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Abstract 

The brain integrates streams of sensory input and builds accurate predictions, while arriving at 

stable percepts under disparate time scales. This stochastic process bears different dynamics for 

different people, yet statistical learning (SL) currently averages out, as noise, individual 

fluctuations in data streams registered from the brain as the person learns. We here adopt the 

motor systems perspective to reframe SL. Specifically, we rethink this problem using the 

demands that the person’s brain faces to predict, and control variations in biorhythmic activity 

akin to those present in bodily motions. This new approach harnesses gross data as the important 

signals, to reassess how individuals learn predictive information in stable and unstable 

environments. We find two types of learners: narrow-variance learners, who retain explicit 

knowledge of the regularity embedded in the stimuli -the goal. They seem to use an error-

correction strategy steadily present in both stable and unstable cases. In contrast, broad-variance 

learners emerge only in the unstable environment. They undergo an initial period of memoryless 

learning characterized by a gamma process that starts out exponentially distributed but 

converges to Gaussian. We coin this mode exploratory, preceding the more general error-

correction mode characterized by skewed-to-symmetric distributions and higher signal content 

from the start. Our work demonstrates that statistical learning is a highly dynamic and stochastic 

process, unfolding at different time scales, and evolving distinct learning strategies on demand.  
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Introduction 

At the start of life, human babies gradually become aware of their bodies in motion and as they 

understand it, they come to own the consequences of impending movements that make up all 

their purposeful actions. Neonates explore their surroundings as they expand their limbs with 

antigravity motions and eventually learn to reach out to their immediate space in a well-

controlled, intended manner. This type of highly dynamic, spontaneous, exploratory learning 

that is at first driven by surprise and curiosity, has no initial goal or desired target. It is merely a 

wondering process, “what happens if I do this?”, perhaps a guess, “if I do this, then this (consequence) 

will ensue, otherwise, this other (consequence) will happen…” Its endogenous and dynamic nature in 

early life may scaffold how we start to learn in general, before realizing certain regularities 

leading to desired goals and conducive of a predictive code. 

Research about learning, whether in the perceptual, the motor, or the cognitive domain, is 

nevertheless primarily based on error-correction schemas 1,2. These schemas are aimed at 

reducing the difference between a desired configuration or goal to be learned, and the current 

learning state 3. Such goals tend to be exogenous in nature, but implicit in them is a regularity 

that the system must find. Somehow the spontaneous self-discovery process that we relied on as 

babies, i.e., to learn about sensing our body in the world and sensing the world in our body, tends 

to fade away from our behavioral research. Indeed, curious exploration seldom enters our 

experimental paradigms in explicit ways 2. Some animal models of exploratory behavior 4 have 

nevertheless been successfully extended to characterize exploration in human infants as 

excursions that separate segments of movements’ progression from lingering episodes 5. This 

recent research suggests behavioral homology across species and prompted us to hypothesize 

that at a finer temporal learning scale, a wondering, exploratory code may hide embedded in the 

fluctuations of our performance. We tend to average out such fluctuations as superfluous noise. 

Certainly, when favoring a priori imposed theoretical means under assumptions of normality and 

stationarity in the data registered during the learning process, we miss the opportunity to know 

what possible information lies in that gross data.  

Notably, the cognitive processes known as implicit or statistical learning (SL) describe the ability 

of the brain to extract (largely beneath awareness) patterns based on regularities from the 

environment over time 2,3,6. Such capacity has long been known to support a wide range of basic 

human tasks such as discrimination, categorization, and segmentation of continuous information 
3-5, thus leading the way in understanding language acquisition 6,7 and predictive aspects of social 

interactions 8,11. Previous research has consistently shown that regardless of the nature of the 

embedded regularity (motor, perceptual or both), statistical learning involves motor control 

systems, so that when participants are required to respond, the presence of predictive information 

modulates both response preparation and response execution processes 12-14. Yet, very little work 

addresses the stochastic motor signatures scaffolding statistical learning during e.g., motor 

decisions to communicate a preferred stimulus 9,10. Prior cross-sectional research points at the 

dynamically changing stochastic signatures of learning that unfolds at different time scales of 

maturation. Particularly interesting is that such maturation transitions do not take place in the 

intended movements of autistics 9. They occur in the minute moment-to-moment fluctuations of 
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their spontaneous, exploratory hand movements in search of a surprising audio-visual event 11-13. 

Such movements do not pursue a specific goal and bear similar signatures in autism to those 

experienced by neurotypical participants 13. This prior research inspired us here to reevaluate 

statistical learning from the standpoint of sensory-motor systems and the different movement 

classes that the brain recruits on demand, according to levels of intent and deliberateness 12,14. We 

reasoned that the motor percept that emerges from the sensations of our own endogenously 

generated movements could serve to support the type of statistical learning that other perceptual 

systems relying on exogenous sensory inputs would experience to gain behavioral control. After 

all, behavior is neural control of movement at the central and the peripheral levels of the nervous 

systems. 

 

Figure 1. Panel A. Statistical learning paradigm. Different time scales of learning are accompanied by 

different types of learning supporting each level. From a micro level at sub-second time scales, to a macro 

level at the scale of 40 minutes (in this experiment), different levels of granularity in the data afford 

different levels of precision to describe learning phenomena. Averaging out fluctuations in the system’s 

responses may eliminate gross data containing important information on learning mechanisms. These 

may be varying from trial to trial and from block to block at each level. Panel B. Visual search task: the 

target was a letter T rotated either left or right that appeared among rotated Ls (distractors). Across trials, 

the spatial configurations of target and distractors (i.e., layouts) could repeat (correlated group), be 

generated randomly (random group) or repeat on half of the trials (mixed group). EEG signal was 

recorded while participants searched for the target and pressed the corresponding response key as fast 

as possible. 

We here propose to reframe the statistical learning problem by recent advances in developmental 

research of neuromotor control. To that end, we rely on methods developed at the Torres lab 9,12,14-

16, and track the dynamic signature of the learning process, continuously evaluating an 

electroencephalographic (EEG) signal recorded while participants perform in a learning task that 

contained predictive information. We specifically consider multiple time scales and different 

levels of stochastic control present in the motor code that scaffolds deliberate goal-directed 

actions and goal-less exploratory motions. The latter, spontaneously evoked by unexpected 

events. For any given learning task where these modes coexist, the processes involved may range 

from local processes at sub-second time scale, to global consolidation processes at the time scale 

of hours, days and even years (e.g., as in Figure 1A specific to this experimental paradigm). Within 

the statistical learning domain, focusing on the dynamics of the learning process itself, with the 

specific consideration of multiple time scales, has been recently suggested as the next necessary 

step in statistical learning research 1,2. That is, to understand the neural substrates underlying 
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behavior it is necessary to view it, and to measure it, as a continuous process, evaluating learning 

trajectories of its stochastic variations and learning stability. However, so far, these suggestions 

have not matured into meaningful research, largely due to limitations of the standard analytical 

techniques. 

A common problem that we encounter in data analyses in general, is that continuous data streams 

registering the evolution of our brain responses to the learning process, are often summarized 

using statistical models that make inferences about the learning phenomena under assumptions 

of linearity, normality and stationarity in data that is inherently nonlinear, non-normally 

distributed and non-stationary. In the field of statistical learning exclusive reliance on error-

correction learning mode, converging to a predictive code, misses the opportunity to uncover a 

possible exploratory phase of the learning, reminiscent of the type of learning experienced earlier 

in life, during our infancy, and present thereafter in the motor code of natural behaviors. The 

error-correction learning mode precludes surprising, i.e., unexpected events possibly leading to 

wondering mental curiosity. In the motor code, these are rather conducive of signatures of 

contextual variability unique to each person 14,17. Such mental processes are embodied and 

situated 18, i.e., grounded on how we once learned to behave as infants, through our dynamic 

bodies in constant (endogenously generated) exploratory motion, reactive to exogenous stimuli. 

