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Abstract

Phage ImmunoPrecipitation Sequencing (PhIP-Seq) is a recently developed technology to assess anti-

body reactivity, quantifying antibody binding towards hundreds of thousands of candidate epitopes. The

output from PhIP-Seq experiments are read count matrices, similar to RNA-Seq data; however some

important differences do exist. In this manuscript we investigated whether the publicly available method

edgeR1 for normalization and analysis of RNA-Seq data is also suitable for PhIP-Seq data. We find

that edgeR is remarkably effective, but improvements can be made and introduce a Bayesian framework

specifically tailored for data from PhIP-Seq experiments (Bayesian Enrichment Estimation in R, BEER).
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Introduction

Because of their high abundance, easy accessibility in peripheral blood, and relative stability ex vivo,

antibodies serve as excellent records of environmental exposures and immune responses. While several

multiplexed methods have been developed to assess antibody binding specificities, Phage Immuno-

Precipitation Sequencing (PhIP-Seq) is the most efficient technique available for assessing antibody

binding to hundreds of thousands of peptides at cohort scale2–4. PhIP-Seq uses oligonucleotide library

synthesis to encode proteome spanning peptide libraries for display on bacteriophages. These libraries

are immunocaptured using an individual’s serum antibodies, and the antibody-bound library members

are identified by high throughput DNA sequencing. The VirScan4 assay uses the PhIP-Seq method to

quantify antibody binding to around 100,000 peptides spanning the genomes of more than 200 viruses

that infect humans. Other commonly used libraries include the AllerScan5 and ToxScan libraries6, and

a focused library for coronaviruses, including SARS-CoV-27.

We and others have utilized PhIP-Seq to successfully identify novel autoantigens associated with au-

toimmune diseases8–10, to broadly characterize allergy-related antibodies5, to quantitatively compare

the antibody repertoires of term and preterm neonates11, to assess changes in the anti-viral antibody

response after bone marrow transplant12, to characterize the self-reactivity of broadly neutralizing HIV

antibodies13–15, to link enteroviral infection with acute flaccid myelitis16, and for use in large cross-

sectional and longitudinal studies of exposure and response to hundreds of human viruses and thousands

of bacterial proteins in healthy individuals and in individuals infected with HIV or measles4,17–19. In ad-

dition, we recently used PhIP-Seq to assess how antibody responses to endemic coronaviruses modulate

COVID-19 convalescent plasma functionality7 and evaluated the heritability of antibody responses20.

The output from PhIP-Seq experiments are read count matrices, similar to RNA-Seq data, but important

differences in the data structures, experimental design, and study objectives exist between the two
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sequencing-based methods. RNA-Seq experiments typically focus on differentially expressed genes or

transcripts between experimental groups, rather than identifying expressed genes for any particular

sample. The objective of PhIP-Seq experiments however is typically just that: detecting peptide antibody

reactivity in an individual sample. Thus, in contrast to RNA-Seq experiments, the design of PhIP-

Seq experiments requires the use of negative controls (i.e. “mock” immunoprecipitations (IPs) lacking

antibody input, also referred to as beads-only samples), which are typically included as 4 to 8 wells of

a 96-well plate. This generates a “n versus 1” mock IPs versus sample comparison, in contrast to the

most common n1 versus n2 two-group comparison in RNA-Seq. In addition, genes with low read counts

are presumed to have little biological relevance, and RNA-Seq data workflows typically filter out lowly

expressed genes (measured as counts-per-million) prior to analysis. In PhIP-Seq experiments however,

peptides with low read counts may have biological relevance and are not filtered out in advance. That

said, under suitable assumptions, such as equality of variances in both groups, a two-group comparison

with a single sample in one group can still be carried out.

Significant advances in normalization and analysis methods for RNA-Seq data have been made in

recent years, with edgeR, DESeq2, and voom among the most popular open-source software packages

available1,21–23. These methods model the number of reads using a negative binomial distribution

to account for the inflated variance due to biological variability between samples in comparison to

the expected variance of the binomial distribution. Parameter estimation is based on empirical Bayes

methods to borrow strength across transcripts, stabilizing the estimates of the respective standard errors.

Upregulated genes in RNA-Seq experiments draw a higher proportion of reads than expected for a given

library size (here, total read counts), resulting in lower than expected read counts for other genes given

that library size (”competing resources”). Thus, a normalization factor for each sample is calculated in

RNA-Seq experiments to account for this effect24. One assumption is that the majority of genes are

not differentially expressed when comparing cases to controls.
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In this manuscript we investigated whether the publicly available method edgeR1 for normalization and

analysis of RNA-Seq data is also suitable for PhIP-Seq data. We highlight some of the differences

between PhIP-Seq and RNA-Seq experiments and data sets, which motivates the development of a new

methodology for PhIP-Seq data explicitly based on the assumed data generating mechanism, rather than

adapting existing RNA-Seq approaches. To that end, we introduce a Bayesian framework specifically

tailored for data from PhIP-Seq experiments (Bayesian Enrichment Estimation in R, BEER). Using

simulation studies and data sets from existing HIV and SARS-CoV-2 studies, we investigate what

improvements in sensitivity and specificity can be made, highlight the importance of empirical Bayes

methods, and assess the effect of the number of mock IP samples on sensitivity and specificity.

