climate raster data layers. The current and future cost landscape rasters 168 

were created using the ENM software Maxent (v3.3.3, Phillips et al. 2006) and ArcGIS Pro (v 169 

2.6.3) software. We evaluated the predictive capability of the model using cross-validation 170 

methods with 75% of the samples as training samples to build the model; the remaining 25% of 171 

the samples were omitted from the model building process and later used to test the model. We 172 

ran the model using a variety of combinations of parameters and compared Area Under the 173 

Curve (AUC) to measure model performance. We used 19 bioclimatic variables, downloaded 174 

from WorldClim (https://www.worldclim.org/) for current climate data. Additionally, we used 175 

landcover type and digital elevation model (DEM) rasters downloaded from the United States 176 

Geologic Survey database (https://apps.nationalmap.gov/downloader/#/). The DEM raster was 177 

used to calculate the heat load index which is a measure of the incident radiation in a location 178 

based on the slope and aspect; this attribute has previously been found to affect mountain goat 179 

space use (Shafer et al. 2012) and is subject to change with climate. All layers had a resolution of 180 

30 arc-seconds. A jacknife test of variable contributions was used to determine which variables 181 

contributed to the model; variables that did not contribute were removed and the model was re-182 

run. Future climate variables were downloaded from the GCM Downscaled Data Portal 183 

(http://www.ccafs-climate.org/data_spatial_downscaling/). We used the Representative 184 

Concentration Pathways models RCP 4.5 and RCP 8.5 from the GFDL_CM3 model projected 185 

for the year 2080 (Donner et al. 2011), used in the IPCC Fifth Assessment Report (Shukla et al. 186 

2019). 187 

To calculate the LCP between the locations of each research sample collected in northern 188 

Southeast Alaska, we used the R package ‘gdistance’(van Etten 2017). Least cost path matrices 189 

were produced and compared for current, future (year 2085) under the RCP 4.5 scenario, and 190 

future (year 2085) under the RCP 8.5 scenario. We compared the cost distance to the genetic 191 

distance parameter Moran’s I to determine how the genetic distance changed as the spatial LCP 192 

distance increased and the cost distance to the Euclidean distance to compare the cost and 193 

distance values. We used a multiple regression on distance matrices (MRM) method in the R 194 

package ‘ecodist’ (Goslee and Urban 2007) that used Euclidean distance and current LCP 195 

distance as predictor variables, with the genetic distance as the response variable. 196 

 197 

3. RESULTS 198 

3.1 Population genetic diversity statistics 199 

A total of 68 unique samples from pellets in all four sampling areas in GBNPP were genotyped 200 

at 17 polymorphic microsatellites (Table 1). An additional 69 (3 pellet, 66 tissue) samples were 201 

added from areas surrounding the GBNPP focal areas to investigate connectivity of mountain 202 

goats across the GBNPP boundary. Nei’s D between the sampling areas ranged from 0.01 to 0.18 203 

with the lowest levels of genetic differentiation between Mt. Wright and Tidal Inlet and the 204 

highest between Marble Mountain and Table Mountain (Table 2). The PCA showed clustering of 205 

individuals according to sampling area, but Mt. Wright and Table Mountain samples overlapped 206 

(Figure 2A). The first principal component versus latitude and longitude analysis did not show a 207 

clear relationship (p > 0.05, Figure S3); however, an IBD and spatial autocorrelation pattern was 208 
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present, with genetic relatedness decreasing slightly as spatial distance increased (Figures S4, 209 

S5). There was no correlation between HO, FIS, and Ne and longitude or latitude in GBNPP 210 

(Figure S6). 211 

3.2 Population structure and demography 212 

STRUCTURE analysis supported three distinct subpopulations of mountain goats in GBNPP 213 

(Figure 2B, S7). When surrounding individuals were included in the analysis 5 subpopulations 214 

were detected, the same three within the GBNPP boundary and two intermixed subpopulations 215 

northeast of GBNPP (Figure 2B, S8). The amount of admixture was lowest for the three GBNPP 216 

subpopulations (proportion of individuals that were admixed: 0.16-0.33) and highest for the 217 

subpopulations to the north (0.38-0.41, Table S1). Demographic modelling indicated that within 218 

