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19

20 Abstract

21 The sheep is a valuable model to test whether hormone mechanisms that sexually differentiate 

22 the brain underlie the expression of sexual partner preferences because as many as 8% of rams 

23 prefer same-sex partners. Epigenetic factors such as DNA methylation act as mediators in the 

24 interaction between steroid hormones and the genome. Variations in the epigenome could be 

25 important in determining morphological or behavior differences among individuals of the same 

26 species. In this study, we explored DNA methylation differences in the hypothalamus of male 

27 oriented rams (MORs) and female oriented rams (FORs). We employed reduced representation 

28 bisulfite sequencing (RRBS) to generate a genome-wide map of DNA methylation and RNA-Seq 

29 to profile the transcriptome.  We found substantial DNA methylation and gene expression 

30 differences between FORs and MORs.  Although none of the differentially methylated genes 

31 yielded significant functional terms directly associated with sex development, three 

32 differentially expressed genes were identified that have been associated previously with sexual 

33 behaviors. We hypothesize that these differences are involved in the phenotypic variation in 

34 ram sexual partner preferences, whereas future studies will have to find the specific 

35 mechanisms. Our results add an intriguing new dimension to sheep behavior that should be 

36 useful for further understanding epigenetic and transcriptomic involvement.

37 Introduction
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38 The mechanisms underlying the development of sexual orientation remain unknown. A large 

39 amount of empirical data suggest that genes and prenatal hormones are important 

40 determinants [1]. Given that sexual orientation represents one of the largest sex differences in 

41 humans, the leading neurohormone theory posits that like other sexually dimorphic behaviors, 

42 sexual orientation reflects the sexual differentiation of the brain under the influence of 

43 androgens.  Simply stated, exposure to high levels of androgens during a critical period of 

44 gestation (i.e., most males and a few females) programs attraction to females in adulthood.  

45 While exposure to low levels of androgens (i.e., most females and a few males) programs sexual 

46 attraction to males.  There is also compelling evidence implicating the involvement of 

47 epigenetic mechanisms in mediating the long-term effects of hormones on the sexual 

48 differentiation of the brain in animal models [2–4]. Evidence in rodents suggests that perinatal 

49 androgen exposure reduces DNA methylation in male brains compared to female brains, 

50 releasing masculinizing genes from epigenetic repression and ultimately masculinizing sexual 

51 behavior [5] and brain anatomy [6].  It is not known currently whether epigenetic factors 

52 influence human sexual orientation although circumstantial evidence suggests that it could [4]. 

53 Domestic rams have emerged as an important animal model for human sexual orientation. 

54 Approximately 8% of rams in natural populations of common western breeds can be reliably 

55 identified to show exclusive and enduring sexual partner preference for either the opposite sex 

56 (female-oriented) or same sex (male-oriented)[7].  Like men, rams have a sexually dimorphic 

57 nucleus (SDN) in the preoptic area/anterior hypothalamus [8,9]. The volume of the ovine SDN 

58 correlates with sexual partner preference and is larger in female-oriented rams than in male-

59 oriented rams and ewes.  The precise function of the ovine SDN remains unclear but its volume 
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60 has been shown to be a biomarker of prenatal androgen exposure [10].  Thus, the volume 

61 difference between sexes and between female- and male-oriented rams most likely results 

62 from a developmental difference in androgen exposure and may be reflected in differences in 

63 DNA methylation states in the brain [11]. The medial basal hypothalamus is another brain area 

64 that plays crucial roles in neuroendocrine control systems and sexual behaviors [12].  The 

65 ventromedial nucleus is a major anatomical component of the medial basal hypothalamus that 

66 is larger in males than in females, regulated by perinatal hormone exposure, and involved in 

67 facilitating male sexual behavior[13–16].  The present study evaluated the genome-wide 

68 epigenetic and transcriptomic levels of the medial basal hypothalamus in female- and male-

69 oriented rams. We hypothesize that the DNA methylome and transcriptome of the 

70 hypothalamus differs between these rams as evidence of a legacy of differential androgen 

71 exposure during early fetal development.

72 Materials and Methods

73 Animals and behavioral classifications

74 Archival hypothalamic tissues were used in this study.  The tissue was obtained from 4-5-year-

75 old adult rams that were given behavioral tests at the USDA Sheep Experiment Station in 

76 Dubois, ID and classified as male-oriented rams (MORs) (n = 5) or female-oriented rams (FORs) 

77 (n = 4).  The sheep were of mixed western breeds, including Rambollet, Targhee and Polypay.  

78 Rams were given sexual partner preference tests administered as described previously [17].  

79 Those that exclusively mounted other rams were classified as male oriented rams (MORs), 
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80 whereas rams that exclusively mounted females were classified as female oriented rams 

81 (FORs); (Table 1).  All experimental animal protocols met the stipulations and guidelines of the 

82 NIH policy on the Care and Use of Laboratory Animals and were approved by the Institutional 

83 Animal Care and Use Committee of the Oregon Health and Science University.

84 Table 1: Number of mounts on female and male stimulus animals in the last two of four 
85 sexual partner preference tests.

Ram Number Classification F/M Mounts*
SPP Test #3

F/M Mounts
SPP Test #4

R2579 MOR/SSP 0/(36)† 0/38
R2810 MOR/SSP 0/(40) 0/3
A8337 MOR/SSP 0/97 0/6
T8384 MOR/SSP 0/(56) 0/(20)
R2423 MOR/SSP 0/(15) 0/0
A8736 FOR/OSP (7)/0 (9)/0
R3139 FOR/OSP (9)/0 (8)/0
R3362 FOR/OSP (7)/0 (8)/0
A9707 FOR/OSP (6)/0 (10)/0

86

87 Sample collection and preparation

88 The sheep were euthanized with an overdose (15 mg/kg) of sodium pentobarbital (Euthozol; 

89 Delmarval Laboratories Inc, Midlothian, VA).  The medial basal hypothalamus was dissected as a 

90 block of tissue that extended from the caudal aspect of the optic chiasm to the rostral aspect of 

91 the mammillary bodies, bilaterally to the optic nerves and dorsally to the top of the third 

92 ventricle.  The dissection was split through the ventricle into left and right halves that were 

93 frozen immediately on dry ice and stored in a -80 C freezer.  Genomic DNA was extracted from 

94 one half of the hypothalamus using the DNeasy Blood & Tissue Kit (Qiagen, Germantown, MD, 

95 USA) and concentrated using the Genomic DNA Clean & Concentrator Kit (Zymo Research, 
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96 Irvine, CA, USA) as directed by the manufacturer.  The concentration and quality of genomic 

97 DNA was verified with absorbance spectroscopy and Qubit fluorimetry (ThermoFisher Scientific, 

98 Waltham, MA, USA).  RNA was extracted from the remaining half of the hypothalamus using the 

99 RNeasy Mini kit (Qiagen).  RNA was quantified with the Qubit RNA Broad range kit 

100 (Thermofisher) and integrity was verified on a 4200 Tape station (Agilent, Santa Clara, CA, USA).  