We take in this work a radically different approach to the types of analyses of data derived from 

a perceptual learning paradigm currently employed in statistical learning 1,2. While we leverage 

the precise time stamping of the events in the data acquisition system and the use of stable and 

unstable implicit-learning environments 14, we convert the continuous EEG data stream to spike 

trains (coined henceforth micro-movement spikes, MMS). These MMS standardize the signal and 

scale out anatomical disparities across participants, to leverage the playfield and appropriately 

compare performance across the group. This approach to data analysis is akin to converting 

analogue to digital signals and continuously tracking the moment-to-moment shifts in stochastic 

signatures of the data that are empirically estimated, rather than theoretically assumed. We let 

the data speak and reveal to us the primordial way of curious, exploratory learning, preceding 

the discovery of regularities conducive of an error-correction mode. We reframe statistical 

learning from the point of view of a developing, nascent motor system. 

Results 

We use the visual search, a common perceptual task (Figure 1B and see methods for details) 

where participants (70 in total) search for a ‘T’ (target) embedded among heterogeneously rotated 

‘L’ distractors. The participants were randomly distributed among 3 groups where the degree of 

regularity in the task varied along a gradient. At one extreme the participants searched for the 

target within a predictable environment where predefined spatial configurations of target and 

distractors (layouts) were repeated from trial to trial (i.e., consistent mapping). In this group 

(coined correlated), the embedded regularity facilitated performance, so that participants reached 

the fastest reaction times. At the other extreme, in the random group, participants experienced 

the least amount of regularity, as from trial to trial, the layouts of the display were generated 

randomly. Here participants reached slower reaction time, although significant perceptual 
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learning still occurred. The results from the analyses of the behavior and averaged potentials were 

previously reported 14. Here we focus on a radically different approach to the full EEG data. 

 

Figure 2. Local learning evolution captures two classes of learners in the unstable environment (i.e., mixed 

group). Empirically estimated Gamma moments span a parameter space whereby each participant 

represents a point by the moments of the probability distribution. The coordinates are the mean (x-axis), 

the variance (y-axis), the skewness (z-axis). The color represents the target orientation (left or right.) (A) 

Mixed case (i.e., group) whereby trials intermix random and correlated conditions, spanning a relatively 

unstable learning environment. In this group two self-emerging distinct subgroups of participants were 

distinguishable by target type. (B) Correlated group, for which layouts are consistent from trial to trial, 

spanning a stable learning environment. (C) Random group, for which layouts are generated randomly 

from trial to trial, spanning a stable learning environment where no regularity is present. (D) 

Corresponding frequency histograms of the distribution of the variance across trials, target types and 

participants. 

The two above-described groups represent two extreme cases that are artificially constructed for 

laboratory purposes. The third group, coined mixed, consisted of a more realistic global 

environment, with both consistent and random conditions intermixed (classic contextual cueing 

paradigm25.) Although the mixed group contained a potentially beneficial regularity on half of 

the trials, participants reached the slowest performance 14. This pattern of results highlights the 

crucial issue of validity: when the regularity is valid, applying this statistical information results 

in facilitation to both the search and response processes. However, when the regularity is mixed 

with random trials, thus appearing within a relatively unreliable and unstable environment, a 

global interference effect emerges, so that the reliance on all prior information is attenuated (for 

a detailed account of the origins of this interference effect see 14,19).  

This task is ideal for the present purposes as it enables to examine stochastic variations in learning 

between environments that differ in the reliability of the statistical information, while the 

perceptual input remains the same. As participants performed the task of identifying the ‘T’ 

among the ‘L’s, the EEG patterns were continuously registered with breaks to rest, avoiding 
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fatigue. Registered at 256Hz, we converted the fluctuations in the EEG amplitude (peaks μV) and 

inter-peak-interval timing (ms) to (unitless, standardized) MMS trains (see methods.) We then 

tracked their stochastic shifts in amplitude and timing, at the local and at the global time scale 

levels. Locally, we considered trial by trial across 8 blocks of learning (defined by the breaks.) 

This was on the order of sub-seconds to minutes. Globally, we pooled across all trials in each 

block and unfolded the data block by block. This was on the order of approximately 40 min of the 

full experimental session (Figure 1A).  

Local level of analyses revealed two fundamentally different types of learners in the mixed 

group. Figure 2A shows the mixed group split for targets oriented to the right and to the left, with 

the response corresponding to the orientation (right hand for oriented right target). Figures 2B 

and 2C show the results for the correlated and random groups distinguishing the left and right 

targets with different colors. Panels in Figure 2D show the frequency histograms obtained by 

pooling the variance across all subjects for both target types in each group. The mixed group is 

indeed significantly non-unimodal, according to the Hartigan dip test of unimodality, p<0.01 20. 

These PDFs significantly differ from those in the random and correlated groups, according to the 

Kolmogorov Smirnov test for two empirical distributions (p<0.01). 

 

Figure 3. Analyses of the empirically estimated Gamma variance parameter block by block. (A-B) two 

subgroups in the mixed group are revealed for right and left oriented targets (each curve represents the 

trajectory of a participant within the group.) The subgroup with lower variance and narrower bandwidth 

of values throughout the experimental session separate from those in the subgroup with high variance 

and broader bandwidth of values. However, both subgroups converge to similar variance levels towards 

the 8th block of learning. Target types show different trajectories but similar convergence trend. (C-D) 

random group shows similar levels of variance and stable learning throughout the experimental session, 

as does the correlated group (E-F) (with two outliers.) 
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Figure 3 shows that in the mixed group one subgroup of learners expressed higher variance of 

the fluctuations of the MMS amplitudes at the start of the experiment. After the second block of 

trials, the levels of MMS-amplitude variance systematically decreased, eventually converging to 

the much lower level of the other subgroup. As such, this subgroup expressed a higher 

bandwidth of variance values than the other subgroup. The subgroup with the lower bandwidth 

of variability, started out with much lower variance and remained in that regime throughout the 

8 blocks of the experiment. This was the case for both target types. Furthermore, this range of 

variance was comparable to those observed in the purely random or purely correlated cases 

(shown in Figure 3C-F.) 

 

Figure 4. Self-emerging subgroups in the mixed group are differentiated by the scores of the explicit memory test, 

which probed their explicit recollection of the regularity that they experienced during the session. (A) The horizontal 

axis comprises the minimum value of the variance, while the vertical axis comprises the maximum value of the variance 

for each participant. Thus, the graph depicts the full range of variance values. The size of the marker is proportional to 

the explicit familiarity test score and the color represents the subgroup, with no overlapping between the two sets of 

participants. (B) Empirically estimated Gamma variance parameter unfolded block by block as in Figure 3AB, for the 

two subgroups of the mixed condition. The group with less explicit knowledge (lower scores on the explicit memory 

test) starts out with higher variance of the fluctuations of the MMS amplitudes, eventually converging to the much 

lower level of the subgroup that showed higher explicit knowledge of the regularity. 

