1 CDC50 orthologues in *Plasmodium falciparum* have distinct

2 roles in merozoite egress and trophozoite maturation

3

4 Avnish Patel¹, Stephanie D. Nofal¹, Michael J. Blackman² and David A. Baker¹

5 1. Department of Infection Biology, London School of Hygiene & Tropical Medicine, London,

6 United Kingdom

- 7 2. Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom and
- 8 Department of Infection Biology, London School of Hygiene & Tropical Medicine, London,

9 United Kingdom.

10

11 Abstract

In model organisms P4-ATPases require cell division control protein 50 (CDC50) chaperones for their phospholipid flipping activity. In the malaria parasite, *P. falciparum*, guanylyl cyclase alpha (GCα) is an integral membrane protein that is essential for release (egress) of merozoites from their host erythrocytes. GCα is unusual in that it contains both a C-terminal cyclase domain and an N-terminal P4-ATPase domain of unknown function. We sought to investigate whether any of the three CDC50 orthologues (denoted A, B and C) encoded by *P. falciparum* are required for GCα function. Using gene tagging and conditional gene disruption, we demonstrate that both

19	CDC50B and CDC50C are expressed in the clinically important asexual blood stages and that
20	CDC50B is a binding partner of GC α whereas CDC50C is the binding partner of another putative
21	P4-ATPase, ATP2. Our findings indicate that CDC50B has no essential role for intraerythrocytic
22	parasite maturation but modulates the rate of parasite egress by interacting with GC $lpha$ for
23	optimal cGMP synthesis. In contrast, CDC50C is essential for blood stage trophozoite
24	maturation. Additionally, we find that the CDC50C-ATP2 complex may influence parasite
25	endocytosis of host cell haemoglobin and consequently hemozoin formation.

26

27 Introduction

28 *Plasmodium falciparum* is responsible for the majority of malaria mortality and morbidity 29 globally. Whilst there was a sharp reduction in malaria-related deaths between 2000 and 2014 due to increased surveillance, improved control measures and the use of highly effective drug 30 treatments, the decline in cases has halted in recent years. This is thought to be due to the 31 32 emergence of resistance to insecticides in the Anopheles mosquito vector, and to the appearance of parasites resistant to artemisinin combination therapies (ACTs) (1). Given this 33 34 trend, novel targets must be explored to generate candidates for the drug development 35 pipeline to prevent a future increase in disease burden should the ACTs fail (2). P. falciparum has a complex life cycle, characterised by multiple specialised developmental 36 forms which transition between the mosquito vector and humans (3). Malaria pathology is 37 caused exclusively by the asexual blood stage of the life cycle. Briefly, extracellular merozoites 38

invade host erythrocytes and transform into ring stages for around 24 h. These develop within a 39 40 membrane-enclosed parasitophorous vacuole to form trophozoites which digest host cell haemoglobin and initiate DNA replication and endomitosis. The resulting schizonts undergo 41 42 cytokinesis (segmentation) only upon maturation, forming daughter merozoites which are 43 released from the host cell through a highly regulated egress process. The cycle is then reinitiated by the invasion of fresh erythrocytes by the newly released merozoites. A detailed 44 molecular understanding of the biochemical pathways and proteins essential for blood-stage 45 46 development will inform discovery of novel targeted therapeutics that prevent malaria 47 pathogenesis. 48 Merozoite egress and invasion are regulated by cyclic nucleotide signalling, conserved elements 49 of which regulate multiple aspects of cell biology in model organisms and across the animal 50 kingdom and can be effectively targeted pharmacologically (4). The second messengers cyclic 51 adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), are produced by cyclase enzymes and activate their respective cyclic nucleotide-dependent effector 52 protein kinases PKA and PKG in a concentration-dependent manner (5). The activated kinases 53 54 phosphorylate downstream targets which carry out effector functions and the cyclic nucleotide signals are then broken down by phosphodiesterases (6, 7). P. falciparum uses cyclic nucleotide 55 signalling throughout its complex life cycle (7). Notably, cGMP signalling is required for egress 56 57 of asexual blood stage merozoites (8, 9) but also egress of gametes (10) and liver stage parasites (11, 12) as well as for ookinete and sporozoite motility (12–14). In contrast, cAMP 58 59 signalling has been shown to be required for sporozoite apical organelle secretion and invasion 60 of hepatocytes (15), gametocyte deformability (16) and erythrocyte invasion (17).

P. falciparum has two guanylyl cyclases. Whilst guanylyl cyclase beta (GC β) is dispensable in 61 62 blood stages (9), guanylyl cyclase alpha ($GC\alpha$) synthesises cGMP in mature blood stage 63 schizonts, where it plays an essential role in activating PKG to trigger egress (18). Both of the 64 malaria parasite GCs are large integral membrane proteins with 22 predicted transmembrane domains (TMDs), the C-terminal segment of which constitutes the paired C1 and C2 guanylyl 65 66 cyclase catalytic domains. Uniquely for cyclase enzymes, *Plasmodium* GCs (along with apicomplexan and ciliate orthologues) also contain an N-terminal Type IV P-type ATPase (P4-67 68 ATPase)-like domain (18–20). In other organisms P4-ATPases transport phospholipids from the 69 outer to the inner leaflet of a lipid bilayer, maintaining lipid asymmetry required for numerous 70 functions including membrane remodeling and vesicle formation (21). Recent studies in the 71 apicomplexan parasite *Toxoplasma* indicate that this domain is critical to the role of its single 72 guanylyl cyclase TgGC in lytic growth, where it is essential for host cell attachment, invasion and motility-dependent egress of tachyzoites (22-25). 73 74 In model organisms, P4-ATPases require cell division control protein 50 (CDC50) chaperones for 75 their phospholipid flipping activity (26, 27). CDC50 proteins are integral membrane proteins 76 with two TMDs (28, 29). Studies in yeast have shown that CDC50 binding partners are required for the auto-phosphorylation of the catalytically active aspartic acid residue of the P4-ATPase. 77 which is necessary for completion of the phospholipid flipping reaction cycle (30, 31). P. 78 79 falciparum encodes three putative CDC50 proteins, termed CDC50A (PF3D7 0719500), CDC50B 80 (PF3D7 1133300) and CDC50C (PF3D7 1029400). Previous work in the mouse malaria model P. yoelii has shown that CDC50A binds to GCB and is required for ookinete motility (20). Similarly, 81 82 TgGC controls egress of tachyzoites (22, 24, 25) and binds to a *Toxoplasma* CDC50 partner

83	which is required for its function (22). However, the functions of <i>P. falciparum</i> CDC50
84	orthologues have not been examined. Here we show that both CDC50B and CDC50C are
85	expressed in the asexual blood stages and that CDC50B interacts with GC α whereas CDC50C is
86	the binding partner of another putative P4-ATPase (ATPase2; PF3D7_1219600). We show that
87	CDC50B modulates the efficiency of parasite egress by interacting with GC $lpha$ for optimal cGMP
88	synthesis. In contrast, CDC50C is essential for asexual blood stage trophozoite maturation due
89	to a crucial role in endocytosis of host erythrocyte haemoglobin.

90

91 **<u>Results</u>**

92 1) Generation of genetic tools to investigate the function of the *P. falciparum* CDC50s

93 To assess the biological functions of CDC50A, B and C in *P. falciparum* blood stages, we generated three transgenic parasite lines designed to allow investigation of subcellular location 94 and the effects of conditional disruption of each CDC50. The transgenics were generated in the 95 genetic background of a 3D7 P. falciparum line that stably expresses dimerisable Cre (DiCre), 96 the Cre-recombinase activity of which is induced in the presence of rapamycin (RAP) (32, 33). In 97 98 each case, the target genes were 'floxed' such that treatment with RAP would lead to excision 99 of DNA sequences encoding a C-terminal region containing the second TMD of each protein (Fig. 100 1 A and B); this TMD has been shown in model organism CDC50-ATPase structures to interact with the C-terminal helix of the ATPase binding partner (28, 29). The constructs were designed 101

102	so that following homologous	s recombination, the genes	s were also modified by fusion	٥J
102	so that following homologous	s recombination, the genes	s were also mounted by rush	

sequences encoding a C-terminal triple hemagglutinin (HA) epitope tag.

104	Successful modification of the target genes was verified by PCR (Fig 1C), and expression and
105	RAP-induced excision of tagged CDC50A-HA, CDC50B-HA and CDC50C-HA fragments in the
106	respective transgenic parasites (termed CDC50A-HA:loxP, CDC50C-HA:loxP and CDC50B-
107	HA:loxP) was confirmed by western blot (Fig 1D). Immunofluorescence analysis (IFA) of the
108	transgenic lines (Fig 1E) revealed a diffuse, partly peripheral signal in individual merozoites
109	within mature segmented schizonts for both CDC50B-HA and CDC50C-HA. This was similar to
110	the pattern observed upon co-staining with the plasma membrane marker, merozoite surface
111	protein 1 (MSP1). Whilst successful tagging and floxing of the CDC50A gene was also confirmed
112	by PCR and Sanger sequencing, no protein expression could be detected in asexual blood
113	stages. This suggested that CDC50A is not expressed in asexual stages, consistent with findings
114	in <i>P. yoelii</i> where it is expressed only in gametocyte and mosquito stages (20). Alternatively,
115	since <i>P. falciparum</i> transcriptomic data indicates that the <i>CDC50A</i> gene is transcribed in
116	schizont stages (34), the protein may be expressed but rapidly degraded as its GC eta binding
117	partner is not present in asexual blood stages (9, 19).

118

119 2) Of the three isoforms, only CDC50C is essential for blood stage parasite growth

To investigate the essentiality of CDC50A, CDC50B and CDC50C, highly synchronised ring-stage
 cultures of each DiCre transgenic line were treated with RAP to induce excision of the sequence
 encoding the C-terminal TMD of each protein (Fig 1C), and parasite replication assessed using

123	flow cytometry (Fig 3A). RAP-treated CDC50A-HA:loxP and CDC50B-HA:loxP parasites displayed
124	no significant growth inhibition over three cycles compared to matched control (DMSO-treated)
125	parasites (Fig 2A). In contrast, CDC50C-HA:loxP parasites underwent complete growth arrest
126	after cycle 1. Examination of the parasites by Giemsa-staining showed that whilst new rings
127	went on to form schizonts in DMSO-treated WT parasites, RAP-treated CDC50C-HA:loxP rings
128	did not develop beyond the early trophozoite stage and eventually collapsed into small
129	vacuoles (Fig 2B). It was concluded that CDC50C is essential for asexual blood stage survival.
130	

131 3) CDC50B and CDC50C bind to distinct parasite flippase partners

132 In other organisms, CDC50 proteins interact with their cognate P4-ATPases and are required for 133 their activity (28–31). To determine whether CDC50B and CDC50C interact with P4-ATPases in P. falciparum blood stage development we performed immuno-precipitation (IP) experiments 134 from extracts of highly synchronised CDC50B-HA:loxP and CDC50C-HA:loxP schizonts. Western 135 136 blot analysis confirmed the expected enrichment of the HA-tagged proteins from schizont 137 lysates (Fig 3A). The immuno-precipitated material was then analysed by mass spectrometry in 138 comparison with mock IP samples to confirm this and identify co-precipitating protein species. This confirmed high levels of enrichment of the HA-tagged CDC50 bait proteins (Fig 3B). In 139 140 addition, in the case of the CDC50B experiments we detected a $>9 \log_2$ enrichment of peptides derived from GC α (Fig 3B), whilst in the CDC50C IPs we detected >9 log₂ enrichment of peptides 141 142 mapping to another putative P4-ATPase, a putative amino-phospholipid flippase 143 PF3D7 1219600 (ATP2) (Fig3B). No other proteins were as significantly enriched in each pull-

down. These results strongly suggest that CDC50B is a co-factor for GCα and CDC50C is a co-

145 factor for ATP2.