101 All RNA samples that were used in these studies had RIN values greater than 8.0.

102 Reduced representation bisulfite sequencing

103 To analyze DNA methylation, we used reduced representation bisulfite sequencing (RRBS) [17], 

104 a genome-wide approach that examines about 2 million CpGs (7-10% of all CpGs in genome) 

105 that are highly enriched key regulatory regions including promoters, CpG islands and CpG island 

106 shores. 

107 To generate RRBS libraries, ~150ng of sheep genomic DNA was digested overnight with the 

108 restriction enzyme MspI (New England Biolabs, Ipswich, MA, USA). The DNA was then purified 

109 with AMPure XP magnetic beads (Beckman Coulter, Pasadena, CA, USA) before use with the 

110 NEXTflex Bisulfite-Seq Kit (BioScientifica, Bristol, UK). The DNA was then end repaired, A-tailed 

111 and ligated with the NEBNext Methylated Adaptor (New England Biolabs). The ligated DNA was 

112 size-selected using AMPure XP magnetic beads to produce a final library size of 350 bp. Bisulfite 

113 conversion was performed with the EZ DNA Methylation-Gold Kit (Zymo Research) before 

114 carrying out PCR amplification with NEBNext Multiplex Oligos (New England Biolabs) to barcode 

115 each library. A final AMPure XP bead purification was performed, and the resulting libraries 

116 were quantified with the Qubit High Sensitivity double stranded (dsDNA) Assay (Life 
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117 Technologies, Carlsbad, CA, USA) and the Bioanalyzer High Sensitivity Analysis (Agilent). 

118 Libraries were multiplexed and sequenced on the Illumina NextSeq or HiSeq2500 to obtain ~30 

119 million single end, 75 bp reads.  The sequence data was deposited under the gene expression 

120 omnibus (GEO) accession number GSE158287. Library names and associated phenotypes are in 

121 Table 2.

122 Table 2: Sample names and associated Phenotypes

Sample Name Phenotype
LIB181217CR_ECL28_1_S1 MOR1
LIB181217CR_ECL28_2_S2 MOR2
LIB181217CR_ECL28_3_S3 MOR3
LIB181217CR_ECL28_4_S4 MOR4
LIB181217CR_ECL28_5_S5 MOR5
LIB181217CR_ECL28_6_S6 FOR1
LIB181217CR_ECL28_7_S7 FOR2
LIB181217CR_ECL28_8_S8 FOR3
LIB181217CR_ECL28_9_S9 FOR4

123

124 Bioinformatic analysis

125 Quality reports for all the nine sample sequences (five MORs and four FORs), were generated 

126 using FastQC [18]  (generates per sample quality report) and MultiQC [19](generates a multi 

127 sample quality report, by aggregating the individual FastQC reports). All samples passed the per 

128 base sequence quality metrics, i.e. none of the bases have their lower quartile less than 10 

129 Phred score[20,21] or median less than 25 Phred score (FastQC and MultiQC are in 

130 https://github.com/VilainLab/SheepMethylation/tree/master/FastQC and 

131 https://github.com/VilainLab/SheepMethylation/tree/master/MultiQC respectively). From the 

132 MultiQC reports, it can be observed that for most of the samples the “per base sequence 
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133 content” graph starts with a C or T followed by two Gs, excepting one sample 

134 LIB181217CR_ECL28_7_S7_R1_001 (FOR2) where the percentage of the T’s more than Cs or Gs 

135 for the first three bases (S1 Fig).  This discrepancy in the FOR2 sequence can be due to improper 

136 MSPI digestion during library preparation, which in turn does not enrich reads that start with 

137 CGG or TGG.  

138 Next, trimming was performed using Trim Galore [22] to get high quality reads for better 

139 methylation calls. It trims all reads having a Phred score less than 20 (i.e., 99% base call 

140 accuracy), read length less than 20bp after quality trimming and adapter contamination and/or 

141 when reads start with CAA or CGA (S1 File). For all but one sample, sequences removed for 

142 quality score criterion were less than 15% of the total number of sequences for that sample and 

143 for length criterion; it was less than 5%. For LIB181217CR_ECL28_7_S7_R1_001 (FOR2) sample, 

144 the sequences removed for quality score criterion were 16.4% and for lengths less than 20 bp 

145 were 6.9%.  Similarly, for RRBS trimming excluding FOR2, all the samples had RRBS sequences 

146 trimmed due to adapter contamination was < 30% and RRBS sequences trimmed due to reads 

147 starting with CAA and CGA at 0.1%. For FOR2 sample, the reads trimmed due to adapter 

148 contamination were 37%, whereas for the other criteria trimmed reads were 0.2% of all the 

149 sequences in the sample (S1 file).

150  Bismark [23] with the Bowtie 2 [24] alignment option was used to align the trimmed sequence 

151 to the reference genome (Oar_rambouillet_v1.0) and extract the methylation pattern, in the 

152 form of cytosine reports for 3 different contexts CpG, CHH and CHG (where H can be A, T or C). 

153 Default parameters were used for Bismark and the mapping efficiency was between ~64-69%. 

154 The percentage of methylated cytosine in CpG sites in the sample, calculated by dividing 
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155 number of methylated cytosines and total number of CpG sites, ranged from ~45-64% with 

156 FOR2 having the maximum methylated cytosines in the CpG context. The range of methylation 

157 on C was 0.6-0.8% for all CHH and CHG context (S2 File). 

158 Further quality checks, normalizations and differential methylation analyses were performed 

159 using the R Bioconductor package, methylKit [25]. Normalization was performed using the 

160 normalizeCoverage function of methylKit, which normalizes the coverage between samples by 

161 using a scaling factor derived by the difference of median coverages between samples. 