The two subgroups of the mixed condition did not differ in reaction times or accuracy, suggesting 

that all participants were able to reach the same online performance. Instead, they were 

differentiated by their explicit knowledge of the regularity imbedded in the task (Figure 4). Note 

that participants were not informed of the regularity. To probe whether they had nevertheless 

gained explicit knowledge of the repeating layouts, following the search task, participants 

completed an explicit memory test. A memory score was computed for each participant (see 

methods for details). The subgroup with broader bandwidth of variability showed low test scores 

(10 subjects, M=0.94, SD=0.4), thus exhibiting less explicit knowledge of the regularity. In contrast, 

the subgroup with the narrow, steady bandwidth of variability, gained a higher level of explicit 

knowledge, as reflected in higher explicit memory test scores (13 subjects, M=1.52, SD=0.75) 

(p<0.01 nonparametric Wilcoxon ranksum test). Figure 4.  

For completeness, the memory scores of the correlated group were also examined. Overall, 

memory scores (M=1.37, SD=0.9) were like the scores observed in the higher memory subgroup 
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in the mixed group. This is consistent with the similar stochastic learning signatures of the 

correlated group and the high memory subgroup (Figure 3). As the regularity in the correlated 

group was highly reliable, with layouts repeating on all trials, it seems that all participants 

reached some minimal level of explicit knowledge, therefore no subgroups emerged. 

Global analyses of the stochastic signatures derived from pooling trials across all participants 

allowed us to examine the distributions of the shape parameter describing the empirically 

estimated parameters of the continuous Gamma family of distributions. We reasoned that the 

distributions of the shape parameter, dynamically shifting as the system learned, could help us 

understand the differences in the mixed group with respect to the random and correlated groups. 

This is so because the continuous Gamma family spans distributions of different shapes. In prior 

research, we have empirically characterized these ranges of PDF shapes. They reflect different 

degrees of randomness and different levels of noise. We refer the reader to methods Figure 10D 

whereby we explain the empirical meaning of the Gamma parameter plane. We have empirically 

characterized these in human biorhythms registered across different developmental stages and 

different disorders of the nervous systems.  

At the leftmost extreme, when the Gamma shape is 1, we have the special case of the exponential 

distribution. This is the case of a memoryless random process whereby events in the past do not 

inform more about events in the future than current events would. The information is coming 

from the here and now. Such distributions are ubiquitous in the motor code at the start of 

neurodevelopment 9,21,22. They however transition to distributions with heavy tail around 4-5 

years of age, when the system is (on average, universally) mature enough to start schooling, 

receive instructions, and sustain longer attention spans 9,10. By college, age these distributions are 

Gaussian like. These shapes are at the other extreme of the shape axis on the Gamma parameter 

plane (Methods Figure 10D.) Prior work has revealed that in systems where maturation is 

compromised (e.g., autism across the lifespan) these global signatures remain in the exponential 

range, randomly relying on the here and now and manifesting excessive noise 11,23. Excess noise 

and randomness in the motor code is expressed in voluntary 9-11,15, involuntary 24-29, and autonomic 
30,31 modes of motor control. These features prevent the acquisition of a predictive code in 

neurodevelopment, or it weakens it in system with neurodegeneration 16,24,32-34. 

Figure 5 reveals this pattern for the evolution of the Gamma shape parameter. Among the 

moments of the distributions of the shape parameter, the variance reveals the separation of the 

mixed group from the random and from the correlated groups (Figure 5A). Furthermore, a 

distinction is also observed for the mean parameter of the distribution of Gamma shapes (Figure 

5B). As such, the signal to noise ratio, SNR i.e., the mean divided by the variance (which in the 

Gamma family coincides with 1/scale parameter) shows the highest signal content for the mixed 

group (Figure 5C). For both the correlated and random groups, the distribution shape has an 

increasing trend, consistent in both cases for the right and left oriented targets. However, in the 

mixed group, there is an initial increase in the shape that decreases and stabilizes by the 4th to 5th 

block, at much lower values of the variance, so that the SNR of the mixed group is much higher 

than that of the random or correlated groups. This elevated SNR indicates that the mixed 
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environment is much more effective for learning than environments that contain purely random 

or purely correlated trials alone.  

 

Figure 5. Global learning evolution shows the unstable environment (mixed group) to provide the most 

efficient conditions for learning, as indicated by the highest SNR. (A) Tracking, block by block, the 

empirically estimated variance of the distribution of gamma shape values obtained from the fluctuations 

in MMS amplitudes for each type of stimulus and target. Correlated and random groups trend upward 

with a steeper rate for correlated, while the mixed group stabilizes after ½ the session. The variance 

separates the correlated and random groups from the mixed group, with a marked reduction on the 

variability of distribution shapes and an overall trend to increase the variability in distribution shape 

towards the final blocks.  (B) Tracking, block by block, the empirically estimated mean value of the 

distribution of shape values from the fluctuations in MMS amplitudes. (C) The signal to noise ratio 

(mean/variance) then shows the highest signal for the mixed trials, with a downward tendency after ½ 

the total session.  

To better understand the two types of learners that were observed in the mixed group at the local 

level depicted in Figure 2, we performed the same analyses as in Figure 5 but this time 

considering separately the trials from each subgroup that emerged from the local analyses. This 

analysis at the global level, considering the evolution of the distributions’ shapes, revealed that 

the subgroup with the lowest variance in the MMS evolution (Figure 3A-bottom panel) and the 

highest scores in the explicit memory test (Figure 4) bears the highest signal to noise ratio. Figure 

6A shows the mean, Figure 6B the variance and Figure 6C the signal to noise ratio, as the mean 

divided by the variance. Higher SNR in the distribution of the shape values signifies that the 

change in distribution shape from lower values, tending towards the memoryless exponential 

regime, to higher values in the Gaussian regime of the continuous Gamma family, is conducive 

of a more predictive code in the error corrective state of the learning progression 35. 

To further characterize the type of learning of the two subgroups of participants, we examined 

the evolution of the distribution of the shape values, as the system experienced the learning and 

the PDFs shifted shape. The shape parameters of the subgroup with high explicit memory scores 

(Figure 4AB) starts in the symmetric Gaussian range but converges towards the skewed to 

exponential range. This confirms the departure from a memoryless random state and the 

prevalence of a state where higher predictability is attained under higher signal to noise ratio in 

panel 6C. This is consistent with the profile expected in error correction learning.  In the error 

corrective mode, a goal, that is, the minimal knowledge that some regularity is present within the 
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incoming stream of information, has been detected, so that the system knows what it needs to 

learn (i.e., has self-discovered the goal).  

For the subgroup with low explicit memory scores (Figure 4AB) the same analyses showed a 

markedly different learning profile: the values of the shape parameters for these participants 

varied confined within the exponential range of the continuous Gamma family, i.e., with shape 

parameter value close to 1, for the exploratory mode. This is shown in Figure 6D (squares), where 

the contrast with the subgroup with high explicit memory score (i.e., error corrective cohort) 

(circles) is noted (Figure 6E zooms into the exploratory scatter). This profile corresponds to an 

exploratory phase of the learning, occurring within a time when the system is trying to evaluate 

the presence of predictive information. Such wondering behavior gives rise to more variability 

(as depicted in Figure 3A, 4B). In this case, during the initial trials, the system is sampling 

information in the here and now, not yet relying on prior information, but rather examining the 

information as it comes, trial by trial. Presumably, as minimal explicit knowledge is obtained, this 

profile gradually converges into a learning profile consistent with the discovery of some 

regularity. Then, the signature of an error correction account of learning emerges. This inference 

is suggested by the unfolding trajectories of Figure 3A-B for the local level, but also further refined 

for the global level of Figure 5.  