Results

Simulation. Regardless of the approach used to estimate prior parameters, BEER has high discrimi-

natory power for identifying enriched peptides (Figure 1, Supplementary Figure S1). In general, BEER

using methods of moments (MOM) or maximum likelihood estimates (MLE) for the shape parameters

in the beads-only prior distributions performed worse than BEER using edgeR parameter estimates,

highlighting the importance of borrowing strength across peptides for improved parameter estimation

(Supplementary Figure S1, Supplementary Table S1). The stability of parameter estimates also affected

the improvement in BEER predictive performance by the number of beads-only samples used. While

BEER with MOM and MLE parameter estimates greatly benefited from the inclusion of more beads-

only samples in the experiment, BEER using edgeR parameter estimates had much less pronounced

improvements as the number of beads-only samples was increased (Supplementary Figures S2, S3, and

Supplementary Table S1). Using these edgeR parameter estimates, BEER posterior probabilities of en-

richment were well-calibrated (Supplementary Figure S4), and estimates of fold changes were accurate
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(Supplementary Figure S5). Thus, we recommend the edgeR parameter estimates as default and imply

their use when simply referring to BEER as the method used.

In general, performances of edgeR and BEER for identifying enriched peptides were surprisingly similar

(Figure 1, Supplementary Table S1). Both methods yielded near perfect receiver operating characteristic

(ROC) curves for peptide fold changes above 4 (area under the curves (AUCs) > 0.99), and still

outstanding ROC curves for fold changes between 2 and 4 (AUCs between 0.94 and 0.98) even when

a design with only 2 beads-only samples was employed. Peptide fold changes less than 2 were harder

to detect, reflected in substantially lower AUCs between 0.71 and 0.74. Precision-recall (PR) curves

for edgeR and BEER are noticeably different for intermediate fold changes between 2 and 4, where

also most improvement is (theoretically) possible for BEER if improved estimates of shape parameters

used in the prior distributions were available. As expected from the near perfect ROC curves, reliable

detection of peptides with fold changes above 4 is possible with a low rate of false positives. (Figure

1, Supplementary Table S2). For small fold changes less than 2 the positive predictive value (PPV) is

generally poor, which is expected as the ROCs are modest and most peptides are not enriched.

Under commonly employed false discovery rate (FDR) control, BEER has a higher probability of correctly

identifying enriched peptides than edgeR across all fold-changes, and the difference in probability is most

pronounced for moderate fold changes between 2 and 8 (Figure 2). For example, under a FDR control

of 5%, on average, the probability of identifying a peptide with a 4 fold change is 53% for BEER, but

only 21% for edgeR. Similarly, BEER has a probability of at least 50% to detect fold changes above 3.7

under this FDR control, while edgeR requires a fold-change of at least 5.5. Of note, the BEER posterior

probability cut-offs in the ten simulations to achieve a 5% FDR (see Methods) were between 0.25 and

0.49; thus, using a commonly employed posterior probability cut-off of 0.5 leads to fewer false positives

on average.

HIV elite controllers. Both BEER and edgeR had no false positives across the six mock IP samples
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Figure 1: Average receiver operating characteristic (ROC; top panels) and precision-recall (PR; bottom

panels) curves calculated from ten simulations, comparing edgeR (black lines) and BEER (red lines)

across fold-change categories and number of beads-only samples available. Curves for BEER using the

actual simulation shape parameters in the prior distributions (orange lines) are added to show the effect

of sampling variability in these parameters. Results for fold changes above 16 are omitted since in all

instances peptides were correctly classified as enriched.
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Figure 2: Estimated probabilities for correctly identifying enriched peptides (y-axis) as a function of

the fold-change (x-axis) for each of ten simulated data sets based on logistic regression models. BEER

posterior probability cut-offs were selected to achieve a false discovery rate of 5% in each simulation

(see Methods). Thin lines indicate the individual simulations, thick lines the respective averages.

using a posterior probability cut-off of 0.5 for BEER and an FDR control of 5% for edgeR (corresponding

to p-value cut-offs between 1.0× 10−3 and 2.4× 10−3 across the eight samples). As the non-replicated

serum samples are from individuals infected with HIV subtype B, we expected stronger antibody reactivity

to proteins from HIV subtype B, and indeed, BEER and edgeR detect more enrichments to peptides

tiling proteins from HIV subtype B than proteins of any other HIV strain represented in the library

(Figure 3). Notably, for any particular subtype B protein, BEER detects more enriched peptides than

edgeR (while expected to have a lower type I error with a posterior probability cut-off of 0.5, see

above). Some antibody reactivity to proteins from other HIV subtypes is expected due to cross-reactivity

(Supplementary Figure S6).
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Figure 3: Bland-Altman (MA) plots for the proportion of enriched peptides by protein, for eight elite

controller samples. Points represent individual proteins, point colors indicate protein virus types, point

diameters indicate the number of peptides tiling the respective proteins. All subjects shown here were

infected with subtype B (red).

BEER and edgeR detected enrichments generally agreed across two technical replicates of a sample from

an HIV subtype A infected individual (Supplementary Figure S7). Using the same cut-offs as above for

declaring enrichment, both methods had high agreement (concordance about 0.90–0.95) between the

two samples among the top 100 peptides ranked by posterior probabilities and p-values, respectively

(Supplementary Figure S8). This is not surprising as the BEER posterior probabilities for peptides

ranked 100 in the two technical replicates were 0.99 and 1.00 respectively, and the edgeR p-values were

3.1× 10−4 and 9.4× 10−5 with respective 5% FDR cut-offs of 1.5× 10−3 and 1.8× 10−3, respectively.

Thus, both methods exhibit high confidence that most of the peptides among the top 100 are truly

enriched (Supplementary Figure S9). While BEER concordance decreases but remains above 0.90 when
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considering the lists of peptides with ranks up to 200, the edgeR concordance does drop more noticeably

(Supplementary Figure S8), potentially indicating a higher sensitivity in BEER for peptides with smaller

fold changes. Comparing subtype A peptides across technical replicates, BEER and edgeR had very

similar performance. Compared to other subtypes, both methods also showed less discordance among

subtype A peptides (Supplementary Table S3).