162 Differential methylation can be broadly classified into two parts, differentially methylated 

163 cytosines (DMC) and differentially methylated regions (DMR).  While DMC looks at differences 

164 in methylated cytosines between two conditions (MOR and FOR in this case), the DMR looks at 

165 methylation differences in two regions (non-overlapping 1000 bases in this case) between the 

166 conditions. The TileMethylCounts function from the methylKit package was used to estimate 

167 the number of methylated Cs in 1000 bases of non-overlapping windows across the whole 

168 genome. To identify the number of CpG contexts in a sample, we used a coverage threshold 

169 between 10X (i.e., at least 10 reads cover that particular CpG context) and 99th percentile of the 

170 highest CpG coverage per sample. In addition, at least 3 out of 5 samples were required to pass 

171 the coverage criterion. All the samples were then merged by using the unite function in 

172 methylKit. A further filtration was applied in this step to remove samples that had at least three 

173 replicates having coverage for a CG position. We also merged both the strands to increase the 

174 coverage of CpG, using the destrand=TRUE option.    

175 Differential methylation was calculated using calculateDiffMeth and getMethylDiff functions 

176 from the methylKit package. The calculateDiffMeth function calculates the differential 
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177 methylation using a logistic regression model based on a Chi-square test followed by an 

178 overdispersion correction using the McCullagh and Nelder method [26], and then adjusts the p 

179 value using a Sliding Linear Model (SLIM)  [26] multiple test correction method. The 

180 getMethylDiff function was used to extract the significant hypo and hyper DMR and DMC from 

181 the result of calculateDiffMeth function. A false discovery rate (FDR) q value threshold of < 0.1 

182 and methylation difference of ±10% was used to identify significant DMRs and DMCs. 

183 Annotation of the DMR and DMC was performed using genomation [27] .  Codes used for gene 

184 alignment, methylation extraction and differential methylation analysis are in 

185 https://github.com/VilainLab/SheepMethylation/tree/master/Codes. The workflow of the 

186 bioinformatics pipeline for the transcriptomic analysis is illustrated in S2A Fig.

187 RNA Library Preparation and Sequencing

188 Sequencing libraries were prepared using fragmentation, end repair, ligation and PCR using the 

189 Ilumina Stranded mRNA Ligation Prep (Ilumina, San Diego, CA, USA). Briefly, 1 ug of total RNA 

190 was purified, fragmented and primed with random hexamers to generate first strand 

191 complementary DNA (cDNA) and the first stand cDNA was converted into second strand cDNA.  

192 The 3’ ends of the second strand cDNA were subjected to blunt-end repair.  In the next step, 

193 pre-index anchors (RNA index anchors) were ligated to the ends of the double-stranded 

194 cDNA fragments to prepare them for dual indexing. A subsequent PCR amplification step 

195 followed to add the index adapter sequences (IDT for Illumina RNA UD Indexes Set A, Ligation 

196 UDP0001-UDP0005).  This step selectively amplified the anchor-ligated DNA fragments and 

197 adds indexes and primer sequences for cluster generation. For indexing PCR, initial 
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198 denaturation was carried out at 98 C for 30 sec, followed by 10 cycles of the following thermal-

199 cycle profile: denaturation at 98C for 10 seconds, annealing at 60C for 30 seconds, and 

200 extension at 72C for 30 seconds.  A final extension at 72C for 5 min was followed by a 4C  

201 hold. The resulting product was a dual-indexed library of DNA fragments with adapters at each 

202 end. The libraries were purified using Agencourt AmPureXP beads (Beckman Coulter) and 

203 eluted in 15 l of resuspension buffer. Libraries were quantified using the Qubit broad range 

204 assay kit (Thermofisher) and sized using the DNA 1000 kit (Agilent Technologies). The final 300 

205 bp libraries were pooled in equimolar amounts and normalized. The pooled library (1.2 pM) 

206 was sequenced on the Nextseq 550 using the NextSeq 500/550 High Output Kit v2.5 (150 

207 cycles, 2 x 75 bp)and data captured in the Base space sequence Hub (Ilumina). 

208 RNAseq Analysis

209 Preprocessing of the fastq files were performed using the method mentioned above. Quality 

210 check was performed using fastQC [18] for single samples and MultiQC [19] for multi sample 

211 summary, followed by quality and adapter trimming by trimmomatic  [22]. Next, the fastq was 

212 aligned to the Oar_rambouillet_v1.0 from Ensembl , using STAR [28] followed by read 

213 quantification using RSEM[29]. Differential expression analysis was performed using deseq2 

214 [30] with the significance threshold being log2 fold change > 0.58 (1.5 fold change) and log2 

215 fold change < -0.58 (-1.5 fold change), and p-value < 0.1. The workflow of the bioinformatics 

216 pipeline for the transcriptomic analysis is illustrated in S2B Fig.

217 Functional annotation and visualization
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218 Functional annotation was performed using gProfileR [31]. Visualization was done using 

219 methylKit [25] , ViewBS [32], ggplot2 [33] and GOplot [34]. 

220 Quantitative PCR method

221 Total RNA (0.5 g) was converted to cDNA using the SuperScript™ III First-Strand Synthesis 

222 System (Invitrogen, Waltham, MA, USA) according to the manufacturer’s directions.  Real time 

223 PCR reactions were run in triplicate using PowerSYBR Green Master Mix (Invitrogen). Primer 

224 sets (S3 Table) for ovine genes were designed specifically to cross exon junctions using Clone 

225 Manager software version 8 (Sci-Ed Software, Westminster, CO, USA).  All reactions were run in 

226 a Quant Studio 7 Flex Thermal Cycler (Applied Biosystems, Life Technologies, Eugene, OR, USA).  

227 The primer efficiencies were ≥ 95% for all primer pairs, and all melting curves showed a single 

228 peak.  Quantification of gene expression was performed by the delta delta Ct method, using 

229 cDNA from MBH dissections obtained from four adult Polypay rams as calibrators and 

230 normalized against the reference gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH).  

231 Data are reported as the fold difference relative to the mean for MORs.  

232 Results

233 Distinct differential methylation patterns are observed between 

234 MORs and FORs in all the three methylation contexts.  

235 A global methylation analysis of the three contexts (CpG, CHG and CHH) for all the samples, 

236 reveals higher average methylation levels for CpG context compared to the other 2 contexts 

237 (Fig 1 A, S5 – 11 Fig). For each of the three different methylation contexts investigation of 
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238 differential methylation patterns between MORs and FORs can be broadly classified into two 

239 types: evaluation of differentially methylated cytosines (DMC) and differentially methylated 

240 regions (DMR). 