 

Figure 6. Convergent evolution across blocks of learning in exploratory vs. error correction modes and 

SNR profile across groups. (A) The evolution of the empirically estimated mean based on the distribution 

of Gamma shape values extracted from the MMS. (B) The evolution of the empirically estimated variance 

of the distribution of Gamma shape parameters shows similar differentiation patterns between 

subgroups of error corrective and exploratory modes, with much lower rates of change than the mean. 

The latter gives rise to the highest SNR (mean/var ratio) for the mixed condition depicted in (C). (D) Block 

by block evolution of the empirically estimated shape and scale parameters of the continuous Gamma 

family of probability distributions. Block number is proportional to the marker size, with earlier blocks 

having smaller size and later blocks increasing in size. The exploratory mode is confined to the gamma 

shapes close to the memoryless exponential distribution, while the error corrective mode evolves from 
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higher to lower values of the Gaussian regime of the Gamma family. Unfolding each case (exploratory E 

and error corrective F) shows their convergence to a regime away from the memoryless exponential and 

tendency to more Gaussian like distributions. This convergent global behavior is congruent with the 

convergent local behavior of Figure 3. 

As shown by Figure 3 at the local level, here at the global level, the two subgroups (exploratory 

and error-corrective) converge to comparable levels of variance (of the MMS amplitude in Figure 

3A-B and of the distribution shape in Figure 6E-F), where the shape of the marker is proportional 

to the block number and the arrow marks the direction of the flow (from lower to higher shape 

values in Figure 6E, and from higher to lower shape values in Figure 6F.)  

 

Figure 7. Global dynamics. Unfolding the global rate of change in distribution shapes, as the system 

transitions from PDF to PDF, using the EMD to ascertain distribution differences from moment to 

moment. (A) Right target case is shown for the three groups with 95% confidence intervals for the 

empirically estimated Gamma shape and scale parameters. Each point represents a different distribution. 

Here the mixed group shows the maximal values of log shape (Gaussian) and SNR (1/log scale). (B) The 

PDFs corresponding to the maximum likelihood estimation (MLE) distributions in (A). (C) Investigating 

the differentiation between targets for the two subgroups of the mixed condition at the global level reveals 

similar rate of change in the interpeak intervals, suggesting smooth transitions in both exploratory and 

error corrective cases, with clear target differentiation. (D) Corresponding PDFs for (C). 

At a global timescale (i.e., entire experimental session) we assessed the change in stochastic 

variations of the signals over time. To do so, we examined the evolution of the fluctuations in the 

change of distributions using the Earth Movers Distance (EMD) metric (see trajectories in the 

supplementary Figures 1-3). We compared from trial to trial, and block to block, across 

participants, the fluctuations in the amplitude of the change in distributions (as measured by the 

EMD.) We also assessed the rate of the change in peaks (inter peak intervals related to the timing 

of the overall global process.) These parameters amount to a “speed temporal profile” of the PDFs 
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as they shift stochastic signatures per unit time on the Gamma parameter plane. The analyses 

revealed that the system clearly distinguishes the rates at which the distributions change shape 

from the random to the correlated groups and between those and the mixed group. Figure 7A 

shows this on the log-log Gamma parameter plane where each point with 95% confidence 

intervals, represents the performance for the right target (left not shown for simplicity but has 

similar patterns.) The corresponding PDFs for both right and left oriented targets are shown in 

Figure 7B.  We can appreciate that the mixed case yields the most predictive shifts in distribution 

change, with the highest shape value and the highest signal to noise ratio (i.e., the lowest Gamma 

scale value.) Furthermore, these rates of change in the two subgroups of the mixed case, clearly 

distinguish the left from the right oriented targets, with comparable rates of shifts in distribution 

shape for the exploratory and the error corrective subtypes. These are shown in Figure 7C 

(estimated Gamma parameters) and 7D (corresponding Gamma PDFs.) These comparable shifts 

in distributions hint at a smooth process whether the system is curiously wondering in 

exploratory mode, or aiming for a targeted goal, in error corrective mode. 

Finally, we examined, block by block, the evolution of the hubs in the EEG leads as nodes of the 

network. This dynamical shift in activity is shown in Figure 5 of the supplementary material. In 

general, we find the lead P1 (located over the left parietal area) as the most heavily recruited node 

in both target orientations and for both learning modes. However, in the exploratory mode, with 

higher variance, there is a more distributed recruitment of hub nodes across the recorded area 

(posterior part of the head) with marked differentiation for left vs. right oriented targets. We 

caution that our analyses were constrained to a subset of leads (see methods) owing to avoidance 

of artifacts from eye and jaw motions, along with other motivational prior work 14, and refrain 

from stating anything about sources underlying the leads’ activities. Instead, we report the 

changes in leads representing hubs that self-emerge from the activities across the central and 

posterior leads that we included in these analyses (for details see Figure 5 in the supplementary 

material). Beyond extracting dynamic information from the hub channel for each participant, we 

did not examine other patterns of brain activities pertinent to each learning mode, though we 

know that the posterior parietal cortex is itself a hub linked to predictive codes that emerge during 

the learning of novel situations 36-38. This type of research is also warranted, to learn more about 

causal network interactions in the space of leads. 

  

Discussion 

This study evaluated online dynamics of statistical learning using a new approach that relies on 

gross data as the main measure of interest. Specifically, we characterize the evolution of the 

learning process using the moment-by-moment standardized fluctuations in the peak amplitude 

and timing of an EEG signal recorded while participants performed in a visual search task. 

Depending on the group, and unbeknown to participants, the task contained a reliable regularity 

(correlated group), no regularity (random group) or a relatively unreliable regularity (mixed 

group). We found that statistical learning is a highly dynamic and stochastic process, sensitive to 

the reliability of the incoming information. Moreover, we discovered that embedded in the gross 
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data, traditionally discarded as superfluous noise under assumptions of normality, lies a code 

that describes different modes of learning. Based on our stochastic characterization of the learning 

phenomena at different local vs. global time scales, we equate this distinction with two 

fundamentally different types of processes. These are the commonly studied error correction type 

linked to stimulus regularity and the newly characterized, exploratory process likely reflecting 

surprising contextual variations. To aid interpreting these results, we leverage prior research on 

the broad characterization of human biorhythmic activity and reframe this problem from the 

vantage point of neuromotor control 9,14,21,25,29.  

Two main results emerged from the current analyses. First, we show that unstable environmental 

conditions (i.e., mixed group) provide the most opportunity for learning, as characterized by 

higher signal to noise ratio on both the global and local levels of analyses. Next, we show that on 

an individual basis, this unstable environment may give rise to different learning profiles: within 

the mixed group, two subgroups of participants self-emerged from the analyses. For one 

subgroup, the learning profile corresponded to error correction mode from start to finish. 

However, for the second subgroup, the learning profile reflected an early stage of exploratory 

learning which later converged into the error correction mode. Crucially, despite no a priory 

assumption, these two classes of learners were differentiated behaviorally by their level of explicit 

knowledge of the regularity in the task. We now turn to discussing each of these results in detail, 

while considering their implications on our understanding of statistical learning in general. 

Unpredictable environments provide more opportunity for learning, corresponding to a more efficient 

learning process than predictable environments 

When comparing the stochastic signature of learning within an unstable environment (mixed 

group) with stable conditions (correlated and random groups), the process proved to be less 

stationary, more predictable in nature, and was characterized by higher signal to noise ratio. 