CoronaScan. In a round-robin, leaving one mock IP sample out in turn, no false positives (i.e., peptides

falsely called enriched) were produced by BEER or edgeR across the eight mock IPs in the CoronaScan

data using a posterior probability cutoff of 0.5 for BEER and an FDR control of 5% for edgeR (p-value

cutoffs ranged from 3.3×10−4 to 1.1×10−3). Among the six serum samples from individuals prior to the

COVID-19 pandemic, BEER and edgeR show more enrichment to peptides tiling human coronaviruses,

but generally no enrichment of SARS-CoV-2 peptides (VRC 1 – VRC 6, Supplementary Figure S10). In

contrast, among the four samples from a single individual infected with SARS-CoV-2, taken at 10, 11,

12 and 13 days since symptom onset, an enrichment of SARS-CoV-2 protein tiling peptides is apparent.

Particularly on day 13 after symptom onset, the patient presumably has produced a large number of

antibodies which were detected by both BEER and edgeR. Of note, this was the first day the a SARS-

CoV-2 antibody test was positive (D13, Supplementary Figure S10), further demonstrating the power

and utility of the PhIP-Seq approach.

Comparing peptide replicates in the CoronaScan library, concordance among the most enriched peptides

(when ranked by posterior probabilities and p-values for BEER and edgeR, respectively) was generally

above 0.80 (Supplementary Figure S11). For example, in sample VRC 4 both methods show high

confidence that the top 35 peptides are truly enriched (posterior probabilities of 0.97 and 1.00 for

BEER, and p-values of 8.6 × 10−5 and 1.9 × 10−6 for edgeR, well below the 5% FDR cut-off derived

p-value of 4.2 × 10−4, Supplementary Figure S12). BEER and edgeR perform very similarly in this

example (with BEER slightly better between peptides 10 and 20), showing concordance above 0.80
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before dropping significantly after about 50 peptides. The somewhat lower concordances compared to

the same ranking metric derived from the two technical replicates in the HIV elite controllers above can

possibly explained by the smaller range of proportions of reads pulled in the CoronaScan platform, and

therefore higher correlation among these proportions comparing the technical replicates in the HIV data

(Supplementary Figure S8 left, versus Supplementary Figure S11 left). Among all CoronaScan samples

the overall concordance of peptide pair enrichment calls was outstanding, with less than 1% discordant

calls in each sample, for both BEER using a posterior probability cutoff of 0.5 and 5% FDR cutoffs for

edgeR (corresponding to p-value cutoffs between 3.3× 10−4 and 1.1× 10−3, Supplementary Table S4).

Discussion

In this manuscript we investigated whether the publicly available method edgeR1 for normalization and

analysis of RNA-Seq data is also suitable for PhIP-Seq data. With the exception of calculating one-sided

p-values to infer peptide reactivity, no ”tweaks” were necessary in the implementation, and we found the

approach to be effective. However, using simulation studies we showed that substantial improvements are

possible with a Bayesian framework specifically tailored for data from PhIP-Seq experiments (Bayesian

Enrichment Estimation in R, BEER). In particular for peptides showing weaker reactivity, we saw an

improvement of sensitivity with lower false positive rates when standard cut-offs were employed (posterior

probability > 0.5 for the Bayesian method and a Benjamini-Hochberg false discovery rate control of 5%

for edgeR). This comparison might be perceived as somewhat unfair, as the data were simulated from a

model similar to that underlying BEER, which we recognize. However, BEER was implemented in a way

we believe reflects the true data generating mechanism, which is also corroborated by the fact that BEER

showed better performance also on real data such as the data from the HIV elite controllers, where BEER

detected more enriched peptides of the correct HIV subtype than edgeR. This improved performance
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comes at a price of increased computational cost. While edgeR delivers almost instantaneous results, the

Markov chains underlying BEER are time consuming. However, since laboratory prep and sequencing are

expensive and certainly take more time than running such Markov chains, we believe utilizing extra CPU

time to run BEER, as shown in our workflow (https://github.com/athchen/beer_manuscript),

may yield worthwhile additional discoveries.

It was initially surprising to us how well edgeR fared on PhIP-Seq data despite being designed specifically

for RNA-Seq data. While important differences between PhIP-Seq and RNA-Seq data structures exist, as

previously described, edgeR captures some of the most important effects that exist in both types of data.

For example, unlike RNA-Seq, the PhIP-Seq experimental protocol requires the use of negative controls

(i.e. samples with no serum) on a 96-well plate. The observed read counts mapped to the peptides

among those negative controls show a very strong peptide-dependent bias in library representation and/or

”background” binding to the beads, such that some peptides consistently draw a much higher proportion

of reads than others (Supplementary Figure S13). However, in a ”n versus 1” mock IPs versus sample

comparison where inference is drawn for each peptide, these differences among peptides are similar to

the biological variability observed between genes in RNA-Seq25. In addition, edgeR models read counts

using a negative binomial distribution to account for larger than binomial variability between samples,

an effect we also observe in PhIP-Seq data (Supplementary Figure S14). And while we expect reactive

peptides in a serum sample to pull a large number of reads, and thus – after adjusting for library size –

expect non-reactive peptides in a serum-sample to have fewer reads on average than the corresponding

beads-only sample peptides (Supplementary Figure S15), the resulting attenuation constant in essence

is the same as the scale factors derived from the trimmed mean of M-values approach in edgeR1,24.