241 Fig 1. Distinct global CpG methylation pattern observed between contexts and conditions. A) 

242 Global Methylation levels show higher methylation of CG context: Average Global methylation 

243 levels of the eight samples (5 MORs, 3 FORs). CG methylation level is higher than the other 

244 contexts for all the samples. B) Heatmap of DMR methylation ratios for reads in the CpG 

245 context plotted against animal number shows differential methylation patterns between MORs 

246 and FORs. Higher value red, lower value blue.

247 The range of CpG context sites, that passes both the coverage, and the sample threshold 

248 criterion are between ~985,376 to ~1,201,527 for all samples excepting FOR2, for which the 

249 number of CpG context site is 250,828 (Table 3). Hierarchical clustering of the average 

250 methylation profile for CpG context revealed that FOR2 was not clustered with the other 

251 samples and is an outlier (S4A Fig). The same pattern was observed in the other contexts (CHG 

252 and CHH), with FOR2 being an outlier in both the scenarios (S4B and C Fig). This makes the 

253 FOR2 sample an outlier and it was removed from further downstream DMR and DMC analysis, 

254 for all the three contexts.  

255 Table 3: Methylation sites per context

Sample Name Phenotype
CpG 

Region
CHG 

region
CHH 

region
LIB181217CR_ECL28_1_S1 MOR1 1083643 1483439 2704253
LIB181217CR_ECL28_2_S2 MOR2 1184415 1618708 3039998
LIB181217CR_ECL28_3_S3 MOR3 1111216 1596032 3048524
LIB181217CR_ECL28_4_S4 MOR4 1201527 1652283 3058649
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LIB181217CR_ECL28_5_S5 MOR5 1162673 1612379 3019239
LIB181217CR_ECL28_6_S6 FOR1 1197471 1697854 3275614
LIB181217CR_ECL28_7_S7 FOR2 250828 460853 644272
LIB181217CR_ECL28_8_S8 FOR3 1216055 1703738 3241296
LIB181217CR_ECL28_9_S9 FOR4 985376 1367634 2531456

256

257 DNA methylation has various functions, and methylation can occur in different locations. We 

258 evaluated 656,897 filtered CpG context sites and identified 1552 DMCs of which 803 were 

259 hypomethylated and 749 were hypermethylated in MORs compared to FORs.  Of all the 

260 differentially methylated cytosines, 44% are located in the intergenic regions, followed by 37% 

261 in introns, 11% in exons and 8% in promoters (Fig 2A).  A similar distribution pattern of 

262 methylated DMCs was observed for hypo- and hypermethylated CpG regions, with the majority 

263 of the DMC’s located in intergenic regions and the least in the promoter region (Fig 2B and C, S4 

264 File DMC_CpG tab, DMC_hyper_CpG tab and DMC_hypo_CpG tab). 

265 Fig 2. Distribution of total CpG DMC and DMR across the different genomic regions. A) Distribution of 

266 DMC CpG; B) Distribution of hyper DMC CpG; C) Distribution of hypo DMC CpG; D) Distribution of DMR 

267 CpG; E) Distribution of hyper DMR CpG; F) Distribution of hypo DMR CpG; Distribution of hypo DMR 

268 CpG. Legend: black = promoter region; pink = exon; green = intron and blue = intergenic regions.    

269 For evaluation of DMRs, we looked at non-overlapping 1000 base pair regions and identified 

270 805 DMRs of which 478 were hypomethylated and 327 were hypermethylated in MORs 

271 compared to FORs. Visualization of all DMRs shows distinct differential patterns between the 

272 two phenotypes i.e., MORs and FORs (Fig 1B).  The distribution of DMRs is similar to that of 

273 DMCs across genomic regions with the maximum (46%) falling in the intergenic regions, 33% in 

274 introns, 16% in exons and 5% in the promoter regions (Fig 2D). Likewise, the distribution of 
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275 hypo- and hypermethylated DMRs and DMCs are similar across genomic regions (Fig 2E and 

276 F,S4 File DMR_CpG tab, DMR_hyper_CpG tab and DMR_hypo_CpG tab). 

277 Although previous studies have not been conclusive about the function of non-CpG (CHG and 

278 CHH) methylations in mammals, they have been observed previously in developing mouse brain 

279 [29]. This enabled us to explore the methylation profile in these two contexts. For the CHG 

280 context there are 25 DMCs with 10 hypermethylated and 15 hypomethylated (S5 File 

281 DMC_CHG tab, DMC_hyper_CHG tab and DMC_hypo_CHG tab), and 16 regions for DMR, with 

282 nine hypermethylated and seven hypomethylated. Out of the 25 DMCs, 60% are in the intronic 

283 and 40% in intergenic regions (Fig 3A). For the hypermethylated CHGs, 80% are in the intronic 

284 and 20% are intergenic regions (Fig 3B), whereas 47% of hypomethylated CHGs fall in intronic 

285 and 53% fall in intergenic regions (Fig 3C).  For DMR CHGs, 62% fall in intergenic regions, 25% in 

286 introns and 12% in exons (Fig 3D). For hypermethylated CHGs, most DMRs (56%) fall in 

287 intergenic regions, whereas 33% fall in introns and 11% fall in the exons (Fig 3E). For 

288 hypomethylated CHGs, 71% of DMRs fall in intergenic regions, while equal distribution (14%) 

289 falls in exons and introns (Fig 3 F, S5 File DMR_CHG tab, DMR_hyper_CHG tab and 

290 DMR_hypo_CHG tab). 

291 Fig 3. Distribution of CHG DMC and DMR across the different genomic regions. A) Distribution of DMC 

292 CHG; B) Distribution of hyper DMC CHG; C) Distribution of hypo DMC CHG; D) Distribution of DMR CHG; 

293 E) Distribution of hyper DMR CHG; F) Distribution of hypo DMR CHG; Legend: black = promoter region; 

294 pink = exon; green = intron and blue = intergenic regions.    