These characteristics suggest that complex environments provide higher opportunity to learn 

than reliable environments. Moreover, within our theoretical framework, higher signal to noise 

ratio corresponds to more efficient learning. These results are consistent with neuroimaging 

studies that have identified brain systems that track uncertainty in a curvilinear U-shaped 

function3,42. Within these systems, full randomness or full regularity are alike in terms of 

informativeness and provide less information than the mixed case. As such, these systems seem 

to be especially sensitive to tracking relatively unreliable information in the environment.  

Given that the real world is indeed complex, with our cognitive system continuously bombarded 

with variable regularities, it seems natural that we should be more attuned to learning under 

relatively unreliable conditions. However, suggesting that learning under such conditions is 

more efficient may seem to contradict the behavioral pattern observed in the data: participants in 

the mixed group reached slower RTs than both in the random and correlated groups (for a 

detailed account see 14). To resolve this issue, one must bear in mind that efficiency of learning is 

not necessarily manifested in online performance. That is, more complex learning conditions may 

hinder online reactions, but be beneficial for the long term. We propose that to gain further insight 

on statistical learning, future studies should combine the methods introduced in the current work 
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with experimental designs that involve changing regularities online and considering multiple 

sessions of learning. Indeed, such designs are becoming common within the field44-46. However, 

so far, they lack the perspective of evaluating the online evolution of the learning process, which 

is enabled by the methods used in the current work.  

Exploratory vs. Error correction modes differentiated by explicit knowledge of the embedded regularity 

For a subgroup of participants, the unstable environment (mixed group) triggered an initial stage 

of exploratory learning. During this stage, the stochastic signature of the process reflected a 

memoryless type of learning, suggesting that the system was not relying on prior knowledge but 

instead gathered as much information as possible from the “here and now”. Presumably, this 

exploratory stage was elicited by the high levels of surprise in an environment that contained 

rules that were not followed consistently over time. Crucially, this subgroup also exhibited low 

scores in the explicit knowledge test. For participants that showed higher level of explicit 

knowledge, the stochastic signature reflected an error correction mode of learning from the 

beginning of the task. Given this behavioral differentiation, it seems that the transition from 

exploratory behavior into error correction depends on some minimal level of explicit knowledge 

that needs to be obtained. This conclusion contradicts the current assumption that both explicit 

and implicit statistical learning always reflects error correction 2,3. For instance, within theories 

arguing that both explicit and implicit learning systems operate simultaneously (i.e., dual-system 

approach), it has been suggested that during a learning episode, implicit associative learning 

occurs initially, which leads to the formulation of predictive “wagers” that steadily become more 

correct, leading to explicit awareness of the learned patterns 47. The initial stage of exploratory, 

memoryless sampling from the perceptual input that has emerged from our analyses has so far 

been overlooked. 

The new methodology introduced in this work is grounded on deliberate vs. spontaneous 

movement classes 12, with different classes of temporal dynamics. Framed in this way, the error 

correction code would correspond to the deliberate movements intended to a goal. Such 

movements are well characterized by paths that can be traversed with different temporal 

dynamics and remain impervious to changes in speed 14,39-43. Within such learning, the path to the 

goal is independent of how long it takes to attain it and remains stable despite the moment-by-

moment temporal structure of the stimuli, which must be learned and transformed into physical, 

motoric action 39,41,44. This invariance is akin to timescale invariance in models of temporal 

learning, strongly supported by empirical data 45,46. In contrast, exploratory learning, would 

correspond to the class of spontaneous movements, i.e.., highly sensitive to contextually driven 

variations in temporal dynamics of the stimuli 12,14,17. These different dynamics can be 

distinguished in the variance profile of the learners in the mixed group of Figure 3A-B. They 

respond dynamically different across blocks, depending on target type. In this sense, exploratory 

trajectories with higher variance, lower explicit memory scores and fundamentally differentiating 

target responses, are contextually more informative than error correcting trajectories.  

Information about context may come in the memoryless exponential regime that prevails in the 

early stages of learning for the subgroup in the mixed condition. At the global timescale, this early 
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learning with distributions of exponential shape, was accompanied by high SNR in those early 

trials. This feature differs from the type of memoryless exponential signature found in autism 9. 

In the case of autism, the presence of the memoryless exponential distribution, especially during 

instructed learning, is paired with low SNR 9-12,14. This high random noise regime in autism adds 

a type of uncertainty that interferes with the overall learning process. It leads to high levels of 

stress and anxiety during prompt-mediated learning 15 or even at instructed rest 25,28,29. In this 

sense, we posit that the type of learning observed here, i.e., characterized by low NSR in the 

memoryless exponential phase, may be that of a curious, wondering system, welcoming 

surprising events that lead to more spontaneous exploration (e.g. present as well in the 

spontaneous hand motions of pre-verbal autistics who implicitly, without instructions and 

largely beneath awareness, self-discover the goal of a task 13) and especially, present much earlier 

in neonates that learn how to control their motions during the first three months of life 22. 

We propose then, to trace back the newly characterized exploratory mode to the neonatal stages 

of learning. Such stages appear prior to the maturation of perceptual systems and are guided by 

endogenous bodily fluctuations that the infant senses from self-generated movements (likely 

heavily involving central pattern generators). To that end, we cite how neonates learn, perhaps 

supporting our idea that humans’ mental strategies and the different learning modes discovered 

here, are embodied, grounded on the types of learning that we phylogenetically transitioned 

through during early infancy 18. Studies of infants exploring an environment where the mother 

serves as an anchoring reference place, find that the babies explore using interleaving segments 

of progressive movements with lingering episodes 5. They confirm that such exploratory behavior 

is homologous across species and situations 47,48. Furthermore, a recent study from the statistical 

learning domain demonstrated that infants prefer to attend to events that are neither highly 

unpredictable nor highly predictable 49. The authors suggest that this effect is a characteristic of 

immature members of any species, that must be highly selective in sampling information from 

their environment to learn efficiently. We add to these interpretations, and suggest that infants 

attend to relatively unpredictable environments because these are ideal for the exploratory 

behavior that dominates early stages of surprise- and curiosity-driven motor learning in neonates 
22 and infants 9.  

Across early stages of life, when altricial mammals generally mature their somatic-sensory-motor 

systems 55, human infants acquire a stable motor percept. As they undergo motor milestones 

(myelination, acquisition of motor, and sensory maps, etc.), the families of PDFs that are 

empirically estimated from purposeful movements, transition from memoryless exponential to 

highly predictive Gaussian 9,13,22. However, given our results, it appears that the exploratory type 

of learning is preserved throughout adulthood, and that there are conditions in which this 

exploratory, memoryless learning emerges on demand, and is likely extremely advantageous. An 

open question is, when is this type of learning beneficial? One possibility is that it supports 

flexibility within the system, as it provides it with a range of information that would have been 

missed had an exploratory mode not been evoked. That is, in changing, unstable environments, 

it may be best to initially gather as much information as possible, before committing to an error 

correction, goal-targeted mode. This direction, which is beyond the scope of the present work, 

may be tested by examining whether exploratory periods emerge during processes that require 
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flexibly extending an existing solution to new context, known in motor control as transfer and 

generalization 50-52. Generalization and transfer have been previously studied in exploratory mode 
13 but such studies are rare. This research may bear important implications for clinical programs 

that are currently grounded in animal models of conditional reinforcement that do not address 

the possible benefits of an exploratory mode of learning. 