GBNPP, the Table Mountain subpopulation split off first ~7,920 years ago (95% CI: 3,102-219 

37,500). Following that split, the Tidal Inlet/Mt. Wright subpopulations split from Marble 220 

Mountain ~1,050 years ago (95% CI: 524-7,080; Figure S1 Scenario 2). Results from the broad 221 

scale demographic analysis indicated that GBNPP mountain goats split off most recently from 222 

the Northeast in the Haines-Skagway area ~12,480 years ago (95% CI: 5,460-45,600; Figure S2 223 

Scenario 1). 224 

3.4 Climate change population modeling 225 

Subpopulations showed numeric declines under all climate scenarios. For all four sampling 226 

areas, the CCS and GFDL GCMs under the RCP 4.5 emissions scenarios showed subpopulations 227 

reaching quasi-extinction by the year 2085 (Table 3). The CCS, GDFL, and ISPL GCMs showed 228 

subpopulations reaching quasi-extinction for all runs in the RCP 8.5 scenario (Table 3). The 229 

optimal Maxent model (AUC = 0.942) was based off 118 sample locations and included 13 230 

environmental variables (Table S2) and indicated that the ecological niche for mountain goats in 231 

Southeast Alaska, given their current location and these environmental layers, is reduced in 232 

response to climate change (Figure 3A). The mean cost of travel between all individuals for the 233 

current LCP analysis was 1.84 x 106; conversely, mean cost of travel between all individuals for 234 

the future RCP 8.5 LCP analysis was 1.40 x 1016 (Figure 3B). Multiple regressions indicated that 235 

geographic distance is negatively correlated with Moran’s I (R2 = 0.22, p < 0.01), while 236 

including LCP did not improve the model fit (Table S3). 237 

 238 

4. DISCUSSION 239 

4.1 Patterns of genetic differentiation 240 

Alaska has a dynamic geologic history with multiple glaciation events that have shaped the 241 

current landscape and biodiversity (Svenning et al. 2015, Antonelli et al. 2018). Our results 242 

suggest that the mountain goats in GBNPP originated from a local source population in 243 

Southeast Alaska rather than dispersing from Southcentral Alaska, or more distant refugial 244 

populations. Shafer et al. (2011) provided evidence for a hot spot of mountain goat genetic 245 

diversity around Haines, Alaska with peripheral populations appearing to radiate to the 246 

surrounding areas. We hypothesize that the common ancestors of GBNPP mountain goats likely 247 

originated from this area before splitting off and colonizing GBNPP after the Last Glacial 248 

Maximum. The grouping of outer coast Table Mountain subpopulation with two samples from 249 

Yakutat indicate that mountain goats in that area could also have a route north of the park 250 
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boundary that followed the coast down to Table Mountain. The demographic analysis indicated 251 

that GBNPP was likely colonized by mountain goats between the retreat of the Last Glacial 252 

Maximum and the early stages of the Holocene. Consistent with this is data suggesting many 253 

mammalian species colonized northern Southeast Alaska during this period, including rodents 254 

(Runck and Cook 2005), mustelids (Cook et al. 2001), carnivores (Klein 1965), and ungulates 255 

(Klein 1965, MacDonald and Cook 2009). During this time, glaciers still filled many of today’s 256 

fjords, allowing for the possibility of a more direct route of colonization across the landscape. 257 

Mountain goats in GBNPP exhibit some subtle patterns of IBD and spatial 258 

autocorrelation, which has been shown with other mountain goat populations, (Shafer et al. 2011, 259 