295 For CHH context, there are 15 DMC regions with 7 hypomethylated and 8 hypermethylated, 

296 and 56 DMR regions with 17 hypomethylated and 39 hypermethylated. In the case of CHHs 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2022. ; https://doi.org/10.1101/2022.01.18.476818doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.18.476818
http://creativecommons.org/licenses/by/4.0/


297 DMCs, the pattern is similar to DMC distribution in CpG context. Out of 15 DMCs, most (60%) 

298 fall in intergenic regions, 33% in introns and 7% in promoter regions (Fig 4A). For 

299 hypermethylated CHHs, most DMCs fall in intergenic regions (50%), 38% in introns and 12% in 

300 exons (Fig 4B). For the hypomethylated CHHs, 71% of the DMCs fall in the intergenic regions 

301 and 29% in introns (Fig 4C, S6 File  DMC_CHH tab, DMC_hyper_CHH tab and DMC_hypo_CHH 

302 tab).  The distribution of DMR CHHs follows a similar pattern as DMC, with most falling in 

303 intergenic regions (46%), followed by 34% in introns, 14% in exons and 5% in the promoter 

304 regions (Fig 4D). Hypomethylated DMRs follow the same pattern as the distribution of all CHH 

305 DMRs (most are located in the intergenic regions and the fewest in the promoter region). For 

306 hypermethylated DMRs, the same percentage of DMRs fall in the intronic and intergenic 

307 regions (38%), followed by exon (16%) and promoter (8%) regions  (Fig 4E and F, S6 File 

308 DMR_CHH tab, DMR_hyper_CHH tab and DMR_hypo_CHH tab). 

309 Fig 4. Distribution of CHH DMC and DMR across the different genomic regions. A) Distribution 

310 of DMC CHH; B) Distribution of hyper DMC CHH; C) Distribution of hypo DMC CHH; D) 

311 Distribution of DMR CHH; E) Distribution of hyper DMR CHH; F) Distribution of hypo DMR CHH; 

312 Legend: black = promoter region; pink = exon; green = intron and blue = intergenic regions.    

313 Functional annotation of the individual methylation contexts reveals 

314 distinct functional clusters.

315 To identify functionally relevant genes overlapping DMC/DMRs, we performed functional 

316 annotation using gProfileR. We only chose genes that had DMC/DMRs in their gene body (i.e., 

317 exons and introns) or promoters, and left out intergenic DMC/DMRs from further analysis. 
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318 Functional annotation for DMC CpG (hyper- and hypomethylated cytosines) context produced 

319 28 significantly enriched functional clusters, adjusted p-value < 0.1 (Fig 5A, S4 File 

320 DMC_CpG_GO tab). The significantly enriched functional terms are all gene ontology (GO) 

321 terms with 14 of them pertaining to biological processes (BP), eight to molecular functions (MF) 

322 and six to cellular components (CC). The BP GO clusters contain mainly developmental and 

323 biological regulation processes, whereas the MF terms pertains to protein binding and 

324 electrophysiological activities, while the CC pathways includes membrane and cytoplasm 

325 related terms. The hypermethylated DMCs yielded ten significant GO terms, with seven MF 

326 terms comprising electrophysiological and protein binding activities while three CC terms are 

327 related to membrane and cation channel complex terms. The hypomethylated DMCs yielded 12 

328 significant functionally relevant terms, with seven BP terms pertaining to biological regulation 

329 and response to wound, two MF terms associated with protein binding and three CC terms 

330 related to cytoplasm, cell periphery and Schaffer collateral - CA1 synapse (S4 File DMC_ 

331 hyper_CpG_GO and DMC_ hypo_ CpG_GO tab). 

332 Functional annotation of DMRs for CpG regions revealed nine significant enriched functional 

333 terms (Fig 5A, S4 File DMR_CpG_GO tab). Of the nine functional terms, five are CC functions 

334 related to synapse and cell periphery, three are BP functions related to central nervous system 

335 neuron development, activation of GTPase activity and movement of cell or subcellular 

336 component), and one is a MF function associated with calcium ion binding. The 

337 hypermethylated DMRs, yielded no significantly enriched terms, whereas the hypomethylated 

338 DMRs yielded five terms with three BP functions related to regulation of GTPase activity and 

339 chemorepulsion of axons and two MF functions associated with GTPase regulator activity and 
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340 nucleoside-triphosphatase regulator activity (S4 File DMR_ hyper_CpG_GO and DMR_ hypo_ 

341 CpG_GO tab). 

342 Figure 5. Functional annotation for DMC and DMR for CpG context. A) Representation of gene 

343 distribution across functional annotation terms for DMC CpG. The distribution of 

344 hypermethylated (red) and hypomethylated (blue) terms for each of the functional terms is 

345 represented in each quadrant. B) Representation of gene distribution across functional 

346 annotation terms for DMR CpG. The distribution of hypermethylated (red) and hypomethylated 

347 (blue) terms for each of the functional terms is represented in each quadrant. Enrichment of 

348 each term is reported as a z-score, where z-score is the ratio of difference between number of 

349 hyper methylated and hypomethylated DMC genes, and square root of total number of genes 

350 for that term.

351 The non-CpG methylation yielded fewer functionally relevant terms, compared to the CpG 

352 context. The functional annotation for DMCs in CHG context (both hyper- and hypomethylated 

353 combined) yielded no significantly enriched terms. Hypermethylated DMCs yielded two 

354 significant functionally enriched terms: one human phenotype (unilateral radial aplasia) and 

355 one CC function related to mitochondrial pyruvate dehydrogenase complex. Hypomethylated 

356 DMCs yielded only one MF function associated with phosphomevalonate kinase activity (S5 File 

357 DMC_ CHG_GO tab, DMC_hypo_ CHG_GO tab and  DMC_hyper_ CHG_GO tab). The CHG DMRs 

358 yielded no significantly enriched functional annotation terms. A similar pattern was observed 

359 for functional annotation of DMC/DMR for the CHH context. Only one enriched term was 

360 observed for DMCs in the CHH context and it was associated with the MF phosphomevalonate 

361 kinase activity.  Hypermethylated DMCs yielded three BP functions linked with regulation of 
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362 clathrin coat assembly and gastric acid secretion.  Hypermethylated DMCs yielded one MF term 

363 linked to phosphomevalonate kinase activity. Like DMRs in CHG context, none of the DMRs in 

364 CHH context yielded any relevant functional terms (S6 File DMC_CHH_GO tab, 

365 DMC_hypo_CHH_GO tab, DMC_hyper_CHH_GO tab).

366  Overlap of regions across the three methylation contexts show 

367 distinct functional features.