Note that the presently uncovered learning modes are different from known computational 

models of reinforcement learning whereby exploration vs. exploitation modes are used to model 

learning through rewards 53,54. In these models, exploration and exploitation learning are 

differentiated by the type of reward, which is either intrinsically obtained, or extrinsically 

provided. Yet for both modes, the learning is best described by error correction, as both in the 

exploitation and exploration modes the system considers previously gathered information and 

moves towards a desirable configuration. The exploratory mode proposed in this work is a 

memoryless process that does not pursue a goal. In this mode, the system is sampling information 

as it comes, casting the widest net possible, before enough predictive information is gathered at 

random, thus prompting the transition into the error correction mode. Related, are recent models 

of human and machine learning that emphasize the role of curiosity within the learning system 
55,56. These models suggest that the causal environment determines when curiosity is driven by 

novelty or by prediction errors. In an environment where the past and future occurrences of 

stimuli are independent of each other, the optimal solution for gaining a future reward is to 

explore novel stimuli. This novelty mode, that has been referred to as novelty-error-based 56, and 

the standard prediction-error-based approaches have at their heart the same computational 

problem: optimize with respect to an error that depends on a given target goal, while using prior 

information. The exploratory mode suggested in this work is computationally different from the 

error correction mode, as it does not operate with a goal in mind and gathers information initially 

on a memoryless way, regardless of a goal or reward.  

We argue that to characterize learning properly, this additional type of endogenous, curios 

exploration should be incorporated into future models. Furthermore, we posit that this 

exploratory mode described here, scaffolds the emergence of spontaneous autonomy, different from 

deliberate autonomy (i.e., derived from targeted error-correction.) It will be critical to include 

exploratory learning in the future design of autonomous robots/agents. This type of autonomy 

and its accompanying sense of agency can be realized through the autonomous self-discovery of 

the relationships between actions and their consequences. The latter leads to the sense of action 

ownership and to the volitional control of physical acts that are congruent with one’s own mental 

intent. Only then, after acquiring this congruency, can others understand one’s intent. 

We have in summary shown the dynamic nature of statistical learning, the rich stochastic signal 

embedded in fluctuations that are traditionally treated as gross data and the differential nature 

of different learning modes. Investigation is warranted on whether these results generalize to 

other statistical learning paradigms, and to the acquisition of predictive information in learning 

in general. Of particular interest, are questions of individual differences, and the degree to which 

the exploratory and error correction learning modes may be differently recruited on demand by 

the same learner under different contexts. We here offer methods that allow to investigate these 
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and many new questions in future statistical learning research from the perspective of the 

nascent, developing motor systems and their richly layered dynamic and stochastic motor 

percepts.   

Methods 

Participants 

Data from 70 participants (48 female, mean age, 23.7) was analyzed in this study: 24 in the random 

group, 23 in the correlated and mixed groups. There were no differences in age or gender between 

the three experimental groups. Two participants (one in the mixed group and one in the 

correlated group) from the original study were excluded due to a bug: their EEG recording started 

late, missing the first few trials. This issue was not significant in the original analyses of the data 

as it relied on epochs of the signals and their averages 14. As we now focus on continuous data 

analyses, we decided not to include these two subjects.  

Stimuli and Procedure  

All participants gave informed consent following the procedures of a protocol approved by the 

Ethics Committee at the Tel Aviv University. Next, participants received a general explanation 

regarding EEG experiments and completed three tasks: visual working memory (VWM) capacity 

assessment, visual search task and a surprise explicit memory test. EEG was recorded only during 

the visual search task. In the present work we focus on the visual search task and the surprise 

memory test. We did not find any connection between the VWM task and the present results. As 

such we do not describe this task further. A detailed account can be found in 14. 

Stimuli in the visual search task and the familiarity test were white T's and L's (see Figure 1B in 

the main text). All stimuli were made up of two lines of equal length (forming either an L or a T). 

From a viewing distance of approximately 60 cm, each item in the display subtended 1.5° × 1.5° 

of visual angle. All items appeared within an imaginary rectangle (20° × 15°) on a grey 

background with a white fixation cross in the middle of the screen (0.4° × 0.4°). Targets appeared 

with equal probability on the right or left side of the screen. 

Visual search task 

Participants searched for a rotated T (target) among heterogeneously rotated L's (distractors) 

while keeping their eyes on the fixation cross. Each trial began with the presentation of a fixation 

cross for 2100, 2200, or 2300ms (randomly jittered) followed by an array of one of two possible 

targets (left or right rotated T) among seven distractors. Participants were instructed to press a 

response key corresponding to the appropriate target as fast as possible. Depending on the group, 

the visual search contained the consistent mapping condition, the random mapping condition, or 

both. For the consistent mapping condition, spatial configurations of targets and distractors were 

randomly generated for each participant (8 layouts for the mixed group and 16 layouts for the 

correlated group). In the random mapping condition targets and distractors appeared in random 

locations throughout the task with the exception that for the mixed design group, targets in the 
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random condition could not appear in the same locations as targets in the consistent condition. 

The order of layouts was randomized every 16 trials (in the case of the mixed group 16 trials 

correspond to 8 consistent and 8 random trials presented in a random order). In all conditions the 

identity of the target (left or right rotation) was chosen randomly on each trial and did not 

correlate with the spatial regularity. Participants completed 512 trials in the experiment.  

Explicit memory test 

Participants were not informed of the regularity in the task. Upon completing the visual search 

task, participants in the mixed and correlated groups (groups that performed in a task that 

contained regularity) completed an explicit memory test, designed to reveal explicit knowledge 

of the regularity: participants saw the layouts that were presented to them during the search task 

mixed with new, randomly generated layouts. For each layout participants had to indicate 

whether they have seen the layout during the visual search task or not. We then computed a 

memory score (hit rate/false alarm rate) that is considered to reflect each participant’s explicit 

knowledge of the regularity. Higher scores correspond to better explicit knowledge. For more 

details, see 14. 

EEG recording  

EEG was recorded inside a shielded Faraday cage, with a Biosemi Active Two system (Biosemi 

B.V., The Netherlands), from 32 scalp electrodes at a subset of locations from the extended 10–20 

system. The single-ended voltage was recorded between each electrode site and a common mode 

sense electrode (CMS/DRL). Data was digitized at 256 Hz (For a more detailed account see 14). As 

we rely on continuous recordings, without taking averages of data epochs, we focus on the 

electrodes that do not reflect strong eye muscle activity either through blinking or the jaw 

movement. The analyzed subset Fp1, Fp2, AF3, AF4, F3, F4, F7, F8, Fz, FCz, C3, C4, Cz, T7, T8, 

P1, P2, P3, P4, P5, P6, P7, P8, Pz, PO3, PO4, PO7, PO8, POz, O1, O2, and Oz), includes all of the 

electrodes that were previously analyzed (P7, P8, PO3, PO4, PO7, PO8, C3, C4) 14. Only correct 

trials were included in the analysis.  

Data was analyzed on two levels: unfolded for 8 blocks and overall. In both cases the data was 

not averaged, but as described later in this section evaluated continuously. Each block 

corresponded to approximately 4 minutes of recording. The blocks were defined by the breaks in 

the task. During a break, participants could move freely, drink, and rest their eyes. If needed, EEG 

recording issues were addressed during the breaks.  