146

147 4) CDC50B is not required for GCα expression or trafficking, but is crucial for optimal cGMP

148 synthesis required for egress

GCα has a key role in egress, as the source of cGMP required for PKG activation (18). Having
determined that CDC50B interacts with GCα, we next investigated whether CDC50B also has a
role in parasite egress.

To do this, we first compared the egress kinetics of mature DMSO- and RAP-treated CDC50B-152 153 HA:loxP schizonts by monitoring the appearance in culture supernatants over time of 154 proteolytically processed forms of the PV protein serine repeat antigen 5 (SERA5), as a proxy for 155 egress (35). As shown in Fig 4A, this revealed a marked reduction in the rate of egress over the 156 sampling period in RAP-treated CDC50B-HA:loxP parasites as compared to control DMSOtreated counterparts. Densitometric quantitation of data from three independent biological 157 replicate experiments indicated that CDC50B null schizonts undergo ~50% less egress than WT 158 159 controls when sampled over two hours (Fig S1). This was not due to a delay in schizont 160 development, since Giemsa staining of DMSO- and RAP-treated CDC50B schizonts showed no 161 detectable delay in parasite maturation, and analysis of DNA content by flow cytometry indicated no significant differences between formation of DMSO- and RAP-treated CDC50B 162 163 schizonts (Fig 4A lower).

In *T. gondii*, the orthologue of CDC50B is required for correct subcellular trafficking of TgGC 164 165 (22). To investigate whether this is also true in *P. falciparum*, we used a CRISPR-Cas9-based approach to fuse GC α to a C-terminal mCherry tag in the CDC50B-HA:loxP line, creating a 166 parasite line called CDC50B-HA:loxP GC α -mCherry (Fig S2). We failed to detect the tagged 167 168 protein directly by fluorescence microscopy, possibly due to the previously reported very low abundance of GC α (18). However, western blot revealed a ~250 kDa signal in schizont lysates 169 170 from CDC50B-HA:loxP GC α -mCherry schizonts, likely representing a proteolytic fragment of the 171 tagged protein, since GC α is prone to proteolytic degradation in both *P. falciparum* and *T. gondi* 172 (18, 22) (Fig 4B). Interestingly, western blot of extracts of RAP-treated CDC50B-HA:loxP GC α mCherry schizonts indicated that there was no marked reduction in the levels of $GC\alpha$ in the 173 174 absence of CDC50B (Fig 4B). Exploiting the tagged GC α -mCherry line, we sought to confirm whether CDC50B was co-precipitated when $GC\alpha$ -mCherry was immuno-precipitated using RFP-175 176 trap beads. Co-precipitation of CDC50B was observed, confirming CDC50B binding by $GC\alpha$ -177 mCherry (Fig 4C).

To examine the role of CDC50B in trafficking of $GC\alpha$, we used an anti-mCherry antibody to 178 179 localize GCα-mCherry by IFA in RAP-treated CDC50B-HA:loxP GCα-mCherry parasites. This revealed no obvious mis-localisation of $GC\alpha$ in the absence of CDC50B, with a similar, diffuse 180 181 signal detectable in both RAP- and DMSO-treated schizonts. In addition, in contrast with T. 182 *gondii* (20), no mislocalisation of GC α in the ER or secretory pathway in the absence of CDC50B was detected, as judged by co-localisation with the ER marker plasmepsin V (PMV) (Fig 4E). 183 184 Taken together, these results indicate that CDC50B binding is not important for the correct 185 trafficking or stable expression of $GC\alpha$. To seek more insight into the egress defect, we

investigated whether ablation of CDC50B resulted in changes in cyclic nucleotide levels. To do 186 187 this, we assayed extracts of DMSO- and RAP-treated CDC50B-HA:loxP schizonts by ELISA to guantitate cGMP and cAMP levels. This showed that CDC50B null parasites contained 53.67% 188 (±12.16%) less cGMP than DMSO-treated controls, whilst no significant difference in cAMP 189 190 levels was observed (Fig 4F). These reduced cGMP levels suggested that binding of CDC50B to GCa might be required for maximal GCa cyclase activity. To test this, we investigated whether 191 192 the defect in egress of CDC50B null schizonts could be reversed by the addition of compounds 193 that stimulate or mimic elevated cGMP levels. Egress was monitored in the presence and 194 absence of the PDE inhibitor zaprinast or PET-cGMP, a membrane-permeable cGMP analogue known to activate parasite PKG (18, 36). Treatment with either compound restored egress of 195 196 CDC50B null schizonts to levels similar to those observed in control CDC50B-HA:loxP schizonts, confirming the requirement of CDC50B for optimal cGMP synthesis by GC α (Fig 4G). 197 198 In view of the above results, as well as the previous observation that a lipid co-factor may stimulate egress in Toxoplasma and P. falciparum (22, 37), we examined whether the potential 199 phospholipid flippase activity of the P4-ATPase domain of GC α might be modulated by CDC50B 200 201 binding. To do this, we investigated whether uptake of fluorescently-labelled PS, PE and PC were affected following excision of CDC50B. DMSO- or RAP-treated CDC50B-HA:loxP late 202 203 schizonts were incubated with fluorescent lipids, then analysed by flow-cytometry to determine 204 their ability to accumulate lipids. We found no significant difference in the bulk uptake of measured lipids in schizonts in the presence or absence of CDC50B (Fig S3). 205

206

5) CDC50C is not required for lipid uptake or protein export, but plays an essential role in

208 haemoglobin uptake from the host erythrocyte.

209 As described above, RAP treatment of synchronous, newly invaded CDC50C-HA:loxP rings 210 produced a CDC50C null parasite population that displayed a trophozoite arrest phenotype (Fig 2B), suggesting an essential role for CDC50C in the trophozoite-to-schizont transition. Given this 211 212 evidence that CDC50C plays a very different role to that of CDC50B, we decided to interrogate more precisely the functional role of CDC50C. Previous transcriptomic analysis has shown that 213 214 CDC50C is transcribed throughout the asexual blood stage cycle, with relatively low levels of 215 transcription in rings increasing to a peak in mature schizont stages (34). Consistent with this 216 transcriptional profile, immuno-staining of CDC50C-HA:loxP parasites detected expression in 217 ring, trophozoite and schizont stages (Fig S4). Co-staining of CDC50C in trophozoites with 218 antibodies to ERD2 (a Golgi marker), PMV (an ER marker) or EXP2 (a PVM marker) showed that 219 CDC50C displayed a diffuse cytosolic staining with no clear subcellular localisation (Fig5A). 220 Phospholipid flippases have been shown to contribute directly to cellular lipid uptake (38–40). 221 Initially we speculated that the growth arrest of CDC50C null trophozoites may be due to a dysregulation of lipid uptake as a result of loss of function of the putative amino-phospholipid 222 flippase ATP2 partner. To test this notion, we labelled live RAP- and DMSO-treated CDC50C-223 224 HA:loxP trophozoites with the fluorescent amino-phospholipid analogues NBD-PC, NBD-PE and NBD-PS. No discernable difference in lipid uptake between CDC50C null and WT trophozoites 225 226 was observed by microscopy (Fig 5B), suggesting that CDC50C plays no essential role in uptake 227 of these phospholipids.

In model organisms, flippases also contribute to the production and maintenance of membrane 228 229 asymmetry required for generation of trafficking vesicles, with specific flippases influencing exocytosis or endocytosis pathways (41–44). Given that lipid uptake was unaffected in the 230 231 absence of CDC50C, we considered it plausible that the ATP2-CDC50C complex may contribute 232 to lipid homeostasis and trafficking in an analogous manner. P. falciparum trophozoites remodel their intracellular environment to create new permeation pathways that enable export 233 of a wide variety of proteins into the host RBC via exocytosis, a process which is essential for 234 235 trophozoite development (45). To examine whether trophozoite death in CDC50C null parasites 236 could be attributed to changes in protein exocytosis, control or RAP-treated CDC50C-HA:loxP ring stage parasites were allowed to develop into trophozoites then analysed by IFA to 237 238 determine the localisation of skeleton binding protein (SBP), a prominent exported protein in 239 trophozoites. Puncta of SBP, characteristic of export, were evident within the RBC cytosol in 240 both DMSO- and RAP-treated CDC50C-HA:loxP trophozoites (Fig 6A), and quantification of these puncta indicated that there was no significant change in the levels of export of SBP in 241 242 CDC50C null trophozoites (Fig 6B). This suggested that loss of CDC50C has no impact on bulk protein export during trophozoite development. 243

As protein export and possibly exocytosis of CDC50C null trophozoites was unaffected we lastly examined an essential endocytotic process. As intracellular asexual blood stage malaria parasites develop, they endocytose and digest host erythrocyte haemoglobin. A major byproduct of this catabolic process is the sequestration of haem in the form of a characteristic crystalline product called haemozoin, which accumulates in the parasite digestive vacuole as large, refractile complexes that are easily visible by light microscopy. Microscopic examination

of Giemsa-stained thin blood films indicated that whilst CDC50C null trophozoites displayed an 250 251 apparently normal morphology, the hemozoin crystals appeared smaller than those of DMSOtreated controls (Fig 6C right). To examine this in greater detail, we compared the ratio of the 252 hemozoin crystal length to that of the parasite length in RAP- and DMSO-treated CDC50C null 253 254 trophozoites. This confirmed a significantly decreased ratio in CDC50C null trophozoites (Fig 6C), suggesting a CDC50C-dependent defect in haemozoin formation. To further examine this, 255 256 we purified and quantified haemozoin from parallel populations of RAP- and DMSO-treated 257 CDC50C-HA:loxP trophozoites (46). As shown in Fig 6D, this revealed ~30% less hemozoin in 258 trophozoites lacking CDC50C. To investigate whether uptake of haemoglobin was affected in CDC50C null trophozoites, RAP- and DMSO-treated CDC50C-HA:loxP trophozoites were 259 260 harvested at 36 h post invasion, released from their host cells using saponin, and levels of intra-261 parasite haemoglobin quantified by western blotting (Fig 6E). The results indicated that the 262 levels of haemoglobin within CDC50C null trophozoites was significantly reduced compared with control counterparts (Fig S5). Collectively, these data support a role for CDC50C in uptake 263 264 and digestion of host erythrocyte haemoglobin that is essential for parasite development.