Our findings also highlight the importance of empirical Bayes methods for parameter estimation. Meth-

ods of moments and maximum likelihood estimates for individual peptide prior distribution shape pa-

rameters performed substantially worse than those obtained by borrowing strength across peptides. By
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also using the true shape parameters in our simulations to assess sensitivity and specificity, we were able

to demonstrate that, particularly for intermediate fold changes, better performance could be achieved

by improving procedures to estimate these parameters. Our findings also give guidance for experimental

design, such as the chosen number of mock IPs per 96-well plate. Allocating more beads-only samples

to a plate improves estimation of these shape parameters that largely quantify between sample variabil-

ity of the probabilities of a specific peptide to pull a read. Choosing more beads-only samples means

reduced number of biological samples assayed per plate, which for the practitioner means additional

cost and labor for more plates. In previous experiments, the number of mock IPs per plate was typically

between 4 and 8. Our simulation studies showed that this is appropriate, as the observed difference in

performance between 8 and 4 beads-only samples was much less than the observed difference between

4 and 2 mock IPs, indicating diminishing returns.

A few technical details should also be discussed further. As described in the Methods section, reads from

highly reactive peptides (initial fold change estimate above 15) are removed from the data of mock IPs

and the actual sample before BEER analysis, and the respective library sizes are recalculated. The main

reason for doing so is simply to stabilize the inference and improve scalabilty, as allowing for extreme

fold changes in the Bayesian model for a few peptides can affect these features. We verified that there

were “no false positives” in the sense that all posterior probabilities for these highly reactive peptides

were 1 if not excluded from the analyses. Thus, the chosen “highly enriched” threshold of 15 is likely

conservative. We also note that the Bayesian model can be extended to run Markov chains for multiple

samples against the beads-only samples. However, the resulting increase in parameter space makes this a

challenging endeavor, especially with regards to scalability. It could be argued that for the same reasons

stated above an increase in CPU time should be acceptable if this leads to an improvement detecting

reactive peptides. However, we did not observe an improvement in detecting antibody reactivities in

simulation studies we performed (data now shown). No notable improvements were observed when the
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same peptide was simulated as enriched in all samples compared to the beads-only, and a deterioration

was observed when reactivity was not common to all peptides. Since in real life experiments we seldom

expect the exact same peptides to be reactive, we did not pursue this line of research further.

In summary, antibodies commonly serve as indicators of environmental exposures and immune responses,

and Phage ImmunoPrecipitation Sequencing allows for quantification of antibody binding to hundreds

of thousands of peptides, in individuals and large cohorts. We believe that this technology will play

an even more prominent role in the future, addressing questions about exposures and health outcomes

in populations, as well as individualized medicine. In this manuscript, we introduce a method and a

software package for analyzing data from this technology, contrast it with an existing RNA-Seq software

package that can be retooled for PhIP-Seq data, and share a workflow with practitioners to successfully

carry out their own analyses of data resulting from PhIP-Seq experiments.

Methods

A Bayesian model for detecting antibody enrichment. A succinct summary of the model notation is

provided in Supplementary Table S5. On a 96-well plate suppose we observe Yij read counts for peptide

i ∈ {1, 2, . . . , P} in sample j ∈ {1, 2, . . . , 96}. Let nj =
∑

i Yij denote the total read count (library

size) for sample j. Without loss of generality, assume samples {1, 2, . . . , N} are mock IP (beads-only)

samples. To infer reactivity, we compare one sample to all beads-only samples on the same plate. Our
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hierarchical model to infer peptide reactivity in a sample j ∈ {N + 1, . . . , 96} is described as follows.

Yij |θij ∼ Binomial(nj , θij)

θij |ai0, bi0, cj , φij ∼ Beta(fa(cjφijµi0, σ
2
i0), fb(cjφijµi0, σ

2
i0))

cj ∼ Beta(ac, bc)

φij |Zij ∼ (1− Zij) · 1 + Zij(φmin + Gamma(aφ, bφ))

Zij |πj ∼ Bernoulli(πj)

πj ∼ Beta(aπ, bπ)

The main parameter of interest Zij is a binary indicator denoting whether peptide i elicits an enriched

antibody response in sample j (a 0 indicates no, a 1 indicates yes). The prior is a Bernoulli with success

probability πj . For all mock IP samples, this success probability is zero. For sample j, πj is modeled

as a beta distribution. The shape parameters aπ and bπ of the Beta prior distributions are chosen as

2 and 300 in our applications, to reflect peptide enrichment seen in previous studies, but also make it

sufficiently diffuse to support a range of proportions (Supplementary Figure S16). The parameter φij

is the fold change observed for peptide i in sample j. It is equal to 1 if Zij = 0, i.e., peptide i does

not elicit an enriched antibody response in sample j. Enriched peptides are expected to pull a larger

proportion of reads, so only fold changes larger than 1 are considered. Here, we model the fold-change

as a shifted gamma distribution (with shape parameters aφ = 1.25 and bφ = 0.1, Supplementary Figure

S16), with the magnitude of the shift φmin being the minimum fold-change assumed for an enriched

peptide (chosen as 1 in our applications). In the presence of reactive peptides pulling reads, non-reactive

peptides in sample j will have less reads than expected from the beads-only samples where no reactive

peptides exist by definition. We denote this attenuation constant for sample j, which is similar to the

trimmed mean of M-values (TMM) scale factor used in edgeR24, with cj . Typically, only a minority of
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peptides in a sample show reactivity and the attenuation constant usually is between 0.5 and 1 (being

equal to 1 in mock IP samples). In this application, we chose a Beta prior with scaling constants ac = 80

and bc = 20 (Supplementary Figure S16; the attenuation constant is equal to 1 in the mock IP samples).

