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Abstract

Epigenetic regulatory mechanisms allow multicellular organisms to develop distinct
specialized cell identities despite having the same total genome. Cell-fate choices are
based on gene expression programs and environmental cues that cells experience during
development, and are usually maintained throughout the life of the organism despite
new environmental cues. The evolutionarily conserved Polycomb group (PcG) proteins
form Polycomb Repressive Complexes (PRCs) that help orchestrate these developmental
choices. Post-development, these complexes actively maintain the resulting cell fate,
even in the face of environmental perturbations. Given the crucial role of these
polycomb mechanisms in providing phenotypic fidelity (i.e. maintenance of cell fate), we
hypothesize that their dysregulation after development will lead to decreased phenotypic
fidelity allowing dysregulated cells to sustainably switch their phenotype in response to
environmental changes. We term this abnormal phenotypic switching, phenotypic
pliancy. We introduce a computational evolutionary model that allows us to test our
systems-level phenotypic pliancy hypothesis in-silico and in a context-independent
manner. We find that 1) phenotypic fidelity is an emergent systems-level property of
PcG-like mechanisms, and 2) phenotypic pliancy is an emergent systems-level property
resulting from this mechanism’s dysregulation. Since there is evidence that metastatic
cells behave in a phenotypically pliant manner and PcG dysregulation is common in
cancer, we hypothesize that progression to metastasis is driven by the emergence of
phenotypic pliancy in cancer cells as a result of PcG mechanism dysregulation. We
corroborate our hypothesis and the results of our computational model using single-cell
RNA-sequencing data from metastatic cancers. We find that metastatic cancer cells are
phenotypically pliant in the same manner as predicted by our model.

Significance Statement

We introduce the concept of cellular phenotypic pliancy– sustained abnormal
phenotypic switching in response to environmental changes– and demonstrate that such
behavior can be caused by dysregulation of Polycomb mechanisms. To overcome the
incomplete knowledge about this mechanism in higher organisms, we develop an
abstract computational model to study the emergence of phenotypic pliancy from a
systems-level view without the exact specifics of a cell’s gene regulatory network and
Polycomb mechanisms. We corroborate our hypothesis and model predictions using
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single-cell RNA-seq metastatic cancer datasets. Our hypothesis has the potential to
shed light on a general phenomenon for complex diseases where abnormal phenotypic
switching is relevant.

Introduction 1

During early development in multicellular organisms, the differentiated phenotype of 2

cells, i.e. cell identity, is sensitive to and determined by the environmental 3

influences [1, 2]. However, after development, cells tend to maintain their identity, 4

becoming markedly less sensitive to environmental changes even as they may exhibit 5

some limited phenotypic plasticity [3, 4]. We will refer to the maintenance of cellular 6

identity post-development as phenotypic fidelity. 7

Because all cells in a multicellular organism possess the same genome, a key 8

regulator of cell-fate choices and cell identity maintenance is epigenetic regulation 9

mechanisms, which emerged during the expansion of the Metazoa [5–7]. One of the 10

most prominent and enigmatic epigenetic regulatory mechanisms is the evolutionarily 11

conserved polycomb mechanisms involving the Polycomb group (PcG) and Trithorax 12

group (TrxG) proteins that form complexes (called Polycomb Repressive Complexes 13

(PRCs) for PcG proteins) thought to have evolved at the dawn of multicellularity [8, 9]. 14

PcG and TrxG proteins act antagonistically to cause heritable alterations in gene 15

expression or function, without changes in DNA sequence, by continually repressing a 16

set of target genes if their expression falls below a certain threshold at a critical time 17

point during development [3, 10,11]. This mechanism promotes cellular differentiation 18

during development in response to environmental inputs, and actively maintains cell 19

identity post-development even in the face of environmental perturbations (see Figure 20

1) [3, 9–12]. It has also been demonstrated computationally that a PcG-like mechanism 21

allows dynamic altering of a gene regulatory network to create multiple gene regulatory 22

sub-networks and genotype-phenotype mappings out of a single network (see Figure 23

1) [13]. 24

Given the crucial role of polycomb mechanisms in providing phenotypic fidelity, we 25

hypothesize that dysregulation of polycomb mechanisms after development will lead to 26

decreased phenotypic fidelity, which will allow dysregulated cells to directly and 27

sustainably switch their phenotype in response to environmental changes. We term this 28

abnormal phenotypic switching in response to environmental changes as phenotypic 29

pliancy. Here, the environment encompasses both the external environment, such as 30

availability of oxygen, temperature, and perhaps a local microbiome, and the signaling 31

environment created by cellular communication networks. We further hypothesize that 32

cells with dysregulated polycomb mechanisms, when introduced into a new environment 33

will switch into a phenotype that more closely, but not fully, resembles that of the 34

already evolved phenotype in this environment since we expect that the environmental 35

cues will dominate once the cellular memory disappears. For example, a dysregulated 36

breast cell placed in a lung environment would alter its phenotype to more resemble 37

that of a lung cell than a breast cell if the PRC(s) dysregulated in the breast cell 38

derepressed the target genes important for lung cell determination. 39

While much knowledge has been gained about the mechanisms and functions of the 40

various PRCs and their PcG protein components, much still remains unknown owing to 41

the complexity of the polycomb system. For humans and other complex multicellular 42

organisms, the set of all possible combinations of PcG proteins that can form different 43