265

266 **Discussion**

In this study we have shown that CDC50B and CDCD50C proteins are expressed during asexual
blood stage development, and that they each bind to different putative P4-ATPase flippases GCα and ATP2 respectively - which function at different developmental stages of the asexual
blood stage cycle. CDC50B is dispensable for intraerythrocytic development, as is its orthologue

271	in <i>P. yoelii</i> (20). However, we find that cGMP levels are reduced in CDC50B null parasites as well
272	as rates of egress. This defect can be rescued by treatment of CDC50B null parasites with either
273	the PDE inhibitor zaprinast or PET-cGMP, membrane-permeable cGMP analogue known to be
274	capable of activating apicomplexan PKGs (18). As no growth defect was observed in CDC50B
275	null parasites, it seems that whilst egress rates are reduced, CDC50B parasites are egress
276	competent and do eventually egress. Collectively, our results strongly suggest that CDC50B acts
277	to enhance cGMP synthesis by GCa. Recent studies in <i>T. gondii</i> have shown that the single GC
278	(TgGC) also binds to a CDC50 designated CDC50.1 (22). In contrast to the present study,
279	knockdown of CDC50.1 resulted in mis-localisation of TgGC and a block in egress of <i>T. gondii</i>
280	tachyzoites (22). The egress block could be rescued by adding a PDE inhibitor, implying that in
281	the absence of CDC50.1, TgGC remains functional but produces cGMP with reduced efficiency
282	(20). We observed no detectable mislocalisation of <i>P. falciparum</i> GC α in the absence of
283	CDC50B, with normal growth of parasites albeit with reduced egress rates, indicating
284	differences between the genera. We speculate that this may be due to differences in the
285	threshold levels of cGMP required to activate PKG to trigger egress in each species.
286	Importantly, our work adds to the evidence supporting a role for CDC50s and the P4-ATPase
287	domain of apicomplexan GCs acting functionally to stimulate maximal cGMP production
288	required for egress. By analogy with other CDC50-flippase interactions, we can deduce that this
289	occurs through CDC50B binding to the P4-ATPase domain of GC α . Modulation of the activity of
290	the C-terminal cyclase domain by the P4-ATPase may integrate a lipid-mediated trigger for
291	egress, potentially by phosphatidic acid as shown in <i>T. gondii</i> (22) or phosphatidylcholine (PC)
292	as recently indicated in <i>P. falciparum</i> (37). However, we did not observe changes in the bulk

293	uptake of fluorescent PC by schizonts lacking CDC50B. Recent structural examination of a
294	human P4-ATPase:CDC50 complex has shown that CDC50 forms an intimate interaction with
295	the TMDs of the P4-ATPase partner, with the loop domain between the two TMDs of the CDC50
296	forming an anti-parallel beta-sheet structure that contacts the luminal side of the
297	transmembrane loops of the P4-ATPase. Human CDC50 is glycosylated at several conserved
298	asparagine residues, and the structure showed that interactions between CDC50 glycan
299	moieties and P4-ATPase stabilise the functional complex (29). Intriguingly an alignment of
300	human CDC50a and the three <i>P. falciparum</i> CDC50s indicates that Asn180, at which
301	glycosylation has been shown to interact structurally with its partner P4-ATPase (29), is absent
302	from CDC50B but conserved in both CDC50A and C (Fig S6). N-glycosylation has been observed
303	in <i>P. falciparum</i> (47), but this finding raises the possibility that CDC50B may be non-
304	glycosylated. This observation may explain the finding in <i>P. yoelii</i> that GC β is degraded in the
305	absence of its partner CDC50, suggesting that GC eta is highly reliant on interactions with its
306	CDC50 partner (CDC50A) for protein stabilization (20). In contrast, in our study we observe that
307	loss of CDC50B does not impact on expression of GCα, since GCα-mediated egress still occurs.
308	The revelation that CDC50C is essential for intraerythrocytic maturation of asexual blood stage
309	P. falciparum trophozoites and that CDC50C binds to ATP2 suggests that CDC50C plays a role
310	critical for ATP2 function. In contrast to our findings using native parasite-derived protein
311	preparations, a recent in-vitro study using recombinant protein indicated that ATP2 can bind
312	CDC50B; however, CDC50C binding was not tested in that work as the authors could not
313	express it (48). Our study indicates that the essential function of CDC50C cannot be
314	complemented by CDC50B.

315 Global transposon mutagenesis data suggest that the gene encoding ATP2 is essential in P. 316 falciparum blood stages (49) and its orthologue is refractory to targeted deletion in P. berghei (50). Whilst its cellular function is unknown, ATP2 has been implicated in resistance to two 317 318 Medicines for Malaria Venture (MMV) 'Malaria box' compounds, mediated through a novel 319 pathway involving gene copy number amplification. Functional characterisation of the mechanism by which drug resistance is achieved remains lacking (51). Interestingly, Cowell et 320 321 al. observed non-synonymous mutations in genes encoding putative parasite Sec24 and Yip1 322 proteins (classically involved in vesicular trafficking) in drug resistant parasite lines containing 323 ATP2 copy number variations (51). Here we found that the ATP2-CDC50C complex influences endocytosis of haemoglobin during blood stage development possibly by influencing the 324 325 phospholipid makeup of the cytostome, a structure that is crucial for hemoglobin uptake (52, 326 53), and it remains possible that other endocytic pathways may also be affected by loss of ATP2 327 function, although these were not investigated. In yeast, different P4-ATPases contribute to distinct vesicular trafficking pathways (43, 44). It is plausible that this could be similar in P. 328 329 falciparum. We speculate that copy number modulation of ATP2 acquired during selection for drug resistance may modulate the endocytic pathway of the parasite so as to affect drug 330 uptake, although further work is required to investigate this. 331

A recent study in *P. yoelii* has shown that the orthologue of CDC50C binds to a different P4-ATPase (ATP7) in ookinetes during parasite development within the mosquito (54). This indicates that CDC50C chaperones the activity of distinct P4-ATPases in different developmental stages of the parasite life cycle, in both mammalian and insect hosts. Consistent with this, the transcriptomic profiles of *ATP2* and *ATP7* show that they are confined to asexual and insect stages respectively. The same study demonstrated that the ATP7-CDC50C complex is required

for PC uptake in ookinetes and the authors suggested that this process may be required to 338 339 allow mosquito midgut cell traversal, as CDC50C null or ATP7 null ookinetes could not achieve 340 this. Intriguingly, alignment of ATP7 and ATP2 primary sequences alongside those of model P4-ATPases revealed that the 'QQ motif' involved in defining substrate specificity is replaced by QL 341 342 and QV respectively (Fig S7). Given the similarity between these amino acid motifs, it is plausible that ATP2 also transports PC. Our finding that NDB-PC uptake is unaffected in CDC50C 343 null trophozoites suggests that either ATP2 transports another phospholipid or that lipid uptake 344 in trophozoites occurs via (multiple) redundant pathways. During the preparation of this 345 manuscript, a recent pre-print has found that the T. gondii orthologue of CDC50C, CDC50.4, 346 binds ATP2B an essential P4-ATPase that transports PS (55). This CDC50.4-ATP2B complex is 347 required for efficient mirconeme secretion of tachyzoites with no defect observed during 348 parasite intracellular development (55). It is plausible the *P. falciparum* CDC50C-ATP2 complex 349 may perform a similar role in egressed merozoites, however, this was not addressed in our 350 study due to the block of intra-erythrocyte development in CDC50C null parasites. Our work 351 352 provides substantial new insights into the multifaceted, essential roles played by CDC50C 353 proteins in malaria parasites and highlights potential species-specific divergences in the role of 354 CDC50s in Apicomplexa.

355

356 Materials and methods

357 *P. falciparum* culture and synchronisation

358 P. falciparum erythrocytic stages were cultured in human erythrocytes (National Blood

359 Transfusion Service, UK) and RPMI 1640 medium (Life Technologies) supplemented with 0.5%

- Albumax type II (Gibco), 50 μM hypoxanthine, and 2 mM L-glutamine. Synchronous parasite
- 361 cultures were obtained as described previously (56). Briefly, late segmented schizonts were
- 362 enriched by centrifugation on a 60% Percoll (GE Healthcare) cushion, followed by the addition

of fresh erythrocytes to allow invasion for 1–2 h under continuously shaking conditions.
Remaining schizonts were then removed by sorbitol treatment to yield highly synchronous ringstage cultures. In all cases, induction of DiCre activity when required was by treatment for 2–4 h
with 100 nM RAP (Sigma) as described previously (32, 57). Control parasites were treated with
vehicle only (1% v/v DMSO).

368

369 Genetic modification of *P. falciparum* parasites

370 The CDC50A-HA:loxP, CDC50B-HA:loxP and CDC50C-HA:loxP lines were generated from the

371 DiCre-expressing 3D7 (33) *P. falciparum* clone using SLI of a plasmid containing a SERA2loxPint

372 (57) followed by a triple-HA tag and an in frame Thosea asigna virus 2A (T2A) ribosomal skip

373 peptide and NeoR cassette with a downstream loxP and PbDT 3'UTR sequences as described

374 previously. Re-codonised versions of the C-terminal portion of each gene containing the last

375 transmembrane helix were synthesised commercially (IDT) and inserted downstream of the