EEG preprocessing 

We use the EEGLAB PREP pipeline 57 to clean the EEG signals. Furthermore, we do not 

use the signals from the break times within the session, when the participants were 

moving and disengaged from the task. We use the precise landmarks of the study to 

separate the correct vs. incorrect trials, the trials within each block and focus on the 

experimental epochs of interest as they continuously evolved within the session, gathered 
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by target orientation type (left vs. right) and by session type (mixed, random, correlated.) 

These analyses are centered on the responses from the correct trials. 

Micro-movement Spikes 

Figure 8 shows the transition from a continuous (analogue) signal to discrete spikes (digital) 

signal. We coin this signal the micro-movements spikes MMS. This is a general datatype that 

standardizes the original timeseries waveforms from each participant. We do so by scaling out 

anatomical differences, while preserving the original ranges of the data 58. 

The notion of MMS has been patented by the US Patent office 16. To obtain it from any biorhythmic 

data, we take the peaks and valleys of the original waveform and perform a transformation that 

nevertheless preserves the original ranges of the data. In this case, the peaks, and valleys of the 

continuous EEG waveform (μV) are obtained (e.g., the waveform from a lead is shown in Figure 

8A.) Then, the values of the peaks are gathered into a frequency histogram. To that end, we 

explored windows between 1 and 5 second-long (with 50% overlap) and settled on 5 seconds as 

the minimal time unit that gave us acceptable 95% confidence intervals in the empirical 

estimation process requiring close to 100 peaks or more. Note that other sizes of window above 5 

seconds are also possible, but difficult to interpret physiologically as we move away from sub-

second time resolution. In general, we caution that the sampling resolution of the sensors in use 

will determine the size of the window of choice for empirical estimation of the distributions (and 

their shifts), as it will determine the number of peaks read out from the biorhythmic activity per 

unit of time. One should consider that the unit of time is thus empirically determined for at least 

~100 peaks/unit time. In the Figure 8B example 97 peaks (red dots) extracted from the window 

(from 1,280 points, 256 points/second x 5 seconds, whereby 97 depart from the estimated Gamma 

mean, explained next.)  

Using maximum likelihood estimation (MLE), we approximate the mean (in this case the Gamma 

mean, as the continuous Gamma family of probability distributions best fits the histograms in an 

MLE sense, compared to the log normal, the normal and the exponential distributions.) We obtain 

the absolute deviation of each point in the original EEG time series, from the empirically 

estimated mean. These values are then used to build an orderly series of values and its peaks and 

valleys used to scale out allometric differences owing e.g., to anatomical differences in head 

circumference. The local peak (maxima) of these series of fluctuations is then divided by the sum 

of its value and the averaged values of points between the two local minima surrounding it (see 

equation 1 below and Figure 8B.)  

min- -min

max

max to

MMS
avg

=
+

  (1) 

This information is then plotted as in Figure 8C reflecting the unitless, standardized MMS 

describing the minute fluctuations in the original waveform away from the empirically 

estimated mean. We group the peaks (marked by the red dots) into a frequency histogram 
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and use the Earth Mover’s Distance, EMD 59,60, to measure the difference between the two 

distributions.  

 

Figure 8. Transforming continuous analogue signals to digital spikes: micro-movement spikes MMS. (A) 

Sample electroencephalographic signal from one channel, zooming into one segment. Sweeping through 

the signal, windows of 5 seconds with 50% overlap are taken to scale each peak value deviated from the 

empirically estimated mean (μV). (B) To that end, for each participant, the original peaks are used to 

empirically estimate the mean amplitude across the session, and obtain, for each point in the time series, 

the absolute deviation from the empirically estimated mean. This series of fluctuations are then used to 

scale out possible allometric effects from e.g., anatomical head differences, using equation 1 in the 

methods. As in the inset, each peak in the segment (segment maximum) is surrounded by points between 

segment minima. Equation 1 is used to obtain the unitless, standardized MMS. (C) The resulting unitless 

quantity is plotted as a series of MMS for two sample states in some window of blocks 1 and 8. (D) The 

peaks (red dots) are gathered into a frequency histogram to obtain the difference, from window to 

window (block by block), using the earth movers’ distance, a similarity metric used in transport problems. 

We then obtain the amount of effort that it takes to transform one frequency histogram into the other. (E) 

Using maximum likelihood estimation (MLE) the best continuous family of probability distributions 

fitting each histogram is obtained. In this case, the shape and scale parameters of the continuous Gamma 

family are estimated for different states of the stochastic process (explained below), as they transition 

from random noise to predictive signal, increasing the signal to noise ratio of the MMS. 
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Figure 9. Pipeline of network connectivity analyses to select hubs for stochastic analyses. (A) The 

electroencephalographic (EEG) activities from twenty channels and approximately ½ hour is sampled at 

256Hz. (B) Two sample leads are used to instantiate the analyses. The pairwise cross-coherence is 

obtained. (C) For each pair, the maximal cross-coherence is obtained, with corresponding phase and 

frequency values at which the maximum is attained. These build three 20x20 matrices to parameterize 

(for each window and across each block of the session) the activity and build adjacency matrices (using 

the maximal cross-coherence matrix.) (D) The maximum clustering coefficient in each window is 

obtained, here represented in schematic form for Blocks 1 and 8 (using windows 19 and 5 for visualization 

purposes.) (E) The MMS are obtained, and the frequency histograms (as in Figure 8) used to obtain, 

pairwise, the EMD matrix. 

 Cross-Coherence Analyses and Network representation 

The cross-coherence between two times series (assumed to be the realizations of unknown 

stochastic processes) is defined as the cross-spectral density between the two series 

normalized by the product of their auto-spectral densities 61. We use cross-coherence to 

quantify the similarity between the MMS series of any two leads in the frequency domain 

(e.g., two leads in Figure 9A and their original waveforms in Figure 9B are used to explain 

the analytical pipeline.) The frequency histograms are shown in Figure 8D for two different 

blocks and different windows. Each window comprises the MMS derived from 5 seconds 

worth of data sampled at 256Hz. The PDFs thus estimated are shown for the windows and 

Blocks 1 and 8 in Figure 8D. Mean frequency of a spectrogram 𝑃(𝑓) is calculated as: 

𝑓𝑚𝑒𝑎𝑛 =
∑ 𝑓𝑗𝑃𝑗     

𝑁

𝑗=1

∑ 𝑃𝑗     
𝑁

𝑗=1

  (2) 
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Where  𝑓𝑗 is the central frequency of the j-th bin of the spectrum and 𝑃𝑗 the corresponding 

value of the power spectral density. N is the total number of bins 62.    

Upon pairwise comparison, we then identify the frequency for which the cross-coherence 

function is maximized. Figure 9C shows the three 20x20 matrices that serve as a 

parameterization of the signals. These include the maximal cross-coherence matrix, the phase 

matrix with each entry representing the value of the phase (or of the frequency, respectively) 

at the maximum cross-coherence value.  