368 To understand the effect of the different methylation contexts (CpG, CHH and CHG), we 

369 investigated the DMRs that overlap for the multiple contexts. We identified three genes 

370 common between all three contexts, one common between CpG and CHG, five common 

371 between CpG and CHH and six common between CHH and CHG (Fig 6A; S7 File). The genes 

372 common between the three contexts are ENSOARG00020023439, TPGS2 and SCNN1B. The 

373 DMR was in an intergenic region near ENSOARG00020023439 (spindlin-2B homologue in sheep; 

374 DMR coordinates: chromosome X- 50,554,001-50,555,000; intergenic near the gene) and was 

375 hypomethylated (methylation difference MD = -35.6%, corrected P = 0.007) in MOR compared 

376 to FOR in the CpG context, whereas it was hypermethylated in the CHG (MD = 16.36%, P = 0.08) 

377 and CHH context (MD = 16.6%, P = 0.05). For TPGS2 (tubulin polyglutamylase complex subunit; 

378 chromosome 23: 24,612,001-24,613,000), the DMR was in the intron regions and was 

379 hypermethylated in MOR compared to FOR, in all the three contexts (CpG: MD = 30.15%, P = 

380 0.07; CHG:  MD = 10.63%, P = 0.06; CHH: MD = 11.14%, P = 0.005). A similar pattern was 

381 observed for the gene SCNN1B (sodium channel epithelial one subunit beta, chromosome 24: 

382 21,728,001- 21,729,000), with the DMR occurring in exon and intron regions, and 
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383 hypermethylated for all the three contexts (CpG: MD = 14.4%, P = 0.08; CHG: MD = 15.75%, P = 

384 0.03; CHH: MD = 15.86%, P = 0.0001; S7 File). The three genes also have distinct functional 

385 features. While spindlin-2B (human homologue of ENSOARG00020023439), is involved in 

386 regulation of cell cycle progression [35] and H3K4me3-binding activity [36], TPGS2 codes for a 

387 protein component of neuronal polyglutamylase complex [37] , whereas SCNN1B is responsible 

388 for sodium channel activity and mutation of the gene leads to autosomal disorders like Liddle 

389 syndrome [38].

390 Fig 6. DMR genes common between the three contexts. DMR genes common between the 

391 three contexts. Venn diagram depicting the genes that are shared among CHH (green), 

392 CpG(purple) and CHG (yellow), in the DMC context.  There are three genes in common among 

393 the 3 contexts, one in common between CpG and CHG, five in common between CpG and CHH, 

394 and six in common between CHG and CHH.

395 The DMR for the unannotated gene ENSOARG00020011386 (DMR coordinates: chromosome 

396 18: 66,982,001-66,983,000) common between CHG and CpG contexts was in the intergenic 

397 region near the gene and was hypomethylated in MORs for both the contexts (S7 File). For the 

398 six genes common between CHH and CHG, the DMR for four genes (ENSOARG00020000663, 

399 EPCAM, ADAMTS15, and PLXND1) were in the intergenic region, whereas for the other two 

400 genes (MAGI1, TVP23A) the DMR was in the intronic region. All the genes except one (PLXND1), 

401 was hypermethylated in MORs compared to FORs, in the two contexts. Functional annotation 

402 of the genes revealed three significantly enriched CC functional terms related to cellular 

403 junctions. DMRs for the genes common between CHH and CpG, overlap the gene body with 

404 four genes (U6, GSE1, MIR153-2 and AGPAT4), having DMRs in the intron, whereas for CARD11, 
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405 DMR overlaps both exon and intron. There were only two significant functional annotation 

406 terms, one CC (CBM complex) and one HP (decreased specific antibody response to 

407 polysaccharide vaccine) associated with these genes (S6 File).

408 Differential expression analysis reveals significantly expressed genes 

409 associated with sexual partner preference.

410 To investigate the relationship between DNA methylation changes and gene expression, RNA-

411 Seq analysis was performed to identify differences in gene expression between the two 

412 phenotypes.  A total of 15 differentially expressed genes were detected between phenotypes, 

413 with only one gene overlapping with the DMR gene lists and none with the DMC gene lists (Fig 

414 7A). The gene BFSP1 (log2 FC= 1.15, qvalue = 0.002), was hypomethylated in CpG DMR context, 

415 with a methylation difference of -11.6% MOR vs. FOR (q value = 0.02; S8 Table or File). 

416 Fig 7. Differential gene expression associated with sexual partner preference phenotype. A) 

417 Heatmap of differentially expressed genes plotted against animal number and grouped by phenotype, 

418 i.e., FOR or MOR.  RNAseq analysis identified 15 genes that were differentially expressed between FORs 

419 and MORs (adjusted p-value < 0.1, log2 Fold change ≥  absolute (0.58). Heatmap colors are represented 

420 by Z-score and annotation of ram phenotype has blue for FORs and red for MORs. Go pathway analysis 

421 identified enrichment of three differentially expressed genes involved in hormone activity: prolactin 

422 (PRL); MOR vs. FOR log2 fold difference (log2 FD) = -4.5, P = 1.8E-07), cholecystokinin (CCK); log2 FD = -

423 1.2, P = 5.09E-05 and neurotensin (NTS); log2 FD = 1.4, P = 8.40E-06. Differential gene expression was 

424 confirmed using qPCR for: (B) PRL (log2 FD = -4.2, P = 1.8E-02), (C) CCK (log2 FD = -1.37, P = 0.13) and (D) 

425 NTS (log2 FD = 0.67, P = 0.24). Data (mean ±  SEM) were analyzed by a Student’s t test.
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426 To explore further the effect of the differentially expressed genes, we performed functional 

427 annotation.  GO pathway analysis identified enrichment of three genes involved in hormone 

428 activity (MF):  prolactin (PRL); MOR vs. FOR log2 fold difference (log2 FD) = -4.5, Fold change = -

429 0.04, P = 1.8E-07), cholecystokinin (CCK); log2 FD = -1.2, Fold change = -0.43, P = 5.09E-05 and 

430 neurotensin (NTS); log2 FD = 1.4, Fold Change = 2.639016, P = 8.40E-06 (S8 File). To confirm the 

431 differences in gene expression between MORs and FORs identified with RNAseq, we performed 

432 quantitative real-time PCR.  We observed down regulation of PRL in MORs vs. FORs (log2 FD = -

433 4.2, Fold Change = - 0.054, P = 0.001) and CCK (log2 FD = -1.3, Fold Change = -0.406, P = 0.08) 

434 and up regulation of NTS (log2 FD = 0.67, Fold Change =1.59, P = 0.24) in MORs compared to 

435 FORS, which is in accordance with what was seen in the RNA-Seq analysis (Fig 7B and C). 

436 Discussion

437 In the present study, genome-wide DNA methylation in hypothalami of rams exhibiting 

438 exclusive male versus female sexual partner preferences were analyzed for the first time.  Out 

439 of the three methylation contexts, CpG, CHG and CHH, the most significant differences were 

440 observed in the CpG context with 1552 DMC and 805 DMRs being significantly methylated. 