PRCs and how they function is still largely unknown (there are estimated to be more 44

than 100 different PRC variants) [11,14–16]. Research is ongoing for ways of 45

determining PRCs’ target gene sets, which are thought to be different but possibly 46

overlapping between the various PRCs [16,17]. Additionally, despite much research, 47
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there is no determined DNA sequence that distinguishes a target gene (called Polycomb 48

Repressive Elements (PREs)) like in Drosophila Melanogaster [18–20] and no way to 49

reliably classify PRC target genes in humans yet [16,18,21]. 50

Given the lack of target gene knowledge and the immense number of possible 51

combinations of PcG proteins combining to form different PRCs with potentially 52

differing functions and target gene sets in different contexts (developmental stages, cell 53

types, and environments), it is difficult to study from a systems-level a breakdown of 54

the polycomb mechanisms and its consequences experimentally in humans. As an 55

alternative, we introduce a new conceptual computational model that allows us to test 56

our hypothesis in-silico with full control over the model’s parameters. By using a 57

computational model, we can investigate the general functions of polycomb mechanisms, 58

and emergent properties upon their evolution and breakdown that are independent of 59

specific contexts. 60

One possible occurrence of phenotypic pliancy is in metastatic cancer. In contrast to 61

the phenotypic fidelity exhibited by normally functioning cells, metastatic cancer cells 62

seemingly abnormally and sustainably switch among highly divergent cellular 63

phenotypes in response to environmental changes– phenotypic pliancy [22–27]. The 64

wide variety of environments encountered is highlighted throughout the course of the 65

disease as the metastatic cells progress through invasion, intravasation, survival in the 66

circulatory system, extravasation, arrival at the metastatic site, and, finally, 67

colonization of the metastatic site [28–30]. Each of these occur in a different 68

environment and seemingly requires the metastatic cells to assume a different phenotype 69

in order to adapt to and survive in that environment [22–27,29], while non-metastatic 70

cancer cells do not switch their phenotype in response to environmental change [29]. 71

Additionally, it has been observed that sustained abnormal phenotypic switching is not 72

limited to cancer stem cells but is the property of a wider cell population [22,26,27]. 73

Attaining a deeper understanding of the underlying mechanism of such abnormal 74

phenotypic pliancy is therefore paramount. 75

As a special case of our general hypothesis, we hypothesize that progression to 76

metastasis is driven by the emergence of phenotypic pliancy in cancer cells as a result of 77

polycomb mechanism dysregulation. 78

Indeed, current literature demonstrates that dysregulation of polycomb mechanisms 79

plays an important role in cancer and metastasis [3,9,11,12,15,16,31], but how and why 80

is still contradictory. One reason that may explain the discrepancies in polycomb 81

mechanism involvement in primary and metastatic cancers, is that PcG proteins, when 82

not involved in a PRC, have different functions when acting in isolation versus as part 83

of a PRC [15]. For example, EZH2 is a PcG protein component of the Polycomb 84

Repressive Complex 2 (PRC2) that on its own is thought to be involved in cell cycle 85

progression [4]. So EZH2 is often up regulated in primary tumor cancers, which may 86

help cancer cells proliferate [32–34]. However, the other PRC2 PcG protein components 87

are not up regulated, hinting that EZH2 up regulation may not be affecting the PRC2 88

function. When EZH2 is found to be down regulated, it is typically in conjunction with 89

the other PRC2 components and in metastatic cancers [4]. 90

Previous observations and hypotheses that could possibly explain metastatic cancer 91

cells phenotypic pliancy are de- and re-differentiation [35–37]; cells’ accumulation of 92

appropriate mutations while dormant [38,39]; or exosome-mediated metastasis [40,41]. 93

However, there are important occurring commonalities captured by our hypothesis that 94

are involved in these three seemingly different observations: environmental influences, 95

epigenetic modifications, and abnormal phenotypic switching. Our systems-level 96

hypothesis does not contradict these more circumscribed observations, but rather may 97

provide a more parsimonious and unifying conceptual mechanistic framework that may 98

shed light on the mechanisms underlying all the above previous observations and 99
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hypotheses. 100

To corroborate our hypotheses and in-silico observations, we perform data analysis 101

of two different solid tumor metastatic cancers using single-cell RNA-sequencing data. 102

Our model predicts the emergence of phenoytypic pliancy and its behavior upon 103

breakage of polycomb mechanisms, which is general and context-independent, that is 104

corroborated by our findings from the solid tumor metastatic cancers analyses. 105

Results 106

Model Description 107

We develop a holistic computational model of the developmental process including the 108

action of PcG-like mechanisms, as well as post-development gene-regulatory dynamics, 109

and the evolution of these dynamics for populations of individuals. Our model is built 110

upon a well-established computational gene regulatory network model that was used to 111

study the evolution of canalization [42]and when with a single PRC incorporated to 112

demonstrate that PcG-like mechanisms dynamically reshape the gene interaction 113

network and allow for the evolution of multiple phenotypes in response to initiating 114

development with different initial gene expressions [13]. Briefly (see Materials and 115