Parks et al. 2015, White et al. 2021a). The IBD patterns and lack of a PC versus latitude and 260 

longitude relationship indicates a relatively rapid wave of colonization across GBNPP, which is 261 

not unexpected at a small scale. Mountain goats exhibit female philopatry which results in 262 

patterns of closely related individuals staying together (Côté and Festa-Bianchet 2008). These 263 

patterns along with low Ne values suggest that genetic drift is the main driver of genetic diversity 264 

for these mountain goat subpopulations. Mountain goats are alpine specialists and have the 265 

unique ability to traverse across steep, rocky ‘escape terrain’ that most predators cannot access 266 

(Côté and Festa-Bianchet 2008, Shafer et al. 2012). Beyond the mountainous and forested 267 

landscapes, GBNPP is also made up of numerous deep inlets and fjords which likely act as 268 

barriers to contemporary mountain goat movement. Similar to what has been found for brown 269 

and black bears (Lewis et al. 2015, 2020), the recently deglaciated Glacier Bay fjord isolates 270 

subpopulations unless there is suitable habitat to facilitate movement around the fjord. 271 

On the west side of Glacier Bay, mountain goats are consistently observed on Marble 272 

Mountain, despite its isolated geographic position relative to other groups of mountain goats 273 

(Lewis and White 2015). Marble Mountain had the lowest estimated genetic diversity and 274 

smallest estimated population size (n = 49; Lewis and White 2015); with few neighboring 275 

mountains inhabited by mountain goats, the amount of gene flow is likely decreased causing this 276 

reduction in genetic diversity (e.g. Shirk et al. 2010). Additionally, gene flow is not only a 277 

function of distance, but also population size, further causing small subpopulations, like that of 278 

Marble Mountain, to experience low gene flow and genetic diversity (Frankham 1996). 279 

Interestingly, clustering analysis showed that two of the study areas (Mt. Wright and Tidal Inlet) 280 

are not genetically distinct from one another, indicating that gene flow between the study areas is 281 

either currently ongoing, separation has occurred recently, or that colonization was recent. A 2 282 

km wide fjord separates these two areas but was covered in ice in the late 1800s and movement 283 

between them was likely more feasible during that time. 284 

4.2 Response to climate change 285 

Mountain goat populations are projected to be negatively affected by climate change (White et 286 

al. 2011, 2018) and our demographic simulation analyses suggest the same pattern is likely to 287 

occur in GBNPP. These analyses are not intended to be literal space and time predictions, but 288 

rather to heuristically examine whether predicted climate change is likely to be result in 289 

favorable or unfavorable outcomes for mountain goats in a particular area. In GBNPP, the 290 

projected decrease in winter snowfall and increase in summer temperature seen in climate 291 

models suggested climate change is likely to negatively affect mountain goats in all four study 292 

areas. These results are similar to that of White et al. (2018), who also found small populations 293 

were more strongly influenced by climate-mediated perturbations. To avoid these negative 294 
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outcomes, mountain goats must either adapt to this changing environment by adjusting daily 295 

activity budgets or move to more suitable habitat, which would likely mean moving higher in 296 

elevation (Moritz et al. 2008). While behavioral adaptations are an important mechanism that can 297 

enable mountain goats to adapt to a changing climate, we have limited understanding of their 298 

ability to adapt or behaviorally mitigate these changes. The ability to move to more suitable 299 

habitat becomes increasingly important as less habitat is available. Unfortunately, the cost of 300 

travel across the landscape will likely increase because of climate change (Figure 3), further 301 

highlighting the negative impact that climate change will have on mountain goats.  302 

Surprisingly, genetic variation was correlated more with Euclidean distance than LCP 303 

distance (Table S3). The LCP is reflective of the contemporary landscape and climatic patterns, 304 

which often correlates better than geographic distance in mountain goats (Shirk et al. 2010, 305 

Shafer et al. 2012). This correlation between genetic variation and Euclidean distance rather than 306 

LCP distance variation supports our assertation that historical patterns of colonization are the 307 

primary drivers of contemporary genetic patterns. During past glaciation events, ice filled the 308 

fjords, allowing for a more direct route of colonization: this is reflected in the Euclidean 309 

distances, all of which encompass the fjords when comparing the Mt. Wright to Marble 310 