376 SERA2loxPint and upstream of the 3×HA tag. Sequences as follows: CDC50A –

377 GATTTCTGGCTCATGAACGAAAAGTACAAGAACGCATTAAACATGAACAATGAGAACGGTTACGGTGAC

379 ATTAACGTAGAGGTAAACTTGCCTATTTACGTTAACATAAACAACAACTTCCCAGTCACCAAGTTCAACG

380 GAAAGAAGTTCTTCGTAATCGCAGAGGGTAGTATTTTCATTAACGAGAAGATTCAGTCTCTCGGTATTCT

381 CTATTTGGTTATAGGTATAATTAGTCTAGGTATAGTTGCATGCCTTATTTACAACCAGATGAAGAATCCG

382 AGGATAATTGGATATCACGCTTATATTTACATCTTCTTCTTGG; CDC50B -

383 GATCACATTTACTTTTGGATGGAGCCTGATATTCAGTACGAGCGTTTGCAGGAGAACAAGGAGACTAAC

384	GAGAAATTGCTAGTTTTGCCTCAGACTTTGAAGTACAACCAGGCTGGTAAGGCAATTGAGAATTCTCACT
385	TCATAAACTGGATGATTCCTAGTGCTCTAAACTACATAAAGCGATTGTACGGAAAGTTGTACATTCCATT
386	GAAGTTCCCCTTCTACATCTACATTGAGAACAACTTCAAGATAAACGACACTAAGATAATCGTAATATCT
387	ACATCTCAGTACTACATGAGGACCTTCTTGATCGGCTTTATATTCATCATCATAAGTATCATTGCATTGAT
388	CTTGTGCATCTTCTACCTCATCAGGATGAACAAGTACGAGAACAAG; CDC50C –
389	GATGAGTGGAACGCTAAGAAAAGTTTCCAGCTTGTGAGTCTTCGTTCTATTGGTAACTCAAGTTTCAAGT
390	TAGCCTACGCATTCTTTCTTTTAAGTTTGTTGTATTTCATCATGATTATATTCATATTGGTTTTGGTGAAGT
391	GCAAGTACTATAAATTGGGTAAGACTCTTACATACTGTAAGTTATCTATGAACAAGAACATTGAGAAGAT
392	GAACTCAAGGAAGAAGACTAACATTCAGAACATTAACAAGAAAATAAACAGTATGCAGCTTGAGATAAT
393	GCATAAAGCCTCATCAGATCCTAACAATCTTGCTGGTGCTGACCACAGTCAGAAGTTGTGTTTCTGTCCA
394	TTGCATG. An 800-bp 5' homology region comprising the native gene sequence upstream of the
395	re-codonised region was cloned upstream of the SERA2loxPint. Following transfection of
396	purified schizonts using an AMAXA nucleofector 4D (Lonza) and P3 reagent, modified parasites
397	were selected as described previously (58).
398	
399	Oligonucleotide primers used in diagnostic PCR to detect integration and excision of
400	transgenes, and the sequences of re-codonised regions, are provided below in Tables 1 and 2.

401 CDC50B-HA:loxP GCα-mCherry was generated by transfection of CDC05B-HA:loxP. A linearised
402 donor DNA which inserted mCherry in-frame with the C-terminus of GCα followed by a T2A
403 peptide and BSD selection marker when integrated, and three pDC2-based (33) Cas9 gRNA
404 plasmids were co-transfected, each with different sgRNA targeting the C-terminus of GCα.

405	sgRNA sequer	nces as follows:	sgRNA1	CTCTAAATTATTAC	CAAAATA, sgRNA 2

	406	AGAAAAAACATTCAAGTATC,	sgRNA 3 ACGATGAAAAAAAGAAGAAG.	Parasites were left to grow
--	-----	-----------------------	-------------------------------	-----------------------------

- 407 for two days post transfection followed by treatment with 5 μ g/ml BSD to select for integrants.
- 408 After the emergence of BSD resistant parasites gDNA was screened for correct integration.
- 409 Donor sequences were constructed by amplifying a T2A BSD sequence from pDCIn (DiCre
- 410 induction) (17) by PCR and cloning using a BsrGI site in frame with the C-terminus of a donor
- 411 DNA targeting GC α which had previously been constructed in the lab (18).

412

413 Parasite sample preparation and western blot

414 Parasite culture supernatant samples for egress and adhesin shedding assays were prepared

415 from tightly synchronised cultures as previously described ref. Percoll-purified mature schizonts

416 were resuspended in complete medium and allowed to further mature for 3 h until

417 predominantly mature segmented schizonts. The experiment was then initiated by washing

418 parasites with RPMI three times followed by final re-suspension at a 10% haematocrit in fresh

419 warm RPMI medium. Culture supernatant aliquots (100 μL) were harvested at specified time

420 points by centrifugation. The schizont pellet from t = 0 was retained as a pellet control sample.

421

Parasite extracts were prepared from Percoll-purified schizonts treated with 0.15% w/v saponin
to remove erythrocyte material. To solubilise parasite proteins, PBS-washed saponin-treated
parasite pellets were resuspended in three volumes of NP-40 extraction buffer (10 mM Tris, 150
mM NaCl, 0.5 mM EDTA, 1% NP40, pH 7.5, with 1× protease inhibitors (Roche). Samples were

426	gently vortexed and incubated on ice for 10 min followed by centrifugation at 12,000g for 10
427	min at 4°C. For western blot, SDS-solubilised proteins were electrophoresed on 4%-15% Mini-
428	PROTEAN TGX Stain-Free Protein Gels (Bio-Rad) under reducing conditions and proteins
429	transferred to nitrocellulose membranes using a semidry Trans-Blot Turbo Transfer System
430	(Bio-Rad). Antibody reactions were carried out in 1% skimmed milk in PBS with 0.1% Tween-20
431	and washed in PBS with 0.1% Tween-20. Appropriate horseradish peroxide-conjugated
432	secondary antibodies were used, and antibody-bound washed membranes were incubated with
433	Clarity Western ECL substrate (Bio-Rad) and visualised using a ChemiDoc (Bio-Rad).
434	
435	Antibodies used for western blots presented in this work were as follows: anti-HA monoclonal
436	antibody (mAb) 3F10 (diluted 1:2,000) (Roche); mouse anti-GAPDH mAb (1:20,000); rabbit anti-
437	SERA5 polyclonal antibody (1:2,000); rabbit anti-mCherry (1:2000) (Abcam); rabbit anti-
438	haemoglobin polyclonal antibody (1:2,000) (Sigma). Densitometry quantifications were
439	performed using ImageJ.
440	
441	Immunofluorescence assays
442	Thin blood films were fixed with 4% formaldehyde in PBS and permeabilised with PBS
443	containing 0.1% (v/v) Triton X-100. Blocking and antibody binding was performed in PBS 3% BSA
444	w/v at room temperature. Slides were mounted with ProLong Gold Antifade Mountant
	entrining DADI (Therman Fish on Caingtifie), Income and with a NUKON Falling T

445 containing DAPI (Thermo Fisher Scientific). Images were acquired with a NIKON Eclipse Ti

446 fluorescence microscope fitted with a Hamamatsu C11440 digital camera and overlaid in ICY

447	bioimage analysis software or Image J. Super-resolution images were acquired using a Zeiss
448	LSM880 confocal microscope with Airyscan detector in Airyscan SR mode. Antibodies used for
449	IFA were as follows: anti-HA monoclonal antibody (mAb) 3F10 (diluted 1:200) (Roche); mouse
450	anti-PMV mAb (1:50); rabbit anti-ERD2 polyclonal antibody (1:2,000); rabbit anti-EXP2
451	polyclonal antibody (1:500) (Abcam); rabbit anti-mCherry polyclonal antibody (1:200) (Abcam).
452	
453	Flow cytometry
454	For growth assays, synchronous ring-stage parasites were adjusted to a 0.1% parasitaemia 1%
455	haematocrit suspension and dispensed in triplicate into six-well plates. Samples of 100 μL were
456	harvested at days 0, 2, 4 and 6 for each well and fixed with 4% formaldehyde 0.2%
457	glutaraldehyde in PBS. Fixed samples were stained with SYBR green and analysed by flow
458	cytometry.
459	
460	Fluorescent lipid labelling
461	NBD-PC, NBD-PE, NBD-PS (Avanti polar lipids) were dried and re-suspended in RPMI to 1 mM
462	stock solutions and stored at -20°C. Relevant parasite stages (trophozoites or late schizonts)
463	from a highly synchronous cultures were pelleted and washed twice with RPMI. Parasites were
464	then re-suspended in RPMI containing Hoechst with 1 μM of NBD lipid or no lipid (negative
465	control). Suspensions were incubated at 37°C for 30 minutes and subsequently pelleted by

466 centrifugation. Pellets were then washed three times with pre-warmed RPMI containing 5%

467	BSA followed by resuspension in PBS. Suspensions were then diluted 1:10 and analysed by flow
468	cytometry on an Attune NxT. Samples were gated for Hoechst DNA positivity and the resultant
469	population gated for NBD lipid fluorescence. For trophozoite samples a low Hoechst signal
470	population was gated, and for schizont samples a high Hoechst signal population.
471	
472	Immuno-precipitation
473	Tightly synchronised schizonts (~45 h old) of CDC50B-HA:loxP, CDC50B-HA:loxP GC α -mCherry,
474	CDC50C-HA:loxP and 3D7DiCre parental parasites were enriched on a 70% Percoll cushion. The
475	schizonts were treated for 3 h with 1 μ M C2 (to arrest egress) after which the cultures were
476	treated with 0.15% saponin in PBS containing cOmplete Mini EDTA-free Protease and PhosSTOP
477	Phosphatase inhibitor cocktails (both Roche) for 10 min at 4°C to lyse the host erythrocytes.
478	Samples were washed twice in PBS containing protease and phosphatase inhibitors, snap-
479	frozen and pellets stored at –80°C. Parasite pellets (70-100 μ l packed volume) were
480	resuspended in three volumes of NP-40 extraction buffer (10 mM Tris, 150 mM NaCl, 0.5 mM
481	EDTA, 1% NP40, pH 7.5, with 1× protease inhibitors (Roche). Samples were gently vortexed and
482	incubated on ice for 10 min followed by centrifugation at 12,000g for 10 min at 4°C. Clarified
483	lysates were then added to anti-HA antibody conjugated magnetic beads (Thermo Scientific) or
484	RFP trap beads (Chromotek) which had been equilibrated in NP-40 extraction buffer. Samples
485	were incubated at room temperature for 2 h on a rotating wheel after which beads were
486	precipitated using a magnetic sample rack. The supernatant was removed, and beads washed
487	three times with NP-40 extraction buffer followed by three washes with extraction buffer

488	lacking detergent. Washed beads were then resuspended in trypsinisation buffer (50 mM
489	ammonium bicarbonate, 40 mM 2-chloroacetamide and 10 mM Tris-(2-carboxyethyl)
490	phosphine hydrochloride) and samples reduced and alkylated by heated to 70°C for 5 minutes.
491	250 ng of trypsin was added to the samples and heated at 37°C overnight with gentle agitation
492	followed by filtration using a 0.22 μm Costar® Spin-X® centrifuge tube filter (Sigma). Samples
493	were then run on a LTQ-Orbitrap-Velos mass spectrometer (Thermo Scientific). Search engines,
494	Mascot (http://www.matrixscience.com/) and MaxQuant (https://www.maxquant.org/) were
495	used for mass spectrometry data analysis. The PlasmoDB database was used for protein
496	annotation. Peptide and proteins having minimum threshold of 95% were used for further
497	proteomic analysis and peptide traces analysed using Scaffold4.
498	
499	Measurement of hemozoin content
500	A culture of 5% parasitemia 1 h synchronised rings stage CDC50C parasites were treated at 1 h
501	post invasion with DMSO or RAP (100 nM) and then left to develop until the early trophozoite
502	stage at 36 h post-invasion. Parasites were then harvested by saponin lysis and then processed
503	similarly to a reported method (46) to purify hemozoin. Pellets were then de-polymerised in
504	0.5 ml of 0.2 M NaOH solution and the resultant heme content measured by absorbance at 410
505	nm in a Spectramax iD5 plate reader.