Methods for details), the main features of our new computational model are: 116

1) Explicit environment-gene interactions in addition to gene-gene interactions, 117

modeling a set of abstract “environmental factors”, an environmental state vector 118

(denoted SE), and a matrix that determines the effect of each environmental factor on 119

each gene (denoted WGE). 120

2) Multicellular evolution and development. Since PcG-like mechanisms are integral 121

to the evolution of multicellularity, we explicitly evolve individuals composed of two 122

cells with the same genotype but in two different environments simultaneously. We 123

choose a fitness function which simultaneously selects for different optimal phenotypes 124

in the distinct environments. This allows us to investigate the ability of evolving 125

PcG-like mechanisms to facilitate differentiated genotype-phenotype mappings and test 126

the phenotypic fidelity and pliancy of these evolved PcG-like mechanisms when intact 127

and broken. In particular, this feature allows us to carry out multicellular evolution 128

experiments to compare the phenotype of a cell (gene expression vector denoted SG), 129

when post-developmentally transferred to a new environment, to that cell’s evolved 130

phenotype in both the old and new environments. 131

3) Evolution of multiple PRCs to study the consequences of their dysregulation 132

(matrix denoted θ with numbers of genes by number of PRCs). In our model, 133

dysregulation means complete loss of function of a single or multiple PRCs. Biologically, 134

in humans the DNA sequence or mechanism PRCs use to identify target genes is 135

actively debated and elusive [18]. In Drosophila and human embryos, chromosomal 136

regions targeted by PRCs are transcriptionally repressed only if genes do not reach a 137

critical gene expression level by a critical time point during development, as influenced 138

by the environment and maternal gene expression levels when the PRCs became 139

active [43–45]. There are multiple different PRCs with different combinations of PcG 140

proteins that are thought to alter the complex’s set of target genes [3, 16, 19]. Therefore, 141

we model multiple PRCs such that each complex can affect different, possibly 142

overlapping, sets of genes without needing the biological specifics for how these target 143

genes are recognized and repressed. 144

January 18, 2022 4/29

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 20, 2022. ; https://doi.org/10.1101/2022.01.18.476783doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.18.476783


Emergence of Phenotypic Pliancy: Model Predictions 145

We investigate the role of epigenetic, PcG-like mechanisms regulation in the evolution 146

towards phenotypic fidelity to differentiated phenotypes, and the general consequences 147

of dysregulating these evolved PcG-like mechanisms post-developmentally upon 148

switching environments. We hypothesize that post-developmental dysregulation of 149

PcG-like mechanisms allows cells to become phenotypically pliant. We use our 150

computational model described above to generate artificial “single-cell gene expression” 151

data. With this generated data, we visually and quantitatively test our hypothesis that 152

intact PcG-like mechanism facilitates differentiated genotype-phenotype maps and 153

phenotypic fidelity behavior, while PcG-like mechanism dysregulation increases 154

phenotypic pliancy, by applying our pliancy measure to our generated data. 155

Using our computational model with evolution under two different environments 156

simultaneously and allowance of two different PRCs to evolve with potentially differing 157

sets of targets and repressed genes, we investigate the degree of phenotypic pliancy 158

upon transferring a population of individuals from the first environmental condition to 159

the second when the PcG-like mechanisms are intact versus broken. We simulate 1,000 160

different populations that each evolve under 10 different evolutionary trajectories, where 161

each of these populations is comprised of 1,000 individuals to generate populations with 162

varied intact PcG-like mechanisms. After evolution of 1,000 generations, all 10 million 163

individuals are then subjected to four conditions post-development: 1) the population 164

was developed in environment 1 and the PcG-like mechanisms were left intact; 2) the 165

population was developed in environment 2 and the PcG-like mechanisms were left 166

intact; 3) the population was developed in environment 1, the PcG-like mechanisms 167

were left intact and the population was then transferred from environment 1 to 168

environment 2; and 4) the population was developed in environment 1, the PcG-like 169

mechanisms were broken and the population was then transferred from environment 1 170

to environment 2. After performing each experimental condition, we iterate through the 171

gene-expression dynamics to determine the stable cells, discarding the unstable ones. 172

We then visually assess the extent of phenotypic pliancy by plotting the Principal 173

Component Analysis (PCA) results for one of the population’s 1,000 individuals’ gene 174

expression vectors in the four aforementioned conditions. Since our simulated evolution 175

starts with no PcG-like mechanism target genes and every individual in the population 176

being the same as the founder, we allow the individuals and their PcG-like mechanism 177

to evolve, and then plot the population at an early stage of evolution, generation 50, 178

(see Figure 3A) and at the end of our simulated evolution, generation 1,000 (see Figure 179

3B). In Figure 3A and B, the gene expression patterns that developed in environment 1 180

(green) and environment 2 (blue X’s) form distinct clusters in PCA dimension 1, 181

indicating the differentiated cells in each environment are phenotypically distinct. At 182

the early stages of evolution before PcG-like mechanisms have fully evolved, when 183