Mountain subpopulations, for example. Since the ice has retreated, the landscape and movement 311 

corridors have changed and main fjord which allowed for the direct route is no longer 312 

traversable, thus explaining the lack of correlation between contemporary LCP and genetic 313 

variation. Any contemporary and future movement, however, will rely on the current landscape 314 

and corridors (e.g. Shafer et al. 2012, Wolf et al. 2020); thus we would expect the future LCP 315 

analysis to be more important for predicting future mountain goat connectivity. Additional 316 

research on shifts in mountain goat movement across the landscape would be valuable for further 317 

understanding how climate change will impact populations in Southeast Alaska. One limitation 318 

to note is that locations were used from samples collected during late winter-summer which 319 

potentially missed the full range of mountain goat habitat. For future studies on climate-induced 320 

changes in mountain goat habitat, we suggest collecting representative year-round samples and 321 

designing a complex model that incorporates finer-scale, climate-sensitive behavioral strategies 322 

to thermal stress, explicitly considers seasonal differences in ecology and distribution, and 323 

considers local climates and associated trajectories. Nevertheless, we feel that this model does 324 

provide valuable insight into future climatic changes that will affect mountain goat survival and 325 

movement across the landscape.   326 

Movement corridors are crucial for maintaining connectivity and gene flow for isolated 327 

subpopulations on patchy landscapes (Taylor et al. 1993, Kahilainen et al. 2014, Schlaepfer et al. 328 

2018). Connectivity across a landscape can be obstructed by the addition of roads or 329 

development which have been found to hinder mountain goat movement (Shirk et al. 2010). The 330 

construction of new trails or increased tourism could also affect the landscape connectivity for 331 

mountain goats and should be considered when making management decisions. Ecological niche 332 

modeling suggested that the climate envelope mountain goats currently use in this area will be 333 

greatly reduced and shifted, and may increase the cost of travel (i.e. connectivity) will increase. 334 

With the incorporation of genetic information to the current knowledge of population dynamics 335 

of mountain goats on a small scale, land managers can make more informed decisions to 336 

minimize the disturbance on subpopulations of mountain goats that are more vulnerable to 337 

disturbance.  338 
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Tables and Figures 544 

Table 1. Diversity statistics for mountain goats in four sampling areas in Glacier Bay National 545 

Park, Alaska (n = 68). Data were generated using Genalex v6.503 and NeEstimator v2.1. 546 

  547 

Sampling 

area 

No. of 

samples 

Assigned 

pop 

Mean 

q-value 

Observed 

heterozygosity 

Expected 

heterozygosity 
FIS 

Ne 
(95% CI) 

Marble 

Mountain 
25 

Marble 

Mtn 
0.87 0.19  0.049 0.24  0.056 0.18  0.078 6.6-50.7 

Mt Wright 10 
TidalInlet/ 

MtWright 
0.76 0.34  0.050 0.36  0.054 0.02  0.044 8.3-∞ 

Table 

Mountain 
14 Table Mtn 0.92 0.32  0.069 0.34  0.047 0.07  0.126 2.5-∞ 

Tidal Inlet 19 
TidalInlet/ 

MtWright 
0.82 0.30  0.052 0.33  0.045 0.17  0.095 5.5-21.5 
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Table 2. Pairwise Nei’s D (lower matrix) and FST (upper matrix) for mountain goats in eight 548 

sampling areas in and around Glacier Bay National Park, Alaska and (n = 137). Data were 549 