506

507 Measurement of intracellular cyclic nucleotide levels

508	cAMP and cGMP in mature CDC50B schizonts were measured using enzyme-linked
509	immunosorbent assay (ELISA)-based high-sensitivity direct cAMP and cGMP colorimetric assay
510	kits (Enzo Life Sciences). Mature schizonts were Percoll purified from RAP- or DMSO-treated
511	CDC50B-HA:loxP cultures followed by resuspension and lysis in 0.1 M HCl solution. Samples
512	were pelleted at 10,000 × g, and the supernatant was collected and stored at –80°C until
513	required. To perform the ELISA, samples and standards were acetylated to improve detection
514	sensitivity according to the manufacturer's instructions. Standards and samples were run in
515	triplicate on the same plate and absorbance at 410 nm read with a Spectramax iD5 plate
516	reader. The standard was fitted to a sigmoidal curve and used to determine cyclic nucleotide
517	concentrations in parasite samples. Remaining supernatant was assayed for protein
518	concentration by a Bradford assay kit (Pierce). cGMP and cAMP reading were normalised by
519	protein content from the Bradford assay.

520

521 Acknowledgments

522 We would like to thank the following for the kind gifts of antibodies used in this work: Daniel

523 Goldberg (Washington University, St. Louis, MO) for the mouse anti-plasmepsin V mAb;

524 Claudia Daubenberger (SwissTPH, Basel, Switzerland) for the mouse anti-GAPDH mAb;

525 Christiaan van Ooij (LSHTM, London, UK) for the rabbit anti-EXP2 polyclonal antibody.

526

527 Author contributions

- 528 All experiments were designed and carried out by AP. MJB and DAB supervised the work overall
- and SDN designed and provided plasmids for CRISPR editing of $GC\alpha$.

530

- 531 **Funding:** This work was supported by Wellcome Trust grant 106240/Z/14/Z (to DAB),
- 532 Wellcome Trust grant 106239/Z/14/A (to MJB), and Wellcome ISSF2 funding to the London
- 533 School of Hygiene & Tropical Medicine. For the purpose of Open Access, the author has applied
- a CC BY public copyright licence to any Author Accepted Manuscript version arising from this
- submission. This work was also supported by funding to MJB from the Francis Crick Institute
- 536 (https://www.crick.ac.uk/), which receives its core funding from Cancer Research UK
- 537 (FC001043; https://www.cancerresearchuk.org), the UK Medical Research Council (FC001043;
- 538 https://www.mrc.ac.uk/), and the Wellcome Trust (FC001043; https://wellcome.ac.uk/).

539 List of abbreviations

- 540 ATP2 phospholipid-transporting ATPase 2
- 541 ATP7 ATPase seven
- 542 cAMP cyclic AMP
- 543 Cas9 CRISPR associated protein nine
- 544 CDC50 cell division control protein 50
- 545 cGMP cyclic GMP
- 546 CRISPR clustered regularly interspersed short palindromic repeats

- 547 DiCre dimerisable Cre-recombinase
- 548 DMSO dimethyl sulfoxide
- 549 ERD2 endoplasmic reticulum retention defective two
- 550 EXP2 exported protein two
- 551 GAPDH glyceraldehyde three phosphate dehydrogenase
- 552 GCα guanylyl cyclase alpha
- 553 GCβ guanylyl cyclase beta
- 554 HA3 triple hemagglutinin epitope tag
- 555 IFA immunofluorescence assay
- 556 mCherry monomeric cherry fluorescent protein
- 557 MMV Medicines for Malaria Venture
- 558 NBD-PC nitro-benzoxadiazol phosphatidylcholine
- 559 NBD-PE nitro-benzoxadiazol phosphatidylethanolamine
- 560 NBD-PS nitro-benzoxadiazol phosphatidylserine
- 561 P4-ATPase type IV ATPases
- 562 PC phosphatidylcholine
- 563 PE phosphatidylethanolamine

- 564 PMV plasmepsin five
- 565 PS phosphatidylserine
- 566 RAP rapamycin
- 567 RFP red fluorescent protein
- 568 SBP skeleton binding protein
- 569 SERA5 serine repeat antigen 5
- 570 sgRNA- single guide RNA
- 571 SLI selection-linked integration
- 572

573 <u>References</u>

- 574 1. World malaria report 2021.
- 575 2. Balikagala B, Fukuda N, Ikeda M, Katuro OT, Tachibana S-I, Yamauchi M, Opio W, Emoto
- 576 S, Anywar DA, Kimura E, Palacpac NMQ, Odongo-Aginya El, Ogwang M, Horii T, Mita T.
- 577 2021. Evidence of Artemisinin-Resistant Malaria in Africa. N Engl J Med 385:1163–1171.
- Bannister L, Mitchell G. 2003. The ins, outs and roundabouts of malaria. Trends Parasitol
 19:209–213.
- 4. Baillie GS, Tejeda GS, Kelly MP. 2019. Therapeutic targeting of 3',5'-cyclic nucleotide
- 581 phosphodiesterases: inhibition and beyond. Nat Rev Drug Discov 18:770–796.

582 5. Scott JD. 1991. Cyclic nucleotide-dependent protein kinases. Pharmacol Ther 50:123–

583 145.

- 584 6. Conti M, Beavo J. 2007. Biochemistry and physiology of cyclic nucleotide
- 585 phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev
- 586 Biochem 76:481–511.
- 587 7. Baker DA, Drought LG, Flueck C, Nofal SD, Patel A, Penzo M, Walker EM. 2017. Cyclic
 588 nucleotide signalling in malaria parasites. Open Biol 7.
- 589 8. Collins CR, Hackett F, Strath M, Penzo M, Withers-Martinez C, Baker DA, Blackman MJ.
- 5902013. Malaria parasite cGMP-dependent protein kinase regulates blood stage merozoite
- 591 secretory organelle discharge and egress. PLoS Pathog 9.
- 592 9. Taylor CJ, McRobert L, Baker DA. 2008. Disruption of a Plasmodium falciparum cyclic
- 593 nucleotide phosphodiesterase gene causes aberrant gametogenesis. Mol Microbiol
 594 69:110–118.
- 10. McRobert L, Taylor CJ, Deng W, Fivelman QL, Cummings RM, Polley SD, Billker O, Baker

596 DA. 2008. Gametogenesis in malaria parasites is mediated by the cGMP-dependent

- 597 protein kinase. PLoS Biol 6:1243–1252.
- 598 11. Falae A, Combe A, Amaladoss A, Carvalho T, Menard R, Bhanot P. 2010. Role of
- 599 Plasmodium berghei cGMP-dependent protein kinase in late liver stage development. J
- 600 Biol Chem 285:3282–3288.
- 601 12. Govindasamy K, Jebiwott S, Jaijyan DK, Davidow A, Ojo KK, Van Voorhis WC, Brochet M,

602		Billker O, Bhanot P. 2016. Invasion of hepatocytes by Plasmodium sporozoites requires
603		cGMP-dependent protein kinase and calcium dependent protein kinase 4. Mol Microbiol
604		102:349–363.
605	13.	Ishino T, Orito Y, Chinzei Y, Yuda M. 2006. A calcium-dependent protein kinase regulates
606		Plasmodium ookinete access to the midgut epithelial cell. Mol Microbiol 59:1175–1184.
607	14.	Moon RW, Taylor CJ, Bex C, Schepers R, Goulding D, Janse CJ, Waters AP, Baker DA,
608		Billker O. 2009. A cyclic GMP signalling module that regulates gliding motility in a malaria
609		parasite. PLoS Pathog 5.
610	15.	Ono T, Cabrita-Santos L, Leitao R, Bettiol E, Purcell LA, Diaz-Pulido O, Andrews LB,
611		Tadakuma T, Bhanot P, Mota MM, Rodriguez A. 2008. Adenylyl cyclase alpha and cAMP
612		signaling mediate Plasmodium sporozoite apical regulated exocytosis and hepatocyte
613		infection. PLoS Pathog 4.
614	16.	Ramdani G, Naissant B, Thompson E, Breil F, Lorthiois A, Dupuy F, Cummings R, Duffier Y,
615		Corbett Y, Mercereau-Puijalon O, Vernick K, Taramelli D, Baker D a, Langsley G, Lavazec
616		C. 2015. cAMP-Signalling Regulates Gametocyte-Infected Erythrocyte Deformability
617		Required for Malaria Parasite Transmission. PLoS Pathog 11:e1004815.
618	17.	Patel A, Perrin AJ, Flynn HR, Bisson C, Withers-Martinez C, Treeck M, Flueck C, Nicastro G,
619		Martin SR, Ramos A, Gilberger TW, Snijders AP, Blackman MJ, Baker DA. 2019. Cyclic
620		AMP signalling controls key components of malaria parasite host cell invasion machinery.
621		PLoS Biol 17.

622	18.	Nofal SD, Patel A, Blackman MJ, Flueck C, Baker DA. 2021. Plasmodium falciparum
623		Guanylyl Cyclase-Alpha and the Activity of Its Appended P4-ATPase Domain Are Essential
624		for cGMP Synthesis and Blood-Stage Egress. MBio 12:1–19.
625	19.	Carucci DJ, Witney a a, Muhia DK, Warhurst DC, Schaap P, Meima M, Li JL, Taylor MC,
626		Kelly JM, Baker D a. 2000. Guanylyl cyclase activity associated with putative bifunctional
627		integral membrane proteins in Plasmodium falciparum. J Biol Chem 275:22147–56.
628	20.	Gao H, Yang Z, Wang X, Qian P, Hong R, Chen X, Su X zhuan, Cui H, Yuan J. 2018. ISP1-
629		Anchored Polarization of GC β /CDC50A Complex Initiates Malaria Ookinete Gliding
630		Motility. Curr Biol 28:2763-2776.e6.
631	21.	Best JT, Xu P, Graham TR. 2019. Phospholipid flippases in membrane remodeling and
632		transport carrier biogenesis. Curr Opin Cell Biol 59:8–15.
633	22.	Bisio H, Lunghi M, Brochet M, Soldati-Favre D. 2019. Phosphatidic acid governs natural
634		egress in Toxoplasma gondii via a guanylate cyclase receptor platform. Nat Microbiol
635		4:420–428.
636	23.	Brown KM, Sibley LD. 2018. Essential cGMP Signaling in Toxoplasma Is Initiated by a
637		Hybrid P-Type ATPase-Guanylate Cyclase. Cell Host Microbe 24:804-816.e6.
638	24.	Yang L, Uboldi AD, Seizova S, Wilde ML, Coffey MJ, Katris NJ, Yamaryo-Botté Y, Kocan M,
639		Bathgate RAD, Stewart RJ, McConville MJ, Thompson PE, Botté CY, Tonkin CJ. 2019. An
640		apically located hybrid guanylate cyclase-ATPase is critical for the initiation of Ca 2+
641		signaling and motility in Toxoplasma gondii. J Biol Chem 294:8959–8972.