PcG-like mechanisms are left intact or broken post-developmentally and the population 184

is transferred from environment 1 to environment 2, the resulting stable gene expression 185

patterns (cyan and red, respectively) switch to resemble environment 2 (blue X’s) 186

because PcG-like mechanisms and thus phenotypic fidelity have not evolved yet. 187

Importantly, when PcG-like mechanisms are left intact post-developmentally and the 188

population is transferred from environment 1 to environment 2, the resulting stable gene 189

expression patterns (cyan) remain close to that of environment 1 after evolution of the 190

PcG-like mechanisms after generation 1,000 (blue X’s), demonstrating that phenotypic 191

fidelity has evolved along with the PcG-like mechanisms. 192

These results confirm that, even when transferred to a different environment, if 193

PcG-like mechanisms are left intact the population will not substantially switch their 194

phenotypes but maintain the phenotypes that developed in the original environment, i.e. 195

providing phenotypic fidelity. Even more importantly, when PcG-like mechanisms are 196
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broken post-developmentally and the population is then transferred from environment 1 197

to environment 2, the resulting stable gene expression patterns (red) move closer to the 198

normal phenotype in environment 2 (blue X’s), and away from their original phenotype 199

in environment 1 (green). This observation illustrates that, when a PcG-like mechanism 200

is broken and the population is transferred to a different environment, cells will switch 201

their phenotypes to phenotypes that more closely resemble the normal phenotypes that 202

evolved in the environment transferred to. Importantly, to test if phenotypic pliancy is 203

sustained, meaning that can keep switching its phenotype when placed in a different 204

environment and not get stuck in a certain phenotype, we also plot via PCA the case 205

when switch back to environment 1 after switching to environment 2 206

(see Supplementary Figure 1). From the results, we find that pliancy is sustained, such 207

that the phenotype switches back to resemble that of environment 1 when moved back 208

(purple X’s). Lastly, as a control we also show the case when PcG-like mechanism is 209

broken, but the cells are kept in the same environment in which they had developed. 210

We find the gene expression patterns do move away from their normal expression, but 211

not substantially (see tan circles in Supplementary Figure 1). 212

To assess all 10 million simulated individuals’ phenotypic pliancy behavior during 213

evolution from all 10,000 different populations, we compute a phenotypic pliancy score 214

for when we break both PcG-like mechanisms, i.e. dysregulate both PRC1 and PRC2 215

complexes, and when break each PRC separately (see Materials and Methods). We find 216

that the level of phenotypic pliancy corresponds to the degree of polycomb mechanisms 217

dysregulation, such that the average phenotypic pliancy of all 10 million simulated 218

individuals is much greater when dysregulate both PRC1 and PRC2 simultaneously 219

than when dysregulate PRC1 and PRC2 separately (see Figure 3C). The dysregulation 220

of these PRCs does not affect the stability of the simulated cells, where around 0 to 221

0.1% of cells are unstable upon dysregulation of the PRCs separately or together 222

(see Supplementary Figure 2). 223

To verify our model results are robust, we test our model for phenotypic pliancy over 224

a wide range of parameters, demonstrating that phenotypic pliancy is a general, 225

systems-level phenomena (see Supplementary Information). 226

In addition, we find that the connectivity of the overall ”effective” gene regulatory 227

network decreases through evolution when evolved with a PcG-like mechanism 228

(see Supplementary Figure 3), and the number of genes that are repressed by at least one 229

PRC in both environment 1 and 2 increases throughout evolution (see Supplementary 230

Figure 4). This shows that the PRCs successfully evolve with increasing functionality. 231

Interestingly, our model predicts that there is a preference for PcG-like mechanisms 232

target genes that are repressed by any PRC to have a higher incoming connectivity than 233

the non-repressed target and non-target genes (see Supplementary Figure 3). 234

In sum, our model results demonstrate that: 1) evolution of PcG-like mechanisms 235

causes post-developmental phenotypic fidelity to evolve, 2) a breakdown of PcG-like 236

mechanisms lead to the emergence of phenotypic pliancy, 3) the level of phenotypic 237

pliancy corresponds to the degree breakdown of PcG-like mechanisms, 4) phenotypic 238

pliancy is sustainable, and 5) not only do phenotypically pliant cells move away from 239

their evolved phenotype in the environment move from, but they also move closer to the 240

normal evolved phenotype in their new environment. 241

Assessment of Phenotypic Pliancy in Metastatic Cancer 242

To assess our hypothesis and our model’s predictions, we use publicly available 243

single-cell RNA-sequencing data from matching primary tumor and metastatic cancer 244

sites, and normal cells at each site. In this data we do not have access to identical cells 245

placed in different environments. Instead, we analyze populations of individual cells and 246

make use of the fact that metastatic cells have undergone a change of environment from 247
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the primary to the metastatic site. Moreover, unlike with our model data, where the 248

only experimental conditions involve polycomb dysregulation and a change in 249

environment, here we are faced with additional mutations and abnormalities coming 250

from cancer cells. To control for that, we compare metastatic cells both to the primary 251

tumor cells and to the normal cells at both the primary and metastatic sites. Driven by 252

our findings from the model in the above results section, we address the following three 253

sub-hypotheses: 1) PcG genes are differentially expressed in cancer cells relative to 254

normal cells in their environment, and moreover, the set of differentially expressed PcG 255

genes is enriched in metastatic cells relative to primary tumor cells; 2) metastatic cells 256

exhibit elements of phenotypic pliancy, such that their phenotype moves away from that 257

of the primary tumor, and closer to the normal cells in the metastatic site; and 3) PcG 258

genes are implicated in the observed phenotypic pliancy of metastatic cells, such that 259

there is a positive correlation between the extent of dysregulation of PcG genes and the 260

degree of phenotypic movement in the direction of normal phenotype. 261

Here we emphasize that metastatic cells’ phenotypic movement in the direction of 262

normal does not imply taking on the identity of the surrounding normal cells, but rather 263

sufficiently modifying the gene expression pattern (i.e. phenotype) to survive. 264