 

Figure 10. Stochastic analyses of the MMS derived from hub’s activities. (A) Upon determination of the 

hubs (taken window by window and block by block, across the session, the MMS of the hub lead is 

obtained and MLE used to determine the parameters of the best continuous family of probability 

distribution functions (PDFs) describing the MMS. In this case the Gamma family. The Gamma shape 

and scale parameters thus estimated, are then plotted with 95% confidence intervals, on the Gamma 

parameter plane. Window by window, and block by block, these stochastic shifts are tracked as a 

trajectory, whereby the magnitude of the shift and its direction are obtained. Figure shows examples of 

the trajectory points obtained across 5-second-long windows for blocks 1 and 8. Colors represent arbitrary 

order. (B) The log-log Gamma parameter plane is obtained to track points according to the quadrants 

spanned by the median shape and median scale, taken across each block. The Right Lower Quadrant RLQ 

contrasts with the Left Upper Quadrant LUQ. These have empirical interpretation. (C) The Gamma 

moments are obtained (see methods) to visualize the points in (B) on a parameter space whereby the 

Gamma mean is represented along x-axis, the variance along the y-axis, the skewness along the z-axis and 

the size of the marker is proportional to the kurtosis. The color corresponds to the direction of the shift, 

where the point lands, red is from the LUQ to the RLQ, or from the RLQ to itself, whereas blue is from 

the RLQ to the LUQ, or from the LUQ to itself. (D) Empirical interpretation of the Gamma plane and the 

quadrants. Along the shape axis, the distributions change from the shape a=1 memoryless exponential to 

the Gaussian range, with skewed distributions with heavy tails in between. Empirically, exponential 

regimes are associated with immature systems, early learning in infancy and disorders or the nervous 

systems, if the noise to signal ratio (scale) is high. Gaussian-like regimes are associated with predictive 

codes, athletes or dancer’s expertise and maturity. Skewed distributions are present across maturational 

stages and typical learning. Along the scale axis, high values represent high noise to signal ratio (see text) 
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which is found in neuropathy, autism, Parkinson’s disease, schizophrenia, and other disorders with 

specificity determined by levels of control (voluntary, involuntary, autonomic, spontaneous.) (E)  The 

EMD is used to track the magnitude of the shift from PDF to PDF, while the direction is tracked by the 

quadrant landing. This curve represents the evolution of the stochastic process and serves to determine 

e.g., critical points of transitions for each block of the session. 

The maximal cross-coherence matrix is used as an adjacency matrix to build a weighted 

undirected graph representation of a network. Network connectivity analyses then are used to 

obtain the maximum clustering coefficient representing the hub within each window of activity 

in a block. Then, the block-by-block activity is tracked in the hubs. For each hub (represented in 

Figure 9D shifting from Block 1 to 8) we obtain the MMS (Figure 9E) and follow with the 

computation of the frequency histogram and EMD metric (as explained in Figure 8). These are 

used to empirically estimate the stochastic process described below 63. 

Empirical Statistical Estimation  

The normalized peaks from the MMS are used to plot a frequency histogram (e.g., Figure 9F) for 

each window within a block and across blocks in each session. We then fit a PDF using MLE (e.g., 

Figure 8D). This is done through the estimation of the Gamma (a) shape and (b) scale parameters 

of the continuous Gamma family of probability distributions. The Gamma family choice comes 

as a result from MLE, whereby it has been found to be the optimal means of representing MMS 

derived from human biorhythmic data 64,65. This has been the case in voluntary motions, in 

spontaneous motions, in involuntary motions, and in autonomic motions  65 derived from EEG 
37,63,66, ECG 30,31, kinematics parameters 9,25,67 and genes expression 68,69. 

The plane spanned by the shape and the scale parameters of each Gamma PDF derived from the 

MMS in each window, are then plotted with 95% confidence intervals as points along a trajectory, 

on the Gamma parameter plane. For example, Figure 10A shows the progression of such points 

(block 1 on the top panel and block 8 on the bottom panel.) Different colors represent different 

order, such that within a block, a distribution with high shape value (symmetric) and low scale 

value (low NSR) may shift to a location with low shape value (towards the memoryless 

exponential regime) and high scale value (towards noisy regimes.) Likewise, from block to block, 

these transitions occur in random order. To track the stochastic behavior of the trajectory and 

characterize the transitions, we quantify the amplitude of the change and its direction. First, we 

take the median of the shape values and the median of the scale values and draw a line across 

each axis, to break the Gamma parameter plane into quadrants. On a log-log scale, we then plot 

the points and divide them into those in the Right Lower Quadrant (RLQ) and those in the Left 

Upper Quadrant (LUQ) as in 22. This division is also tracked on the Gamma moments space of 

Figure 10C, where we project the points of the Gamma parameter plane as the estimated moments 

of the distribution and show their corresponding shifts on this parameter space. This 

visualization has empirical interpretability from having characterized thousands of participants 

across the human lifespan and across diseases and disorders of the nervous systems. This 

empirical interpretation is shown on panel 10D. Here we see that along the shape axis, 

distributions shift from the memoryless exponential to distributions with heavy tails, to 

symmetric distributions. Along the scale axis, we move from low NSR, to high NSR. Because 

there is a tight linear fit to the log-log scatter, knowing the shape, we can then infer the scale (and 

vice versa.) As such, we reduce the number of parameters of interest to one, as we can use one of 
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the Gamma parameters to make inferences about the state of the process. As the stochastic 

signatures shift from moment to moment, we can track both the direction and the magnitude of 

the shift. To track the direction, we use the quadrant’s location. To track the magnitude of the 

shift, we use the EMD as a similarity metric (proper distance metric) that informs us of the amount 

of “work” that it takes to change one frequency histogram into the other 70, as we track window 

by window, the activity of the hubs within a block. This metric approach enables us to probe 

multiple directions of change (owing to variable stimuli) and select the direction which causes 

the maximal change at each step (i.e., if we were to move along a desirable target-driven gradient 

of an objective function as in 39 in the case of error correction, or just explore without a desired 

target.) 

 

The general formula for the PDF of the gamma distribution is shown below (equation 3), where 

a is the shape parameter and b is the scale parameter.  

( )
( )

11
x

a b
a

f x x e
a b

−
−=


  (3) 

The moments (μ, σ, skewness, kurtosis) are a b , 2a b , 2
a

, 6
k

respectively. For this reason, 

2a b
NSR b

a b






= = =


is the scale which we track as part of the evolution of the stochastic signatures. 

Figure 10E shows the rate of change of these transitions within block 1 (left) and block 8 (right.) 

The color of the dot represents the landing direction of the stochastic shift (from LUQ to RLQ, 

red, or from RLQ to LUQ, blue; they also represent landing on the same quadrant, red is for RLQ 

to RLQ and blue for LUQ to LUQ, but we could also carve out these cases separately to assess 

stationarity per unit time in each quadrant) while the EMD (y-axis) represents the magnitude of 

the shift. Following our empirical interpretation panel 11D, when the points are primarily red, 

the distributions are skewed to symmetric (towards the Gaussian range of the Gamma family.) 

When the points are primarily blue, the distributions are skewed to memoryless random (with 

a=1 at the memoryless exponential limit.) In the former case, the signal to noise ratio (1/b) is higher 

and the process more predictive. In contrast, at the other extreme, the process is memoryless, 

more random and with lower SNR. It is possible to track this evolution for each participant, across 

trials of a block, or across blocks of a session, i.e., locally and / or globally. Figure 11 shows the 

global analyses used in Figure 7, further discussed in the Supplementary Figures 1-3. 
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Figure 11. Global analyses by pooling the MMS across trials and blocks (A) and taking 5-second-long windows with 

50% overlap (B) to obtain frequency histograms that can be compared using the EMD metric (C). (D) Sweeping 

through the full trajectory of a condition gives the EMD sequence to obtain the peaks in red and gather them into a 

frequency histogram tracking the fluctuations in amplitude of the EMD variation (i.e., how the distribution change 

shape and dispersion) and the rate at which these changes occur as the inter peak interval intervals measuring the 

distances as well across peaks representing the PDF transitions. These histograms are used in MLE estimation of the 

distribution parameters best describing this global process. 
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