642	25.	Günay-Esiyok O, Scheib U, Noll M, Gupta N. 2019. An unusual and vital protein with
643		guanylate cyclase and P4-ATPase domains in a pathogenic protist. Life Sci alliance 2.
644	26.	Saito K, Fujimura-Kamada K, Futura N, Kato U, Umeda M, Tanaka K. 2004. Cdc50p, a
645		protein required for polarized growth, associates with the Drs2p P-type ATPase
646		implicated in phospholipid translocation in Saccharomyces cerevisiae. Mol Biol Cell
647		15:3418–3432.
648	27.	Chen S, Wang J, Muthusamy BP, Liu K, Zare S, Andersen RJ, Graham TR. 2006. Roles for
649		the Drs2p-Cdc50p complex in protein transport and phosphatidylserine asymmetry of
650		the yeast plasma membrane. Traffic 7:1503–1517.
651	28.	Timcenko M, Lyons JA, Januliene D, Ulstrup JJ, Dieudonné T, Montigny C, Ash MR, Karlsen
652		JL, Boesen T, Kühlbrandt W, Lenoir G, Moeller A, Nissen P. 2019. Structure and
653		autoregulation of a P4-ATPase lipid flippase. Nature 571:366–370.
654	29.	Hiraizumi M, Yamashita K, Nishizawa T, Nureki O. 2019. Cryo-EM structures capture the
655		transport cycle of the P4-ATPase flippase. Science 365:1149–1155.
656	30.	Lenoir G, Williamson P, Puts CF, Holthuis JCM. 2009. Cdc50p plays a vital role in the
657		ATPase reaction cycle of the putative aminophospholipid transporter Drs2p. J Biol Chem
658		284:17956–17967.
659	31.	Bryde S, Hennrich H, Verhulst PM, Devaux PF, Lenoir G, Holthuis JCM. 2010. CDC50
660		proteins are critical components of the human class-1 P4-ATPase transport machinery. J
661		Biol Chem 285:40562–40572.

662	32.	Collins CR, Das S, Wong EH, Andenmatten N, Stallmach R, Hackett F, Herman JP, Müller S,
663		Meissner M, Blackman MJ. 2013. Robust inducible Cre recombinase activity in the human
664		malaria parasite Plasmodium falciparum enables efficient gene deletion within a single
665		asexual erythrocytic growth cycle. Mol Microbiol 88:687–701.
666	33.	Knuepfer E, Napiorkowska M, Van Ooij C, Holder AA. 2017. Generating conditional gene
667		knockouts in Plasmodium - a toolkit to produce stable DiCre recombinase-expressing
668		parasite lines using CRISPR/Cas9. Sci Rep 7.
669	34.	Toenhake CG, Fraschka SAK, Vijayabaskar MS, Westhead DR, van Heeringen SJ, Bártfai R.
670		2018. Chromatin Accessibility-Based Characterization of the Gene Regulatory Network
671		Underlying Plasmodium falciparum Blood-Stage Development. Cell Host Microbe 23:557-
672		569.e9.
673	35.	Yeoh S, O'Donnell RA, Koussis K, Dluzewski AR, Ansell KH, Osborne SA, Hackett F,
674		Withers-Martinez C, Mitchell GH, Bannister LH, Bryans JS, Kettleborough CA, Blackman
675		MJ. 2007. Subcellular discharge of a serine protease mediates release of invasive malaria
676		parasites from host erythrocytes. Cell 131:1072–1083.
677	36.	Salowe SP, Wiltsie J, Liberator PA, Donald RGK. 2002. The role of a parasite-specific
678		allosteric site in the distinctive activation behavior of Eimeria tenella cGMP-dependent
679		protein kinase. Biochemistry 41:4385–4391.
680	37.	Paul AS, Miliu A, Paulo JA, Goldberg JM, Bonilla AM, Berry L, Seveno M, Braun-Breton C,
681		Kosber AL, Elsworth B, Arriola JSN, Lebrun M, Gygi SP, Lamarque MH, Duraisingh MT.
682		2020. Co-option of Plasmodium falciparum PP1 for egress from host erythrocytes. Nat

683	Commun 11.	

684	38.	Poulsen LR, López-Marqués RL, Pedas PR, McDowell SC, Brown E, Kunze R, Harper JF,
685		Pomorski TG, Palmgren M. 2015. A phospholipid uptake system in the model plant
686		Arabidopsis thaliana. Nat Commun 6.
687	39.	Pomorski T, Lombardi R, Riezman H, Devaux PF, Van Meer G, Holthuis JCM. 2003. Drs2p-
688		related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation
689		across the yeast plasma membrane and serve a role in endocytosis. Mol Biol Cell
690		14:1240–1254.
691	40.	Pomorski T, Holthuis JCM, Hermann A, van Meer G. 2004. Tracking down lipid flippases
692		and their biological functions. J Cell Sci 117:805–813.
693	41.	Poulsen LR, López-Marqués RL, McDowell SC, Okkeri J, Licht D, Schulz A, Pomorski T,
694		Harper JF, Palmgren MG. 2008. The Arabidopsis P4-ATPase ALA3 localizes to the golgi
695		and requires a beta-subunit to function in lipid translocation and secretory vesicle
696		formation. Plant Cell 20:658–676.
697	42.	Harsay E, Bretscher A. 1995. Parallel secretory pathways to the cell surface in yeast. J Cell
698		Biol 131:297–310.
699	43.	Pomorski T, Lombardi R, Riezman H, Devaux PF, Van Meer G, Holthuis JCM. 2003. Drs2p-
700		related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation
701		across the yeast plasma membrane and serve a role in endocytosis. Mol Biol Cell
702		14:1240–1254.

703	44.	Gall WE, Geething NC, Hua Z, Ingram MF, Liu K, Chen SI, Graham TR. 2002. Drs2p-
704		dependent formation of exocytic clathrin-coated vesicles in vivo. Curr Biol 12:1623–1627.
705	45.	Elsworth B, Matthews K, Nie CQ, Kalanon M, Charnaud SC, Sanders PR, Chisholm SA,
706		Counihan NA, Shaw PJ, Pino P, Chan JA, Azevedo MF, Rogerson SJ, Beeson JG, Crabb BS,
707		Gilson PR, De Koning-Ward TF. 2014. PTEX is an essential nexus for protein export in
708		malaria parasites. Nature 511:587–591.
709	46.	Coban C, Ishii KJ, Sullivan DJ, Kumar N. 2002. Purified malaria pigment (hemozoin)
710		enhances dendritic cell maturation and modulates the isotype of antibodies induced by a
711		DNA vaccine. Infect Immun 70:3939–3943.
712	47.	Bushkin GG, Ratner DM, Cui J, Banerjee S, Duraisingh MT, Jennings C V., Dvorin JD,
713		Gubbels MJ, Robertson SD, Steffen M, O'Keefe BR, Robbins PW, Samuelson J. 2010.
714		Suggestive evidence for Darwinian Selection against asparagine-linked glycans of
715		Plasmodium falciparum and Toxoplasma gondii. Eukaryot Cell 9:228–241.
716	48.	Lamy A, Macarini-Bruzaferro E, Dieudonné T, Perálvarez-Marín A, Lenoir G, Montigny C,
717		le Maire M, Vázquez-Ibar JL. 2021. ATP2, The essential P4-ATPase of malaria parasites,
718		catalyzes lipid-stimulated ATP hydrolysis in complex with a Cdc50 β -subunit. Emerg
719		Microbes Infect 10:132–147.
720	49.	Zhang M, Wang C, Otto TD, Oberstaller J, Liao X, Adapa SR, Udenze K, Bronner IF,
721		Casandra D, Mayho M, Brown J, Li S, Swanson J, Rayner JC, Jiang RHY, Adams JH. 2018.
722		Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by
723		saturation mutagenesis. Science 360.

724	50.	Kenthirapalan S, Waters AP, Matuschewski K, Kooij TWA. 2016. Functional profiles of
725		orphan membrane transporters in the life cycle of the malaria parasite. Nat Commun
726		7:10519.
727	51.	Cowell AN, Istvan ES, Lukens AK, Gomez-Lorenzo MG, Vanaerschot M, Sakata-Kato T,
728		Flannery EL, Magistrado P, Owen E, Abraham M, La Monte G, Painter HJ, Williams RM,
729		Franco V, Linares M, Arriaga I, Bopp S, Corey VC, Gnädig NF, Coburn-Flynn O, Reimer C,
730		Gupta P, Murithi JM, Moura PA, Fuchs O, Sasaki E, Kim SW, Teng CH, Wang LT, Akidil A,
731		Adjalley S, Willis PA, Siegel D, Tanaseichuk O, Zhong Y, Zhou Y, Llinás M, Ottilie S, Gamo
732		FJ, Lee MCS, Goldberg DE, Fidock DA, Wirth DF, Winzeler EA. 2018. Mapping the malaria
733		parasite druggable genome by using in vitro evolution and chemogenomics. Science
734		359:191–199.
735	52.	Goldberg DE. 1993. Hemoglobin degradation in Plasmodium-infected red blood cells.
736		Semin Cell Biol 4:355–361.
737	53.	Xie SC, Ralph SA, Tilley L. 2020. K13, the Cytostome, and Artemisinin Resistance. Trends
738		Parasitol 36:533–544.
739	54.	Yang Z, Shi Y, Cui H, Yang S, Gao H, Yuan J. 2021. A malaria parasite phospholipid flippase
740		safeguards midgut traversal of ookinetes for mosquito transmission. Sci Adv 7.
741	55.	Bisio H, Krishnan A, Marq J-B, Soldati-Favre D. 2021. Toxoplasma gondii
742		phosphatidylserine flippase complex ATP2B-CDC50.4 critically participates in microneme
743		exocytosis. bioRxiv 2021.11.25.470034.

744	56.	Harris PK, Yeoh S, Dluzewski AR, O'Donnell RA, Withers-Martinez C, Hackett F, Bannister
745		LH, Mitchell GH, Blackman MJ. 2005. Molecular identification of a malaria merozoite
746		surface sheddase. PLoS Pathog 1:0241–0251.
747	57.	Jones ML, Das S, Belda H, Collins CR, Blackman MJ, Treeck M. 2016. A versatile strategy
748		for rapid conditional genome engineering using loxP sites in a small synthetic intron in
749		Plasmodium falciparum. Sci Rep 6:21800.
750	58.	Birnbaum J, Flemming S, Reichard N, Soares AB, Mesén-Ramírez P, Jonscher E, Bergmann
751		B, Spielmann T. 2017. A genetic system to study Plasmodium falciparum protein function.
752		Nat Methods 14:450–456.
753	59.	Krogh A, Larsson B, Von Heijne G, Sonnhammer ELL. 2001. Predicting transmembrane
754		protein topology with a hidden Markov model: application to complete genomes. J Mol
755		Biol 305:567–580.
756		

757 Figure legends

(1A) Representation of the three CDC50 proteins in *P. falciparum* displayed from N- to Cterminus in a relative scale. White boxes indicate transmembrane helices (TMDs) as predicted
by the TMHMM server (59). Arrows indicate the point at which the protein products are
truncated when the corresponding modified locus is excised in transgenically-modified parasite
lines. For CDC50A this is from Phe341, for CDC50B His235 and CDC50C from Glu383.