We use two different single-cell RNA-sequencing data sets from patients with 265

metastatic head and neck cancer (H&N) obtained by Puram et. al. [46] and patients 266

with metastatic serous epithelial ovarian cancer (ovarian) obtained by Shih et. al [47] 267

(see Materials and Methods). We utilize a list we curated with 69 genes that are involved 268

in polycomb mechanisms including 22 PcG genes, 35 TrxG genes, and 12 genes that 269

have been verified to be controlled by PRCs (see Supplementary Table 1) [11, 12, 17, 48]. 270

Preprocessing and all further analysis of the Puram et. al. and Shin et. al. data sets is 271

performed using the R software package Seurat (see Materials and Methods) [49–51]. 272

Metastatic cells are enriched with dysregulated PcG mechanisms 273

We test sub-hypothesis 1 by performing differential expression analysis on the 274

preprocessed data using the default method (Wilcoxon rank sum test) of the R Seurat 275

package [49–51]. For the H&N data set, differential gene expression analysis is done 276

separately for each of the two pairwise comparisons: metastatic cells versus non-cancer 277

cells in the lymph nodes, and primary tumor cells versus non-cancer cells in the oral 278

cavity. For the ovarian data set, differential gene expression analysis is done between 279

primary tumor cells versus normal cells in the ovary, and metastatic cells versus these 280

same normal cells in the ovary since normal samples were not taken in the omentum. 281

For both H&N and ovarian data, we find all the genes with differential expression 282

between cancer and non-cancer cells in the primary tumor (column 2, row 2 and 4 in 283

Supplementary Table 2, respectively) and the metastatic site (column 2, row 3 and 5 in 284

Supplementary Table 2). Then we look at the number of PcG-like mechanism related 285

genes included in the analysis that are differentially expressed for both the H&N and 286

ovarian data for primary (column 3, row 2 and 4 in Supplementary Table 2) and 287

metastatic (column 3, row 3 and 5 in Supplementary Table 2). Finally, for both H&N 288

and ovarian data, we calculate the log-fold change sum for primary and normal cells at 289

the primary site (column 4, row 2 and 4 in Supplementary Table 2) and the sum for 290

metastatic and normal cells at the metastatic and primary site, respectively (column 4, 291

row 3 and 5 in Supplementary Table 2). To calculate the significance in the difference in 292

the log-fold change sums between primary and metastatic for each H&N and ovarian, 293

we test against the null hypothesis that polycomb dysregulation is the same in primary 294

and metastatic, by using a permutation test randomly permuting, over 1000 trials, the 295

identity of primary and metastatic for each PcG gene’s expression data, and using the 296

generated histogram to extract p-values. 297

For the H&N results, an increase in PcG genes differential expression from primary 298
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to metastatic indicates enriched dysregulation of these genes and a decrease in log-fold 299

change sum at the metastatic site (p-value < 0.15) gives evidence that metastatic cells’ 300

PcG mechanism is being down regulated to a greater extent than primary cells. For the 301

ovarian results, despite a decrease in the number of differentially expressed PcG genes 302

in metastatic cells compared to normal, we observe strong evidence that metastatic cells’ 303

PcG mechanism is being highly down regulated while primary cells’ mechanism is 304

actually being up regulated (p-value < 0.05). Since down regulation is more indicative 305

of breakdown in function, this supports our hypothesis of increased polycomb 306

dysregulation in metastasis. Up regulation in primary cells may be explained by many 307

findings that some polycomb mechanism genes have independent functions from their 308

PRC(s) in many cancers, such as cell cycle progression roles, as discussed for 309

EZH2 [4,32–34]. 310

Metastatic cells are phenotypically pliant 311

To test sub-hypothesis 2 and assess our model prediction that cells with broken 312

polycomb mechanisms moves toward the normal phenotype of the new environment in 313

which they are placed (see Figure 3A and B), we further narrow the set of genes under 314

consideration to only those which are differentially expressed between primary and 315

metastatic cancer cells resulting in a total of 2,246 genes for the H&N and 3,393 genes 316

for the ovarian data. This restriction is in order to not drown out the signal of the 317

difference between these two cellular categories. 318

In order to visualize phenotypic pliancy, we use 2 different methods to allow us to 319

capture critical features of the data to extract knowledge of phenotypic pliancy behavior 320

without having dynamical data. First, we perform a principal component analysis 321

(PCA) on the two data sets. The first two principal components are plotted in 322