441 There were more hypomethylated CpGs in MORs compared to FORs for both the DMC and 

442 DMR groups. The distribution in the case for DMCs was ~52% hypomethylated and ~48% 

443 hypermethylated, whereas for DMRs the distribution was 60% hypomethylated compared to 

444 40% hypermethylated.  Functional annotation of the differentially methylated genes that fall in 

445 the DMC or DMR regions revealed that most of the significant functional terms were related to 

446 developmental processes, regulatory and electrophysiological activities that may be associated 
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447 with the many homeostatic functions of the hypothalamus.  Functional terms associated with 

448 development of sexual characteristics and sex development were also identified but none of 

449 them was differentially enriched.

450 CpG is considered the most relevant context because 80% of methylation events in humans 

451 occur at CpG sites [42]. However, we also evaluated the CHG and CHH contexts because they 

452 have been previously associated with brain development [43]. Moreover, CHH methylation is 

453 highly conserved in the brain across vertebrate species and requires active maintenance in 

454 postmitotic neurons [44].  We observed a pattern similar to previous studies [42,44], with fewer 

455 significantly methylated DMCs and DMRs in the non-CpG (CHH and CHG) context, compared to 

456 the CpG context. The DMCs for the CHG context followed the same pattern as for CpG, with 

457 more hypomethylated than hypermethylated genes. In contrast, the DMRs for the CHG context, 

458 and both DMC and DMR for the CHH contexts, exhibited more hypermethylated than 

459 hypomethylated genes.  There were only a few significant functional terms in both the 

460 contexts, and most of them were related to molecular functions such as phosphomevalonate 

461 kinase activity or biological processes pertaining to regulation of clathrin coat assembly and 

462 regulation of gastric acid secretion. There were genes in common among all three different 

463 contexts. Most of them were associated with molecular functions and cellular component 

464 functionalities and none was associated with sexual behaviors, neuroendocrine functions or 

465 development.

466 Transcriptomic analysis revealed 15 differentially expressed genes between the two 

467 phenotypes with only one overlapping with the methylated list. The gene, Beaded Filament 

468 Structural Protein 1 (BFSP1) was hypomethylated in CpG DMR context and overexpressed in 
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469 MORs compared to FORs. This gene shows broad expression in a number of tissues including 

470 brain, and has been previously associated with cataracts in humans [39–41]. Additionally, 

471 functional annotation of the differentially expressed genes reveal one significant term 

472 associated with hormone activity (MF) and consisting of three genes PRL, CCK and NTS.  

473 Prolactin (PRL) is a hormone produced mainly by the pituitary gland, however, in some species 

474 it is synthesized in other tissues including brain [45,46] . PRL is best known for its role in the 

475 development of the mammary gland and milk production, but is also involved in the regulation 

476 of parental and sexual behaviors in both males and females [47,48]. The neuropeptide 

477 cholecystokinin (CCK) has been associated with mate preference in mice. CCK-expressing 

478 neurons in the bed nucleus of the stria terminalis of males are activated by the scent of female 

479 urine in association with the male’s preference for estrus females [49]. Finally, neurotensin 

480 (NTS) neurons in the medial preoptic area were shown to encode attractive male cues and 

481 direct behavior toward opposite-sex conspecifics in both sexes to drive social attraction toward 

482 a potential mate [50].  Quantitative PCR validations show, that PRL is the only gene that was 

483 significantly downregulated in MORs compared to FORs, which agrees with the RNASeq results. 

484 Although, neither CCK nor NTS showed significant fold differences with quantitative PCR, they 

485 show similar trends with RNA-Seq results, i.e., CCK downregulated and NTS upregulated in 

486 MORs compared to FORs.

487 To our knowledge, our study presents the first genome-wide analysis of DNA methylation 

488 profiles and gene expression of the adult sheep hypothalamus.  We show that the epigenome 

489 of the hypothalamus, in the form of DNA methylation pattern, differs substantially between 

490 rams with different sexual partner preferences. This tentatively suggests that epigenetic factors 
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491 may be important mechanisms involved in sexual attraction. Specifically, we highlight 

492 expression differences in genes related to sexual behaviors.  These data will be informative in 

493 providing a basis for better understanding of the epigenetic regulation of sexual behavior in 

494 sheep and help ascertain mechanisms that shape sexual partner preferences.  However, further 

495 studies will be required to determine whether differences in DNA methylation and consequent 

496 gene expression are the cause or consequence of altered behavior.  In addition, experiments 

497 should be conducted at earlier developmental landmarks are needed to capture the effects 

498 more efficiently.  Finally, sample size is often a challenge with large animal models such as the 

499 sheep. This study is no exception and would benefit from a replication with more animals. Thus, 

500 further transcriptomic and epigenetic studies need to be performed with a larger sample size to 

501 ascertain the developmental effect that the epigenome/transcriptome has on the expression of 

502 sexual partner preferences in rams. 
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637 Supporting information

638 S1 Fig. Per base sequence content graph shows discrepancy in starting bases of the sequence 
639 in FOR7 compared to other samples. A) Sequence content across all bases for FOR1: Graph 
640 showing the representation of the nucleotides across all base position in sample FOR1. 
641 Percentage of C (marked in blue) is highest in the first base followed by G (in black) in the next 
642 two positions. Similar pattern was observed in all other samples, excepting FOR2. A) Sequence 
643 content across all bases for FOR2: Graph showing the representation of the nucleotides across 
644 all base position in sample FOR2. Percentage of T (marked in red) is highest in the first three 
645 base. Color code Thymine (T) =red, Adenosine = Green, Cytosine = Dark Blue, Guanine = Black.