(1B) Schematic representation of the SLI strategy (58) used to produce the three CDC50 DiCre
lines and resultant RAP-induced disruption of the modified genes. Double-headed arrows
represent the regions amplified by PCR in (1C). Red arrowheads represent *loxP* sites, yellow
lollipops represent translational stop codons, white boxes indicate TMDs and light blue boxes
indicate regions of re-codonised sequence (R.R.).

769

(1C) Diagnostic PCR analysis of gDNA from transgenic CDC50 parasite lines verifying successful 770 771 modification of target loci by SLI to produce CDC50A-HA:loxP, CDC50B-HA:loxP and CDC50C-772 HA:loxP. Efficient excision of 'floxed' sequences is observed upon treatment with RAP for all 773 lines. Track C represents amplification of a control locus (PKAc) to check gDNA integrity. PCRs 1-774 4 are represented in the schematic locus in panel 1B. PCR 1 screens for the WT locus, PCR 2 for 775 5' integration, PCR 3 for 3' integration and PCR 4 for the excision of the 'floxed' sequence. See Table 1 for sequences of all primers used for PCR. Sizes for expected amplification products are 776 777 as follows: C, control locus (primers 16 and 17) 1642b.p. CDC50A; PCR 1 (primers 21 and 22) 1842b.p, PCR2 (primers 21 and 18) 1613b.p, PCR3 (primers 20 and 22) 1670b.p and PCR 4 778 779 (primers 21 and 19) 2863b.p (DMSO), 1169b.p (RAP). CDC50B; PCR 1 (primers 23 and 24) 780 1423b.p, PCR2 (primers 23 and 18) 1457b.p, PCR3 (primers 20 and 24) 1321b.p and PCR 4 781 (primers 23 and 19) 2707b.p (DMSO), 1010b.p (RAP). CDC50C; PCR 1 (primers 25 and 26) 782 1369b.p, PCR2 (primers 25 and 18) 1602b.p, PCR3 (primers 20 and 26) 1172b.p and PCR 4 (primers 25 and 19) 2852b.p (DMSO), 1369b.p (RAP). 783

784

785	(1D) Western blot analysis of expression (DMSO) and ablation (RAP) of CDC50A-HA, CDC50B-HA
786	and CDC50C-HA from highly synchronous late stage schizonts in the respective transgenic
787	parasite lines. Expression of GAPDH (PF3D7_1462800) is shown as a loading control. No
788	expression of CDC50A-HA was detected. Predicted molecular weights of CDC50B-HA, CDC50C-
789	HA and GAPDH are indicated.
790	
791	(1E) IFA analysis showing the diffuse peripheral localisation of CDC50B-HA and CDCD50C-HA
792	and the loss of expression upon RAP treatment. Over 99% of all RAP-treated CDC50B-HA:loxP
793	and CDC50C-HA:loxP schizonts examined by IFA were diminished in HA expression in three
794	independent experiments. Scale bar, 2 μm.
795	
796	(2A) Growth curves showing parasitaemia as measured by flow cytometry of CDC50A-HA:loxP,
797	CDC50B-HA:loxP and CDC50C-HA:loxP parasites treated with DMSO (vehicle only control) or
798	RAP. Means from 3 biological replicates are plotted. Error bars, SD.
799	
800	(2B) Giemsa-stained thin blood films showing ring-stage parasites following egress of
801	synchronous DMSO and RAP-treated CDC50C-HA:loxP schizonts. Ring formation occurs in RAP-
802	treated CDC50C-HA parasites, but the parasites did not develop beyond the early trophozoite
803	stage and eventually collapsed into small vacuoles.

804

- 805 (3A) Western blots demonstrate efficient immunoprecipitation (IP) of CDC50B-HA and CDC50C-
- 806 HA from schizont extracts. Large black arrows indicate the predicted mass of each protein.
- 807 Images are representative of 2 biological repeats.

808

- (3B) Mass spectrometric identification of interacting partners of CDC50B and CDC50C. Volcano
- plot of P values versus the corresponding log₂ fold change in abundance compared to 3D7DiCre
- control samples (Fischer's exact test). Plotted by analysing proteins enriched through IP (panel
- 3A) by mass spectrometry. Green line indicates p=-2log₁₀ and green dots represent peptides
- 813 where p<-2log₁₀. Peptides for GC α and ATP2 were enriched to p<-19log₁₀.

814

815	(4A) Western blot analysis monitoring egress kinetics of DMSO- and RAP-treated CDC50B-
816	HA:loxP schizonts. The diminished detection of the SERA5 p50 proteolytic fragment in culture
817	supernatants of RAP-treated CDC50B-HA:loxP parasites indicates an impaired egress rate in the
818	absence of CDC50B-HA. Lower panel left, histograms of DNA (SYBR green) staining of CDC50B
819	DMSO- or RAP-treated schizonts. 10,000 cells were counted per treatment. Image
820	representative of 3 biological repeats. Lower panel right, Giemsa-stained thin blood films of
821	Percoll-purified CDC50B DMSO-and RAP-treated schizonts. No delay in schizont maturation is
822	evident in RAP-treated parasites. Images representative of 3 biological repeats Scale bar, 5μ m.

824	(4B) Western blot analysis of DMSO- and RAP-treated CDC50B-HA:loxP GC α -mCherry and
825	control 3D7DiCre schizonts. The top panel shows a ~250 kDa fragment detected by an mCherry
826	antibody that is absent in control (untagged) schizont lysates. The lower panel shows the same
827	samples probed with an anti-HA antibody and an anti-GAPDH (PF3D7_1462800) loading control
828	antibody.
829	
830	(4C) Immuno-precipitation of GC α -mCherry. Samples were loaded in duplicate and probed for
831	mCherry (left panel) and HA epitope (left panel). $*$ denotes the ~40 kDa degradation product of
832	GC α -mCherry observed after enrichment and boiling of the RFP-trap beads, suggesting that
833	GC α was prone to proteolysis under the conditions used to promote binding or degrades when
834	heated.
835	
836	(4D) IFA showing the localisation of CDC50B and GC $lpha$ mCherry in RAP and DMSO treated
837	schizonts, top panel. Bottom panel, localisation of GC $lpha$ mCherry and PMV (PF3D7_1323500), an
838	ER marker in RAP- and DMSO-treated schizonts. Scale bar, 2 μ m.
839	
840	(4E) Quantification of cyclic nucleotide levels in tightly synchronised DMSO- and RAP-treated
841	CDC50B mature schizonts by direct ELISA. Means are shown from 3 biological repeats plotted,
842	error bars, SD. n.s = not significant, * P<0.05, Student's t test.

844	(4F) Restoration of egress of RAP-treated CDC50B schizonts by treatment with zaprinast or PET-
845	cGMP. Supernatant and pellet samples were taken at time point 0 post washing with RPMI to
846	control for parasite numbers and egress. Samples were then taken at 60 min post incubation at
847	37 °CC represents no treatment. Image is representative of 3 biological repeats.
848	
849	(5A) Airyscan confocal analysis of IFAs of CDC50-C trophozoites co-localised with EXP2
850	(PF3D7_1471100) an exported PV protein, ERD2 a Golgi marker (PF3D7_1353600) and PMV an
851	ER marker (PF3D7_1323500). Scale bar, 2 μm.
852	
853	
	(5B) Flow cytometry analysis of fluorescent lipid uptake in live WT (DMSO) and CDC50C null
854	(5B) Flow cytometry analysis of fluorescent lipid uptake in live WT (DMSO) and CDC50C null (RAP) trophozoites labelled at 36 h post invasion. Histograms are overlayed each representing
854	(RAP) trophozoites labelled at 36 h post invasion. Histograms are overlayed each representing
854 855	(RAP) trophozoites labelled at 36 h post invasion. Histograms are overlayed each representing 10,000 cells for each treatment. Cells were gated for DNA content and further for green
854 855 856	(RAP) trophozoites labelled at 36 h post invasion. Histograms are overlayed each representing 10,000 cells for each treatment. Cells were gated for DNA content and further for green fluorescence. No detectable shift in histogram curves was seen for each lipid in RAP-treated
854 855 856 857	(RAP) trophozoites labelled at 36 h post invasion. Histograms are overlayed each representing 10,000 cells for each treatment. Cells were gated for DNA content and further for green fluorescence. No detectable shift in histogram curves was seen for each lipid in RAP-treated samples. Data are representative of one of three biological repeats, each of which showed the

	\P-treated CDC50C-HA:loxP trophozoites fixed at 36 h post	D- and RAP-treated	laging of DMSO- a	 IFA imagir 	(6A	862
--	---	--------------------	-------------------	--------------------------------	-----	-----

- 863 invasion indicates no defect in export of skeleton binding protein (SBP). Right, western blot
- showing absence of CDC50C-HA in RAP-treated trophozoites. Scale bar, 2 μm.

865

- 866 (6B) Quantification of SBP puncta in DMSO- and RAP-treated CDC50C trophozoites. 66 parasites
- 867 were counted from 2 individual biological replicates for SBP puncta in ImageJ. Mean values are
- 868 plotted. Error bars, SD. n.s = not significant, Student's t test.

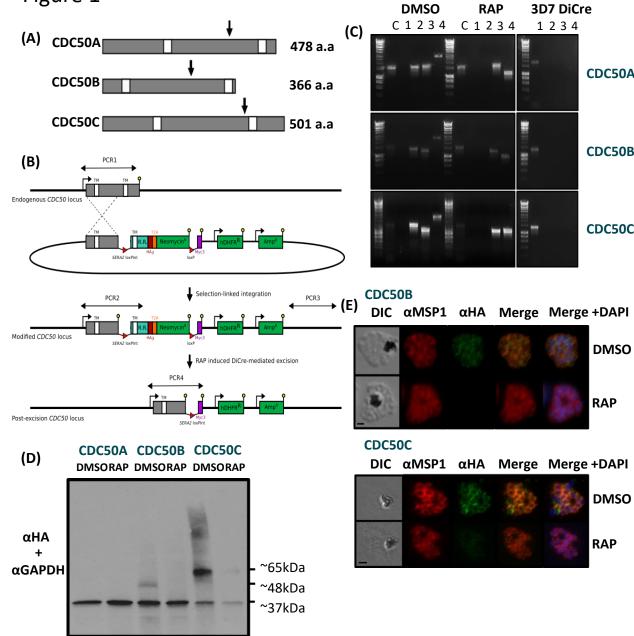
869

870	(6C) CDC50 null parasites produce smaller hemozoin crystals. Thin blood films were made from
871	tightly synchronized DMSO- and RAP-treated CDC50C at 36 h post invasion. Inset, length of the
872	hemozoin crystal (measurement 1) and parasite (measurement 2) were performed in ImageJ on
873	imaged Giemsa-stained smears of DMSO- and RAP-treated CDC50C trophozoites. A ratio of
874	crystal length to parasite length was derived by dividing measurement 1 by measurement 2. In
875	total 46 parasites were measured from 3 independent biological repeats of CDC50B excision or
876	control treatment. Mean values are plotted. Error bars, SD. * P<0.05, Student's t test.