Supplementary Figure 5, showing a clear clustering of the data for both the H&N and 323

ovarian data. Importantly, especially along the first principal component, metastatic 324

cells tend to be closer to normal cells than primary tumor cells are, lending credence to 325

our hypothesis of increased phenotypic pliancy in metastatic cells and prediction from 326

our model. Moreover, Supplementary Figure 5 reveals that primary tumor cells can be 327

divided into two sub-clusters based on the sign of PC2 (y-axis), where one sub-cluster 328

substantially overlaps with metastatic cells (in cyan). Secondly, we apply Uniform 329

Manifold Approximation and Projection (UMAP) [52] to the two data sets and see an 330

even clearer progression from primary tumor cells to metastatic cells and then to 331

normal cells (see Figure 4). In addition, these UMAP findings also reveal that a 332

significant number of primary tumor cells (labeled cyan in Supplementary Figure 5) 333

possess a gene-expression profile closer to that of metastatic, which suggests these 334

primary cells may have transitioned to a more metastatic cell type. 335

In order to quantify phenotypic pliancy for each gene, after preprocessing, we 336

compute the mean expression level for each of the four (H&N) or three (ovarian) cellular 337

sites. We use these means in two ways. Firstly, for the H&N data, the 338

21,294-dimensional vectors (total number of genes after preprocessing) of these means 339

represent the centroids of the four cellular categories. Computing the Euclidean 340

distance between centroids, the log-scale distance between primary tumor centroid and 341

normal centroid is 55.1, which is larger than the distance between metastatic centroid 342

and lymph normal centroid of 50.2 for the H&N data. For the ovarian data, the 343

distance between primary tumor centroid and normal ovary centroid is 34.2, which is 344

larger than the distance between metastatic centroid and normal ovary centroid of 32.5. 345

These distances are further increased when only considering the ”primary2” cells that 346

are clustered separately from the metastatic cells (green in Supplementary Figure 5), 347

with ”primary2” to normal distance of 57.4 compared to metastatic lymph normal 348

distance 50.2 for H&N, and primary2 to normal distance of 39.8 compared to metastatic 349
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normal distance 32.5 for ovarian data. 350

Secondly, we examine separately gene-by-gene the differences between primary and 351

normal at the primary site (x-axis) versus the differences between metastatic and 352

normal at the lymph node site or ovary site for H&N and ovarian data, respectively 353

(y-axis) (see Supplementary Figure 6). Plotting the gene-wise differences between 354

primary and normal at the primary site against the gene-wise differences between 355

metastatic and normal at the lymph node site with the lines y = x and y = −x for 356

comparison, we see a trend toward gene-wise differences between metastatic and normal 357

at the lymph node site being smaller in absolute value than gene-wise differences 358

between primary and normal at the primary site. Indeed, this is the case for 68% of the 359

genes differentially expressed between primary tumor versus metastatic cells (p-value 360

< 10−8) for H&N and 72% (p-value < 10−9) for ovarian. All these measures lend strong 361

evidence to sub-hypothesis 2 of increased phenotypic pliancy of metastatic cells for two 362

different cancer types and our model predictions. 363

Degree of PcG mechanism dysregulation correlates with level phenotypic 364

pliancy 365

To test our model prediction that the degree of phenotypic pliancy is given by the level 366

of polycomb mechanisms disruption (see Figure 3C), we find the distance between each 367

metastatic cell relative to the normal cells’ means of their gene expression. We use the 368

genes differentially expressed between metastatic and normal cells, excluding the 53 369

PcG and TrxG genes because we use these PcG mechanism genes as predictors in the 370

regression analysis below (these 53 genes do not include the 12 known PcG target genes) 371

for the H&N data and excluding the 56 PcG and TrxG genes for the ovarian data (these 372

do not include the 9 known PcG target genes). We then fit a linear regression to predict 373

the distance between a metastatic cell and the normal centroid as a function of all the 374

PcG mechanism genes’ expressions (r2 = 0.22 for H&N and r2 = 0.56 for ovarian data). 375

For the H&N data, out of the 53 PcG and TrxG genes, 30 have positive coefficients in 376

the linear model. Positive coefficients mean that decreased PcG ad TrxG expression is 377

positively correlated with metastatic cells’ lower distance to normal, thus indicating 378

that dysregulation of the PcG-like mechanism drives pliancy. For the ovarian data, out 379

of the 56 PcG and TrxG genes, 21 have positive coefficients. 380

As a control for this result, we perform a bootstrap, randomly picking 1000 samples 381

of 53 genes for H&N and 56 genes for ovarian and performing the same linear regression 382

of the score as a function of these 53 and 56 genes’ expression profiles for H&N and 383

ovarian data, respectively. For each such regression, we record the number of genes with 384

a positive coefficient and compute the distribution of this number (see Supplementary 385

Figure 7). The mean is 22.3 out of 53 for H&N data, and mean is 10.6 out of 56 for the 386

ovarian data. Relative to these distributions, 30 for H&N data and 21 for ovarian data 387

is statistically significant (p-value < 0.05 and p-value < 10−5, respectively) 388