The observed read counts Yij are modeled using a Binomial(nj , θij) distribution, where θij denotes the

probability that peptide i pulls a read in sample j, and nj denotes the total library size in sample j.

This Binomial probability is modeled using a Beta prior distribution, and the shape parameters depend

on the expected peptide read counts observed in the mock IP samples (estimation procedures described

below), the fold change φij , and the attenuation constant based on the reads pulled by all reactive

peptides in the sample.

Shape parameter estimation. We define two functions, fa and fb, used for the description of the

Beta shape parameters a and b given a mean µ and a variance σ2.

fa(µ, σ
2) =

µ2(1− µ)
σ2

− µ and fb(µ, σ
2) = fa(µ, σ

2)

(
1

µ
− 1

)
.

The mean and variance for peptide i in a beads-only sample (e.g., for a Beta distribution with shape

parameters ai0 and bi0) is given by

µi0 =
ai0

ai0 + bi0
and σ2i0 =

ai0bi0
(ai0 + bi0)2(ai0 + bi0 + 1)

.

Since each sample generally contains more than a million of reads, estimates of the Binomial probabilities

θ̂ij =
Yij
nj

in the mock IP samples j ∈ {1, 2, . . . , N} are very precise. Method of moments (MOM)

estimates for the peptide i shape parameters ai0 and bi0 can be derived by equating the mean and

variance of the above Binomial estimates across all beads-only samples to the mean and variance of the
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Beta(ai0, bi0) distribution.

θ̂i0 =
1

N

N∑
j=1

θ̂ij

σ̂2i0 =
1

N − 1

N∑
j=1

(θ̂ij − θ̂i0)2.

The MOM estimates for ai0 and bi0 are then given by

âMOM
i0 = fa(θ̂i0, σ̂

2
i0)

b̂MOM
i0 = fb(θ̂i0, σ̂

2
i0).

Maximum likelihood estimates (MLEs) for ai0 and bi0 were derived using the Broyden, Fletcher, Goldfarb

and Shanno quasi-Newton optimiziation algorithm with box constraints26, as implemented in the R

optim() function.

Numerous papers have demonstrated the benefits of shrinkage or variance stabilization in high through-

put genomics experiments, borrowing strength across units such as genes and proteins1,22,27,28. This can

be particularly important when the sample sizes are small, such as the number of mock IP experiments

on each plate in our application, but neither the MLEs nor the MOM estimates described above make

use of this. In contrast for example, edgeR uses an emprical Bayes approach29 to approximate the larger

than binomial variability observed in the RNA-Seq read counts, and to stabilize these variance estimates,

which are characterized by the tagwise dispersion parameter (the squared coefficient of variation of θ̂ij ,

denoted here as τ edgeR

ij )1. We note that we can use the estimates of these tagwise dispersion parameters

to derive new estimates of the variances for our Binomial probabilities θij . Specifically, for peptide i we
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have
(
σ̂edgeR

i0

)2
= τ edgeR

ij ∗ θ̂2i0, and thus

âedgeR

i0 = fa

(
θ̂i0,

(
σ̂edgeR

i0

)2)
b̂edgeRi0 = fb

(
θ̂i0,

(
σ̂edgeR

i0

)2)

The Beta parameters a and b can be thought of as the number of successes and the number of failures,

respectively, in a + b trials. The Markov Chain Monte Carlo (MCMC) sampler Just Another Gibbs

Sampler (JAGS) can encounter numerical issues when either of those is less than 1. In PhIP-Seq

experiments a is much smaller than b as a peptide only pulls a fraction of the total number of reads

even when reactive. Thus, to avoid these numerical problems, we set a to be the larger number of the

estimated value and 1, and then estimate b.

Markov chain Monte Carlo. The model was implemented in JAGS (4.3.0) and run using the R interface

for JAGS, rjags30–32. We use maximum likelihood estimates to select starting values of θij , Zij , φij , cj ,

and πj to initialize the Markov chain for non beads-only sample j. As described above, θ̂initij = θ̂ij is

the MLE of the binomial probability calculated from the read counts. Since Zij is needed to update

cj , πj , φij , we set Ẑ init
ij = 1 if its observed read count is at least twice as large as the expected read

count in a beads-only sample. That is, Ẑ init
ij = 1 if Yij ≥ 2nj θ̂i0, and 0 otherwise. The initial value for

the attenuation constant is derived by regressing the observed read counts on the expected reads count

for all non-enriched peptides in that sample, with ĉinitj being the slope estimate

ĉ init
j =

∑P
i=1(1− Ẑ init

ij )× Yij × nj × θ̂i0∑P
j=1(1− Ẑ init

ij )× (nj θ̂i0)2
.
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The initial value for the proportion of enriched peptides is the average of all enrichment indicators

π̂init
j =

1

P

P∑
i=1

Ẑ init
ij ,

and the respective peptide fold changes are initialized as

φ̂init
ij = (1− Ẑ init

ij ) + Ẑ init
ij

Yij

nj × ĉ init
j × θ̂i0

.

Since cj and πj are modeled using Beta distributions with no support at values 0 and 1, we use a small

offset in the event that cinitj = 1 and πinit
j = 0.

In PhIP-Seq experiments we commonly observe very reactive peptides18,33. Allowing for extreme fold

changes in the Bayesian model for a few peptides can affect the inference for other less reactive peptides,

and can have negative consequences for numerical stability and scalability. In our applications, clearly

enriched peptides defined as φ̂init
ij > 15 were filtered out before starting the Markov chain. Reads from

such peptides in the mock IP and actual samples were removed, and the library sizes were recalculated.