646 S2 Fig. Workflow of Methylation analysis Pipeline. Quality Check using fastqc and trimgalore 
647 was used to trim reads less than 20 Phred score. Alignment and methylation count was 
648 calculated using Bismark, followed by methylKit to estimate the differentially methylated 
649 regions (DMRs) and differentially methylated cytosines (DMCs). Methylation fold change 
650 greater than 10; and q value < 0.01 was used for determining the most significant Genes. 
651 Annotation of the DMR and DMC was done using genomation. Functional annotation was 
652 performed using gProfiler functional annotation tool; followed by visualization using ViewBS for 
653 heatmaps, methylKit for dendrogram and distribution of genomic regions for DMRs and GOPlot 
654 for gene ontology visualization.
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655 S3 Fig. Quality of the sample reveals, Sample 2810 has more reads than the other samples. A) 
656 Raw read counts from fastq: The plot of the sequence counts shows that for the trimmed 
657 sample 2810, the number of reads is greater than 175 million reads, whereas for the other 
658 samples has 30 to 75 million reads. We can also observe that the number of duplicate reads 
659 (black) in this sample is also greater than the other samples. C) Align read counts from STAR: 
660 Aligned read counts from STAR show that sample 2810 has more unmapped reads (red), and 
661 least uniquely mapped reads (dark blue) than any of the other samples.

662 S4 Fig. Hierarchical clustering of sample methylation patterns across the 3 contexts. A) CpG 
663 hierarchical Clustering: Hierarchical clustering of the methylation pattern of replicates of all the 
664 samples, in CpG context) CHG hierarchical Clustering: Hierarchical clustering of the methylation 
665 pattern of replicates of all the samples, in CHG context. C) CpG hierarchical Clustering: 
666 Hierarchical clustering of the methylation pattern of replicates of all the samples, in CHH 
667 context. 

668 S5 Fig. Methylation pattern of Chromosome 1 and chromosome 2 in CG, CHG and CHH 
669 context: Average methylation levels of the different context between the 2 different samples 
670 MOR (red) and FOR (blue). Y-axis average methylation levels, x-axis chromosome coordinates in 
671 mega base (Mb).

672 S6 Fig. Methylation pattern of Chromosome 3 and chromosome 4 in CG, CHG and CHH 
673 context: Average methylation levels of the different context between the 2 different samples 
674 MOR (red) and FOR (blue). Y-axis average methylation levels, x-axis chromosome coordinates in 
675 mega base (Mb).

676 S7 Fig. Methylation pattern of Chromosome 5 and chromosome 6 in CG, CHG and CHH 
677 context: Average methylation levels of the different context between the 2 different samples 
678 MOR (red) and FOR (blue). Y-axis average methylation levels, x-axis chromosome coordinates in 
679 mega base (Mb).

680 S8 Fig. Methylation pattern of Chromosome 7 and chromosome 8 in CG, CHG and CHH 
681 context: Average methylation levels of the different context between the 2 different samples 
682 MOR (red) and FOR (blue). Y-axis average methylation levels, x-axis chromosome coordinates in 
683 mega base (Mb).

684 S9 Fig. Methylation pattern of Chromosome 9 and chromosome 10 in CG, CHG and CHH 
685 context: Average methylation levels of the different context between the 2 different samples 
686 MOR (red) and FOR (blue). Y-axis average methylation levels, x-axis chromosome coordinates in 
687 mega base (Mb).

688 S10 Fig. Methylation pattern of Chromosome 11 and chromosome 12 in CG, CHG and CHH 
689 context: Average methylation levels of the different context between the 2 different samples 
690 MOR (red) and FOR (blue). Y-axis average methylation levels, x-axis chromosome coordinates in 
691 mega base (Mb).
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692 S11 Fig. Methylation pattern of Chromosome 13 and chromosome 14 in CG, CHG and CHH 
693 context: Average methylation levels of the different context between the 2 different samples 
694 MOR (red) and FOR (blue). Y-axis average methylation levels, x-axis chromosome coordinates in 
695 mega base (Mb).

696 S12 Fig. Methylation pattern of Chromosome 15 and chromosome 16 in CG, CHG and CHH 
697 context: Average methylation levels of the different context between the 2 different samples 
698 MOR (red) and FOR (blue). Y-axis average methylation levels, x-axis chromosome coordinates in 
699 mega base (Mb).

700 S13 Fig. Methylation pattern of Chromosome 17 and chromosome 18 in CG, CHG and CHH 
701 context: Average methylation levels of the different context between the 2 different samples 
702 MOR (red) and FOR (blue). Y-axis average methylation levels, x-axis chromosome coordinates in 
703 mega base (Mb).

704 S14 Fig. Methylation pattern of Chromosome 19 and chromosome 20 in CG, CHG and CHH 
705 context: Average methylation levels of the different context between the 2 different samples 
706 MOR (red) and FOR (blue). Y-axis average methylation levels, x-axis chromosome coordinates in 
707 mega base (Mb).

708 S15 Fig. Methylation pattern of Chromosome 21 and chromosome 22 in CG, CHG and CHH 
709 context: Average methylation levels of the different context between the 2 different samples 
710 MOR (red) and FOR (blue). Y-axis average methylation levels, x-axis chromosome coordinates in 
711 mega base (Mb).

712 S16 Fig. Methylation pattern of Chromosome 23 and chromosome 24 in CG, CHG and CHH 
713 context: Average methylation levels of the different context between the 2 different samples 
714 MOR (red) and FOR (blue). Y-axis average methylation levels, x-axis chromosome coordinates in 
715 mega base (Mb).

716 S17 Fig. Methylation pattern of Chromosome 25 and chromosome 26 in CG, CHG and CHH 
717 context: Average methylation levels of the different context between the 2 different samples 
718 MOR (red) and FOR (blue). Y-axis average methylation levels, x-axis chromosome coordinates in 
719 mega base (Mb).

720 S18 Fig. Methylation pattern of Chromosome XX in CG, CHG and CHH context: Average 
721 methylation levels of the different context between the 2 different samples MOR (red) and FOR 
722 (blue). Y-axis average methylation levels, x-axis chromosome coordinates in mega base (Mb).

723 S1 File. Results of quality trimming step by TrimGalore. (XLXS)

724 S2 File. Results from the alignment and methylation sites determination steps. (XLXS)

725 S3 File. Oligonucleotide primers used for real-time polymerase chain reaction. (XLXS)

726 S4 File. Differentially methylation and Functional annotation of CpG context. (XLXS)
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727 S5 File. Differentially methylation and Functional annotation of CHG context. (XLXS)

728 S6 File. Differentially methylation and Functional annotation of CHH context. (XLXS)

729 S7 File.  DMR Genes Overlapping between CpG, CHG and CHH context. (XLSX)

730 S8 File Differentially expressed genes between MORs and FORs. (XLSX)
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