(see Supplementary Figure 7). So, in both the H&N and ovarian data there is a high 389

level of dysregulation of PcG mechanism genes that is associated with metastatic cells 390

moving closer toward the normal phenotype. 391

Discussion 392

We set out to obtain a better systems-level understanding of the potential consequences 393

of post-developmentally dysregulating epigenetic polycomb regulatory mechanisms, as 394

they play a crucial role in cellular differentiation and maintenance of cell identity. We 395

hypothesized that post-development dysregulation of PcG mechanisms will lead to 396

decreased phenotypic fidelity, which will allow dysregulated cells to sustainably switch 397
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their phenotype in response to environmental changes, a capacity that we term 398

phenotypic pliancy. We further hypothesized that cells with dysregulated PcG 399

mechanisms, when introduced into a new environment will switch into phenotypes that 400

more closely resemble that of the already evolved phenotypes in this environment, since 401

we expect that the environmental cues will dominate once the cellular memory 402

disappears due to loss of polycomb mechanisms. 403

We developed a computational model that incorporates environment-gene 404

interactions, in addition to gene-gene interactions; multicellular development and 405

evolution; and the evolution of multiple different PRCs, with the ability to dysregulate 406

PRC(s) post-development. We investigate with our model the role of PcG-like 407

mechanisms regulation in the evolution towards phenotypic fidelity of the differentiated 408

phenotypes of simulated multicellular cells, and the general consequences of 409

dysregulating these evolved PcG-like mechanisms post-developmentally upon switching 410

environments. Our model results predict that: 1) evolution of PcG-like mechanisms 411

causes post-developmental phenotypic fidelity to evolve, 2) a breakdown of PcG-like 412

mechanisms lead to the emergence of phenotypic pliancy, 3) the level of phenotypic 413

pliancy corresponds to the degree of breakdown of PcG-like mechanisms, 4) phenotypic 414

pliancy is sustainable, and 5) not only do phenotypically pliant cells move away from 415

their evolved phenotype in their original environment, but they also move closer to the 416

normal evolved phenotype in their new environment. 417

To assess our phenotypic pliancy hypothesis and model predictions, we utilize 418

biological data from metastatic cancer since we hypothesize that phenotypic pliancy is 419

necessary for its progression as one of the defining aspects of metastatic cancer is its 420

ability to adapt to and survive in a wide variety of highly divergent environments. Our 421

hypothesis does not contradict but rather may provide a more parsimonious and 422

unifying conceptual mechanistic framework than the existing more circumscribed 423

hypothesizes, i.e. de- and re-differentiation; appropriate mutation accumulation during 424

dormancy; and exosome-mediated niche-construction. 425

Since our model views phenotypic pliancy at the cellular level using simulated gene 426

expression patterns, we use publicly available single-cell RNA-sequencing data from 427

matching primary tumor and metastatic cancer sites, and normal cells at each site, 428

making use of the fact that metastatic cells have undergone a change of environment 429

from the primary site to the metastatic site. We found that 1) metastatic cells have 430

enrichment of PcG mechanism genes differentially expressed when compared to normal, 431

non-cancer cells at the respective site relative to primary tumor cells; 2) metastatic cells 432

behave like phenotypically pliant cells, such that their phenotypes move away from that 433

of the primary tumor, and closer to the normal, non-cancer cells in their surrounding 434

site; and 3) PcG mechanism dysregulation is positively correlated with the degree of 435

phenotypic movement in the direction of normal phenotype, i.e. level of phenotypic 436

pliancy. These findings corroborate the predictions resulting from our computational 437

model. While our metastatic cancer data results are not definitive since many PRCs, 438

PcG mechanism genes, and PcG target genes are still unknown, our results do provide 439

initial evidence of a general hypothesis that can be further tested and validated with 440

experimental studies. 441

There are additional unknowns pertaining to the primary tumor that need to be 442

addressed in future work to understand the initial stages of metastatic cancer 443

progression. Further research is needed to assess the assumption that polycomb 444

mechanisms evolve to provide phenotypic fidelity to the generated tumor 445

microenvironment of primary tumor cells. Additionally, we recognize that further more 446

detailed analysis is needed to untangle the involvement of the mutations and their 447

consequential changes to the gene regulatory network dynamics and if and how 448

polycomb mechanisms and the environment are involved in this, factors which our 449
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computational model does not address. 450

Just as previous results using conceptual biologically inspired phenomenological 451

models have demonstrated the emergence of systems-level properties not selected for or 452

context-dependent that resulted in important biological insights [13,42,53–55], we find 453

that phenotypic fidelity is a general emergent property of PcG-like mechanisms 454

evolution and phenotypic pliancy is a general emergent property following this 455

mechanisms dysregulation. Specifically, in our computational model we do not select 456

for the above two phenotypic behaviors, and instead select for developmentally stable 457

phenotypes in multiple environments across many different contexts, i.e. gene regulatory 458

networks, environments, evolutionary trajectories, and parameter settings. Yet, 459

phenotypic pliancy emerges upon dysregulation of evolved PcG-like mechanisms. Our 460

phenotypic pliancy hypothesis has the capacity to be a general purpose phenomenon not 461

unique in cancer metastasis, but may shed light on a family of diseases where epigenetic 462

dysregulation has been implicated and phenotypic pliancy may play a role [56]. 463