Peptide reactivity detection with edgeR. To identify reactive peptides, each serum sample is com-

pared to all beads-only samples from the same plate. Differential expression in edgeR is assessed for each

unit (here, each peptide) using an exact test analogous to Fisher’s comparing means between two groups

of negative binomial random variables, but adapted for overdispersed data34. Two-sided p-values were

subsequently converted to one-sided p-values as the alternative to the null of no reactivity (fold change

= 1) is reactivity, leading to read count enrichment and thus, fold-changes larger than 1. Multiple

comparisons corrections were based on the Benjamini–Hochberg procedure, using false discovery rates

to delineate enrichment across all peptides.

Simulation study. We simulated ten data sets based on the read counts observed in the HIV elite
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controller data described below. Each of these data sets had eight beads-only samples and twelve

simulated serum samples. The twelve samples contain one beads-only sample run as an actual sample

and two technical replicates (samples generated from the same parameters). For each simulated serum

sample, we randomly selected 50 peptides as reactive. Among those, 10 peptides each had fold changes

between 1 and 2, between 2 and 4, between 4 and 8, between 8 and 16, and between 16 and 32.

Each data set was analyzed using the first two, four, and all eight beads-only samples to assess the

sensitivity of the results to the number of beads-only used for analysis. For each data set and number

of beads-only sample combination, we ran BEER with the true beads-only Beta a0, b0 prior parameters,

estimated beads-only parameters using maximum likelihood, method of moments, and edgeR derived

estimates.

Performance was primarily assessed using ROC and PR curves on the full data and fold-change subsets

of the data. For each fold-change bin, curves were generated using all non-enriched peptides and

enriched peptides within the specified fold-change group from the simulated serum samples (no peptides

from beads-only samples were included). To ensure that all curves had the same support points, we

used linear interpolation to approximate the sensitivity or positive predictive value respectively at each

support point for each simulation. ROC curves started at 0 sensitivity and 0 false-positive rate, while

PRC curves started at 0 sensitivity and perfect positive-predictive value. The interpolated curves were

averaged point-wise to generate an average curve for each condition. The area under each ROC curve

was calculated using trapezoidal approximation from the interpolated data points. We also used logistic

regression to model the probability of identifying and enriched peptide by fold-change in each data set.

Multiple comparisons for edgeR p-values were addressed using the Benjamini-Hochberg procedure to

ensure a 5% FDR. Cut-offs for the posterior probabilities were selected in each data set to achieve 5%

false positive calls.

Examples. Antibody reactivity counts for eight plates of data were generated using the PhIP-Seq
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assay and the VirScan library on serum samples from HIV elite controllers with HIV subtype A and B

infections, and analyzed by Kammers et al.15 to assess antibody profiles in HIV controllers and persons

with treatment-induced viral suppression. We used count data for the 3,395 phage-displayed peptides

spanning the HIV proteome in the VirScan library for ten samples and six-beads-only samples from one

plate of data. Two of the ten samples are identical, run in duplicate on the same plate. To quantify

the false-positive rate of each algorithm, we also ran each beads-only sample against the remaining

five-beads-only samples in a round-robin.

The CoronaScan data consists of counts for 6,932 peptides for 10 serum samples and 8 beads-only sam-

ples from one plate of data7. Among the ten samples, six were pre-pandemic samples and four samples

were from one individual infected with SARS-CoV-2. Samples from this individual were collected on days

10 through 13 since symptom onset. By design, each peptide is present in duplicate in the CoronaScan

library, enabling us to assess the concordance of the fold-change estimates and the enrichment status

within samples. We again ran each beads-only sample against the remaining 7 beads-only samples to

assess false positive rates.

The example in the Discussion to highlight the strong peptide-dependent background binding to the

beads was from a previous study to evaluates HIV antibody responses and their evolution during the

course of HIV infection18 and to generate a classifier for recent HIV infections33.
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2 beads-only 4 beads-only 8 beads-only

BEER, MOM 0.884 0.939 0.944
1 < φij ≤ 2 0.695 0.757 0.756
2 < φij ≤ 4 0.881 0.959 0.975
4 < φij ≤ 8 0.937 0.989 0.994
8 < φij ≤ 16 0.953 0.994 0.995

BEER, MLE 0.886 0.939 0.944
1 < φij ≤ 2 0.697 0.759 0.762
2 < φij ≤ 4 0.886 0.959 0.976
4 < φij ≤ 8 0.940 0.989 0.994
8 < φij ≤ 16 0.953 0.994 0.996

BEER, edgeR 0.929 0.936 0.939
1 < φij ≤ 2 0.712 0.727 0.728
2 < φij ≤ 4 0.951 0.970 0.977
4 < φij ≤ 8 0.992 0.994 0.996
8 < φij ≤ 16 0.995 0.995 0.996

edgeR 0.926 0.934 0.936
1 < φij ≤ 2 0.709 0.728 0.737
2 < φij ≤ 4 0.940 0.960 0.967
4 < φij ≤ 8 0.991 0.994 0.995
8 < φij ≤ 16 0.996 0.996 0.996

Table S1: Area under the ROC curves shown in Figure 1. Both BEER using edgeR parameter estimates

and edgeR had near perfect classification for peptides with fold-changes above 4, even when only four

beads-only samples were used to estimate ai0 and bi0.
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2 beads-only samples
50% sensitivity 75% sensitivity 90% sensitivity 95% sensitivity