877

(6D) Spectrophometric quantification of hemozoin content of CDC50C WT (DMSO) and null
(RAP) trophozoites. Highly synchronised CDC50C ring stage cultures were treated with DMSO
(control) or RAP. Cultures were then harvested at 36 h post invasion. Hemozoin was purified

881	using established methods (46) and quantified by absorbance at 410 nm. Means are plotted for
882	3 independent biological repeats. Error bars, SD. n.s = not significant, * P<0.05, Student's t test.


- 883
- (6E) Western blot analysis of the haemoglobin content of saponin lysed CDC50-C WT and null
- trophozoites. Highly synchronised CDC50C ring stage cultures were treated with DMSO control
- or RAP. Cultures were then harvested at 36 h post invasion. Lysates were probed for the
- 887 presence of CDC50-C by HA staining. Haemoglobin content was probed alongside GAPDH as a
- 888 loading control. Data representative of 3 biological repeats.

889 **Table 1 – oligonucleotide primers used in this study**

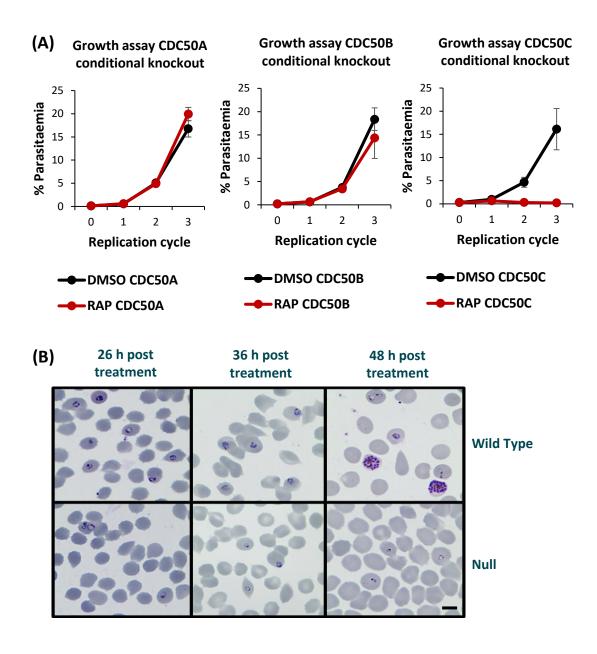
	Name	Sequence
1	CDC50A 5HR F	GCGGCCGCAGATCTCCGAGCGATATTGGACACCAAATTGTTTA
		CGAAGTTATTGTATATTATTTTTTTTTTATTTACCTACATGTGATTTATGTAATT
2	CDC50A 5HR R	CCATTTC
		GTATATATATATATATTTATATATTTTATATTCTTTTAGATTTCTGGCTCATG
3	CDC50A reco F	AACGAAAAGTACAAGAACGCATTAAACATG
4	CDC50A reco R	CAGATCCGCCTGAACCGGATCCCAAGAAGAAGAAGATGTAAATATAAG
5	CDC50B 5HR F	GCGGCCGCAGATCTCTCGAGTGAGTAATCTTAAAAATGACATGTTTATATC
		CGAAGTTATTGTATATTATTTTTTTTTTATTTACCTTTATATAATTGTACATTTT
6	CDC50B 5HR R	GAGGTG
		GTATATATATATATATTATATATTTTATATTCTTTTAGATCACATTTACTTTT
7	CDC50B reco F	GGATGGAGC
8	CDC50B reco R	CAGATCCGCCTGAACCGGATCCCTTGTTCTCGTACTTGTTCATC
		GTATATATATATATATTTATATATTTTATATTCTTTTAGATGAGTGGAACGC
9	CDC50C reco F	TAAGAAAAGTTTC
10	CDC50C reco R	CCGCCTGAACCGGATCCATGCAATGGACAGAAACACAACTTC
11	CDC50C 5HR F	GATCTCTCGAGCCAGAGTACGAATTCATGAATGCTTTTAAACAACAAG
		CGAAGTTATTGTATATTATTTTTTTTTTTATTTACCTGCTGGCCATACGTTTTGAA
12	CDC50C 5HR R	G
13	5HR seq F	CAGCTATGACCATGATTACGCC
		CATTATACGAAGTTATTATATATATGTATATATATATATA
14	Reco seq F	TTC
16	PKAc screen F	GAAGGACAGTGATTCTAGTGAACAG
17	PKAc WT screen R	CAATTTCTTCATCAAATGTTTGCAATTGTTATC

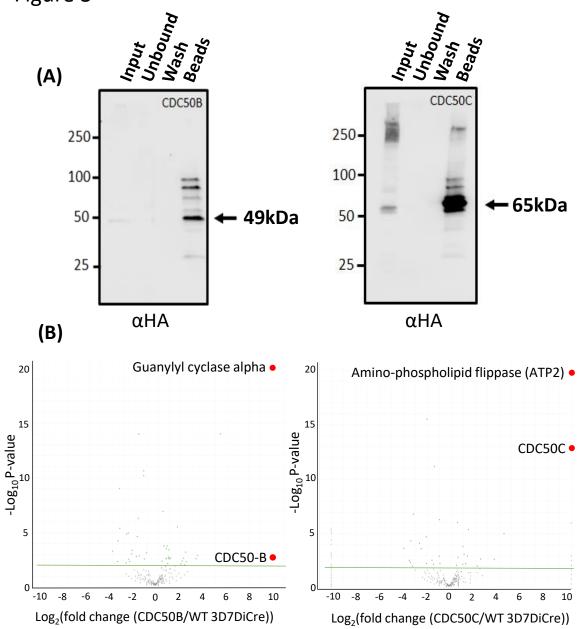
18	HA R	GCATAGTCAGGAACATCGTAAGG
19	Exi R	CCGTTCAAATCTTCTTCAGAAATCAAC
20	3' int F	CAGCTATGACCATGATTACGCC
21	CDC50A 5' int F	CTTTAGATTATGATGATAATTTTTTGGAAGAAAAG
22	CDC50A WT R	GTGTATATTTAAAAATCAGGATTTTACTATATCCTC
23	CDC50B 5' int F	CAGTTATGTGTCTTCCCTTTGTATTATTTTG
24	CDC50B WT R	CTTTTGGTTATTAAATGTGTATCGAAATAATAC
25	CDC50C 5' int F	GTCGCAGTTCATGGGAAGG
26	CDC50C WT R	GGGAATGGTCTGCTGCT
27	T2A BSD amp F	GCGGCATGGACGAGCTGTACAAGAGTGGAGAAGGAAGAGG
28	T2A BSD amp R	GTGTTGATGGTTTTGGGCTAGCTTAGCCCTCCCACACATAACC
29	Screen T2A F	CGAGGACTACACCATCGTGG
30	GCtag WT F	CTAAGAATATTCATTCCTACGATG
31	GCtag 3' int F	CAATGGCACCTTTGTCTCAAG
32	GCtag 5' int F	CATGGGCAAATGGTGTAGATG
33	GCtag 5' int R	CCTCCATGTGCACCTTG
34	GCtag WT R	CGAATGTTCGGAAAAATATTCATGTGC
35	p230p Int screen F	CTATATGGTATCCAAAACCTTTAAATTATATAGC
36	p230p WT screen R	GAGGAATTTTTAAATATGATATACCTTTATCATTAG

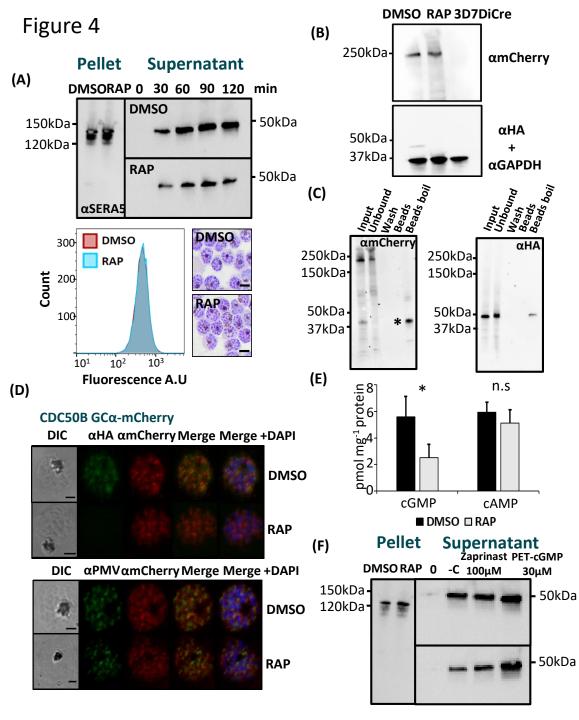
Figure 1

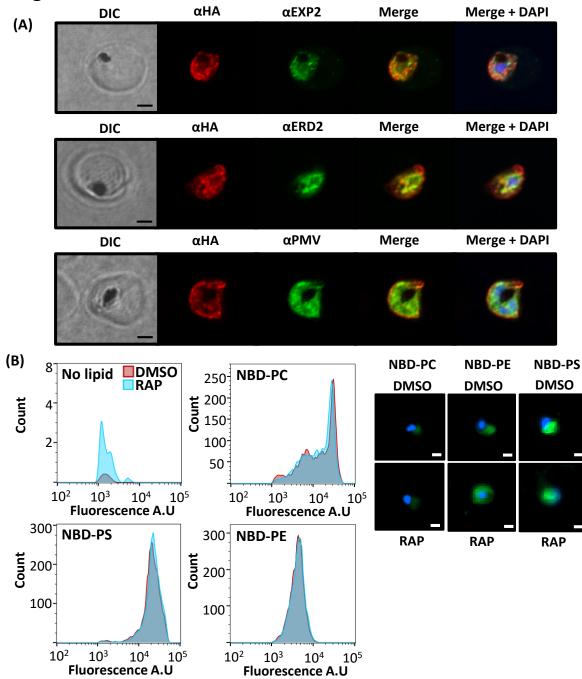
CDC50A

CDC50B


CDC50C


DMSO


RAP


DMSO

RAP