generated using SPAGeDi v1.5d. 550 

 Yakutat Chilkat GLB Marble 

Mtn 

Mt 

Wright 

Muir Table 

Mtn 

Tidal 

Inlet 

Yakutat - 0.2176 0.0966 0.209 0.1416 0.1097 0.1049 0.2159 

Chilkat 0.1361 - 0.052 0.209 0.1243 0.1861 0.1511 0.1582 

GLB 0.1094 0.047 - 0.1189 0.0657 0.0258 0.1081 0.1042 

Marble Mtn 0.1283 0.124 0.0829 - 0.1439 0.2364 0.2589 0.1851 

Mt Wright 0.1363 0.0679 0.0494 0.0857 - 0.0664 0.1355 0.1105 

Muir 0.0948 0.1353 0.048 0.1562 0.0666 - 0.1461 0.1183 

Table Mtn 0.0924 0.0939 0.0913 0.1766 0.0985 0.1104 - 0.169 

Tidal Inlet 0.1019 0.0835 0.0807 0.1026 0.0285 0.0668 0.0988 - 

  551 
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Table 3. Projected mountain goat population response to climate change over a 65-year period 552 

(2020-2085) for four subpopulations in Glacier Bay National Park, Alaska (total n = 68, Marble 553 

Mountain = 49, Mount Wright = 244, Table Mountain = 208, Tidal Inlet = 214). Subpopulations 554 

were simulated 1000 times under five global climate models (GCM) each with two emission 555 

scenarios (RCP 4.5 and 8.5). Initial population sizes were determined based on aerial surveys 556 

conducted in 2012 and corrected for sightability. Subpopulations were simulated 1,000 times 557 

each. N indicates the estimated population size of each study area. 558 

 559 

  560 

 
% quasi-extinction (N<2) by 2085 

 
Years to extinction 

GCM 

Marble 

Mtn 

Mt. 

Wright 

Table 

Mtn 

Tidal 

Inlet 
 

Marble Mtn Mt. Wright Table Mtn 

Tidal  

Inlet 

RCP 4.5 
         

CCS 98.6 62.2 37.6 42.7  >65 >65 >65 >65 

GFDL 100 88.4 83.0 62.5  55.510.15 >65 >65 >65 

GISS 0.0 0.0 0.0 0.0  >65 >65 >65 >65 

ISPL 0.0 0.0 0.0 0.0  >65 >65 >65 >65 

MRI 0.0 0.0 0.0 0.0  >65 >65 >65 >65 

RCP 8.5 
         

CCS 100 100 100 100  45.020.09 47.970.09 49.930.10 50.590.09 

GFDL 100 100 100 100  48.100.10 52.120.10 54.170.10 52.000.10 

GISS 0.0 0.0 0.0 0.0  >65 >65 >65 >65 

ISPL 100 100 100 100  52.140.09 56.440.08 57.650.09 57.600.09 

MRI 0.0 0.0 0.0 0.0  >65 >65 >65 >65 

          

N 49 244 208 214      
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 561 

Figure 1. Map of mountain goat (Oreamnos amercanus) samples for Glacier Bay National Park, 562 

Alaska analysis. The four focal study areas are indicated in bold. All other study areas (not in 563 

bold) were used for demographic and admixture analysis.   564 
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 565 

Figure 2. The population structure of mountain goats in and around Glacier Bay National Park 566 

and Preserve. A) Principal Components Analysis (PCA) of mountain goats from four sampling 567 

areas in Glacier Bay National Park, Alaska (n = 68). The proportion of variance explained by 568 

each axis is shown in parentheses. Subpopulations are delineated by color and ellipses. B) 569 

Average STRUCTURE subpopulation assignments for mountain goats in each of the four study 570 

areas in Glacier Bay National Park, Alaska and areas surrounding Glacier Bay. Pie charts 571 

indicate the q-value assignments for each K=5. The four GBNPP sampling areas are indicated in 572 

bold. 573 

  574 
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 575 

Figure 3. The effects of climate change on mountain goats in northern Southeast Alaska. (A) 576 

Maps of current (top) and year 2085 (bottom) habitat suitability for mountain goats in northern 577 

Southeast Alaska based off Maxent analysis. Yellow indicates more suitable habitat and blue 578 

indicates less suitable habitat. The global climate model GFDL-CM3 was used for this model. B) 579 

Violin plot of the average current and future cost of travel for mountain goats between each 580 

sample location in northern Southeast Alaska. Costs were calculated using Maxent suitability 581 

layers and Least Cost Path analysis. 582 
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