BEER, edgeR 0.953 0.501 0.173 0.099
1 < φij ≤ 2 0.026 0.017 0.013 0.011
2 < φij ≤ 4 0.217 0.125 0.07 0.047
4 < φij ≤ 8 0.844 0.693 0.482 0.322
8 < φij ≤ 16 0.926 0.888 0.866 0.846

edgeR 0.965 0.442 0.152 0.092
1 < φij ≤ 2 0.023 0.016 0.013 0.011
2 < φij ≤ 4 0.182 0.097 0.056 0.037
4 < φij ≤ 8 0.881 0.674 0.432 0.245
8 < φij ≤ 16 1.000 0.996 0.958 0.874

4 beads-only samples
50% sensitivity 75% sensitivity 90% sensitivity 95% sensitivity

BEER, edgeR 0.989 0.632 0.208 0.114
1 < φij ≤ 2 0.031 0.020 0.014 0.012
2 < φij ≤ 4 0.388 0.207 0.116 0.080
4 < φij ≤ 8 0.957 0.887 0.698 0.513
8 < φij ≤ 16 0.989 0.971 0.965 0.947

edgeR 0.988 0.534 0.168 0.102
1 < φij ≤ 2 0.024 0.018 0.013 0.012
2 < φij ≤ 4 0.281 0.142 0.075 0.055
4 < φij ≤ 8 0.958 0.824 0.586 0.368
8 < φij ≤ 16 1.000 0.999 0.978 0.936

8 beads-only samples
50% sensitivity 75% sensitivity 90% sensitivity 95% sensitivity

BEER, edgeR 0.997 0.728 0.222 0.121
1 < φij ≤ 2 0.032 0.021 0.014 0.012
2 < φij ≤ 4 0.508 0.282 0.154 0.111
4 < φij ≤ 8 0.988 0.959 0.835 0.716
8 < φij ≤ 16 0.995 0.993 0.992 0.984

edgeR 0.997 0.606 0.177 0.102
1 < φij ≤ 2 0.025 0.018 0.014 0.012
2 < φij ≤ 4 0.366 0.181 0.089 0.067
4 < φij ≤ 8 0.990 0.910 0.694 0.523
8 < φij ≤ 16 1.000 1.000 0.992 0.968

Table S2: Average positive predictive values for select sensitivities for the curves in Figure 1.
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BEER edgeR

Concordance n p n p

Subtype A

Both enriched 16 0.078 14 0.069
Both not enriched 186 0.912 188 0.922
Discordant 2 0.001 2 0.001

Other Subtypes

Both enriched 118 0.037 94 0.029
Both not enriched 3039 0.952 3085 0.967
Discordant 34 0.011 12 0.004

Table S3: Concordance of enrichment calls between two technical replicates of an HIV subtype A

infected individual for BEER and edgeR. A total of 204 peptides from subtype A and 3,191 peptides

from other subtypes were present on the platform. n: number of peptides; p: proportion of peptides.
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BEER edgeR

Sample n p n p

VRC 1 3452 0.996 3454 0.997
VRC 2 3443 0.993 3443 0.993
VRC 3 3430 0.990 3423 0.988
VRC 4 3432 0.990 3427 0.989
VRC 5 3445 0.994 3444 0.994
VRC 6 3435 0.991 3433 0.990
SARS-CoV-2, D10 Ab- 3455 0.997 3450 0.995
SARS-CoV-2, D11 Ab- 3450 0.995 3446 0.994
SARS-CoV-2, D12 Ab- 3441 0.993 3439 0.992
SARS-CoV-2, D13 Ab+ 3441 0.993 3437 0.992

Table S4: Concordance of enrichment calls between peptide pairs for all CoronaScan samples. Each

sample has 3,366 unique peptide pairs. n: number of pairs with concordant enrichment calls; p:

proportion of pairs with concordant enrichment calls.
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i ∈ {1, 2, · · · , P} The peptide index.

j ∈ {1, 2, · · · , 96} The sample index.

Yij The observed number of reads mapped to peptide i in sample j.

nj =
∑P

i=1 Yij The library size of sample j.

θij The probability that peptide i in sample j pulls a read.

Zij The indicator whether peptide i in sample j is enriched (reactive).

πj The proportion of enriched peptides in sample j.

cj The attenuation constant for sample j.

φij The fold change of peptide i in sample j compared to the beads-only samples.

φmin The minimum fold-change for an enriched peptide (defined a priori).

aij , bij The shape parameters for the prior distribution of θij for peptide i in sample j.

aπ, bπ The shape parameters for the prior distribution of the πj .

ac, bc The shape parameters for the prior distribution of the cj .

aφ, bφ The shape and scale parameters for the prior distribution of φij |Zij = 1

Table S5: The notation used in the BEER model. Parameters specific to beads-only samples are

denoted with the subscript i0 (e.g. ai0, bi0, θi0, etc.).
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Figure S1: ROC (top panels) and PR (bottom panels) curves for various fold-change bins, by approach

and method of estimation for ai0 and bi0.
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Figure S2: Averaged ROC curves comparing the performance of each method using 2 (red), 4 (blue),

and all 8 (black) beads-only samples.

32

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.476926doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.19.476926
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S3: Averaged PR curves comparing the performance of each method using 2 (red), 4 (blue),

and all 8 (black) beads-only samples.
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Figure S4: Posterior probability of enrichment for one simulated data set. Expected read counts for

each peptide are derived by taking the average proportion of reads pulled in beads-only samples and

multiplying the proportion by the library size of the sample. Peptides categorized as highly enriched

are colored in grey. Warmer colors indicate that the peptide has over a 50% chance of being enriched.

Points are plotted such that points with posterior probabilities closer to 0.5 are on top. The beads-only

sample in the top left is run as a serum sample.
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Figure S5: Comparison of estimated fold-changes to true fold-changes (A-B) and estimated fold-

changes versus true fold-changes after adjusting for the attenuation constant (C-D) for one simulated

data set. Only peptides from serum samples are included in each plot, and each peptide is represented

by a point. Note that by construction, there are 120 peptides between each log2 increment, and

highly enriched peptides are not included in the above plots. Warm colors indicate high probability of

enrichment (posterior probability of enrichment > 0.5 or − log10(p-value) > 20).
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Figure S6: Proportion of enriched peptides by protein without HIV subtype B. Each point represents

a protein. The color of the point indicates which virus the protein belongs to, and the size of the point

corresponds to the number of peptides tiling the protein.
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Figure S7: Proportion of enriched peptides by protein across technical replicates. This individual was

infected with HIV subtype A. Each point represents a protein. The color of the point indicates which

virus the protein belongs to, and the size of the point corresponds to the number of peptides tiling the

protein.
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Figure S8: Left: proportion of reads pulled for 3,395 HIV peptides for two technical replicates. Right:

concordance of HIV technical replicates, shown as proportion of peptides among the top ranked peptides

in both replicates. For BEER, peptides are ranked by decreasing posterior probability of enrichment. For

edgeR, peptides are ranked by increasing p-values. For both methods, ties of posterior probabilities and

p-value (e.g., 0 and 1) were broken by the estimated fold-change. The top eight peptides from BEER

are all highly enriched and treated exchangeably as no fold-change estimates are returned.
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Figure S9: HIV replicate posterior probabilities by rank. For each of the technical replicates, peptides

are sorted in decreasing order by posterior probability and -log10(edgeR p-values). For clarity of display,

p-values were truncated at 10−6.
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Figure S10: MA plots for the proportion of enriched peptides by protein for six pre-pandemic samples

and four samples from one individual infected with SARS-CoV-2. Samples from this individual were

collected at various days since symptom onset (labels D10-D13) and were additionally tested for SARS-

CoV-2 antibodies. Antibody test results (positive or negative) are indicated by Ab+ or Ab-, respectively.

Points represent individual proteins; point colors indicate virus types; and point diameters indicate the

number of peptides tiling the respective proteins. In the CoronaScan library, peptides are present in

duplicate, so the number of peptides is double the number of unique peptides.
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Figure S11: Left: concordance of paired peptides in CS sample VRC 1. For each unique peptide

sequence, the proportion of reads pulled for peptide 1 with the same sequence is plotted against the

proportion of reads pulled for peptide 2 of the same sequence. Right: concordance between the rankings

for the top k ranks (x-axis) between all peptide pairs. For BEER, peptides are ranked by decreasing

posterior probability of enrichment, with ties broken by the estimated fold-change (red line). For edgeR,

peptides are ranked by increasing p-values, with ties again broken by estimated fold-changes (black line).
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Figure S12: CoronaScan peptide pairs by rank. For each set of unique peptides, peptides are sorted

in decreasing order by posterior probability and -log10(edgeR p-values). For clarity of display, p-values

were truncated at 10−6.
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Figure S13: Evidence for a strong peptide effect in PhIP-Seq data, demonstrated using data from five

plates of a previous experiment using HIV samples, analyzed in Eshleman et al.18 and Chen et al.33 Left:

observed read counts per million reads for 95,242 peptides from two ”beads only” samples from different

plates. For these two samples, the Spearman correlation is 0.875. Middle: observed average read counts

per million reads for 95,242 peptides from all ”beads only” samples from two different plates. For these

two plates, the Spearman correlation is 0.975. Right: within and between plate sample correlations as

a function of sequencing depth. For each pair of bead only samples from the same plate (red dots,

117 pairs total), the Spearman correlation (y-axis) is related to the minimum of the respective two

sequencing depths (x-axis). For each pair of plates (blue dots, 10 pairs total), the Spearman correlation

between the average read counts of the bead only samples (y-axis) is also related to the minimum of

the two median sequencing depths (x-axis), and substantially higher than the correlations of the bead

only samples.
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Figure S14: Evidence for larger than binomial variability in the PhIP-Seq data analyzed in Eshleman

et al.18 and Chen et al.33 Left: library size (reads in millions) for 36 control (”bead only”) samples

from 5 plates. Middle: expected read counts per million reads aligned based on the estimated Binomial

probabilities (dots, colored by plate) and respective 95% confidence intervals for a peptide with large

expected read counts, for each of the control samples. Highlighted are samples 3 and 6 from plate 1,

showing large discrepancies between the Binomial probabilities for this peptide between the two bead

only samples. Right: the same statistics as in the middle panel, for a peptide with smaller expected read

counts. Highlighted are samples 10 and 12 from plate 2, again showing a large discrepancy between the

Binomial probabilities for this peptide between the two bead only samples.
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Figure S15: Expected versus observed read counts for 95,242 peptides from a randomly selected serum

sample. Expected read counts for each peptide were derived using maximum likelihood estimates from

the negative controls on the same plate. Each point represents one peptide from one sample, and

peptides were considered enriched (red) if the observed read count was over 2 times (left) and 5 times

(right) the expected number of reads. Linear regression lines (blue) were fitted using the non-enriched

peptides and compared to the line where observed and expected reads are equal (black). The observed

read counts were truncated at 250 to enhance the display.
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Figure S16: Left: the prior distribution for the proportion of reactive peptides in sample j, πj , modeled

as a Beta distribution Beta(aπ = 2, bπ = 300), reflecting peptide enrichment seen in previous studies.

Middle: a Gamma(aφ = 1.25, bφ = 0.1) distribution, used in the prior distribution for the fold change

φij for peptide i in sample j, if reactive. Right: the prior distribution for the scaling constant in sample

j, cj , modeled as a Beta distribution Beta(ac = 80, bc = 20).
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