Materials and methods 464

Computational Model Description 465

Our computational model operates on two levels: gene regulatory network (cell) 466

dynamics and population dynamics (see Figure 2). At the detailed level of 467

gene-regulatory network dynamics, a simulated cell’s state at any given time is given by 468

a gene expression state vector, SW, together with an environment state vector, SE. The 469

gene expression vector has dimension N – the number of genes – and its coefficients 470

represent gene expression levels. The environment vector’s coefficients represent 471

abstract “environmental factors” which can potentially affect gene expression. The 472

dimensionality of these environmental factors is a parameter, which we choose to be 473

equal to N . Next, the basic gene-regulatory dynamics are described by two matrices 474

(see Figure 2). The first matrix, WGG, is a N ×N matrix encoding interactions among 475

genes, where the ij entry of the WGG matrix represents the effect of gene i on the 476

product of gene j. The second matrix, denoted WGE , similarly encodes the effect of the 477

environmental factors on gene products in the cell. Please see Supplementary Table 3 478

for a list of model parameters and their values. 479

Finally, we incorporate the effects of PcG-like proteins in a developing individual into 480

the model. Each simulated “cell” in this model is assigned multiple simulated PRC’s. 481

The information of which genes are targets of a given PRC is encoded in a PRE matrix 482

(denoted θ), with entry θi,j equal to 1 if gene i is under the control of PRC j, and equal 483

to 0 otherwise. During the developmental step in our model, a gene possessing PREs 484

(θi,j = 1 for some j) is permanently silenced by a PRC if that gene fails to be expressed 485

above a threshold γ by a predetermined critical time point tc during development. 486

Letting St
G denote the gene-expression state vector at time t and assuming a fixed 487

environment state vector SE, the gene expression dynamics of each simulated cell are 488

then given by (St+1
G )i = σ((WGG · St

G) + (WGE) · SE)i), where σ is the standard 489

sigmoid, unless gene i is under the control of a PcG-like mechanism, t > tc, and 490

(Stc
G )i < γ, in which case (St+1

G )i = 0. As a short-hand, we denote this piecewise 491

function by: St+1
G = σ((W · St)G)[θ]. 492

Development is defined as the process of starting from some initial state and 493

iterating the gene expression dynamics as described above until steady state is reached, 494

denoted SG. Steady state is reached when a stability measurement, a normalized 495

variance of gene-expression pattern within the last 10 developmental time-steps, is 496

smaller than the error term ε = 10−4. Cells that reach steady state are deemed 497

developmentally stable [53,57], otherwise they are considered lethal. 498
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At the detailed level of population dynamics, a population of M individuals undergo 499

iterations of mutation, reproduction, development, and selection, where each iteration 500

represents a generation (see Figure 2). In total, the population dynamics step models 501

the evolution of the population through 1,000 generations in the presence of stabilizing 502

selection. A population is initially generated from one developmentally stable individual, 503

known as a founder. The matrices WGG and WGE , together with the PRE matrix θ, 504

constitute the individual’s genotype. The WGG and WGE matrices of the founder are 505

randomly generated matrices with a fixed ratio c (the matrix connectivity) of non-zero, 506

Gaussian-distributed entries. The matrix θ is initially set to 0, with a fixed number of 507

potential PRCs, so that in the beginning of evolution no gene is under PcG-like 508

mechanism control. We add the ability to model the evolution of a population of 509

multicellular individuals (see Figure 2), each individual’s cells sharing the same 510

genotype but developing in two different environments. We randomly generate 2 511

different environment binary state vectors which are pairwise different by a certain 512

percentage difference, ∆e, and such that the founder individual is stable in these 513

environments. We additionally randomly pick the optimal phenotypic vectors, Sopt
Gi

, 514

such that they are different by a threshold, ∆S , from each other. We pick initial state 515

vectors SGi
which are environmentally stable in their respective environments but may 516

differ from Sopt
Gi

, allowing for evolution toward the optimum. We measure 517

developmentally stable individuals’ fitness Ω with stabilizing and directional selection 518

components: Ω = (e−(D/s)+max(0,1−a·D))
2 , where D = (|SG1

− Sopt
G1
|+ |SG2

− Sopt
G2
|)/(2N) 519

measures distance from optimum, s is the stabilizing selection strength, and a is a 520

parameter of the directional selection strength (see Supplementary Table 3). 521

This fitness function selects for individuals for which SGi moves closer to Sopt
Gi

. 522

During each generation, reproduction and selection are carried out by setting each 523

simulated cell’s probability of reproduction to be proportional to its fitness. Again, 524

developmentally unstable individuals are considered lethal, thus not included into the 525

next generation. The population of cells reproduces sexually. 526

Mutation is carried out by allowing each of the nonzero entries of the individual’s 527

gene interaction network, WGG, and gene-environment interaction, WGE to mutate 528

according to a Gaussian distribution, with mutation rate µ. The entries of the PRE 529

matrix, θ, are also free to switch between 0 and 1 with a set mutation rate, allowing 530

evolution of susceptibility to PRCs. The mutation rate is set such that during each 531

generation a fraction µ of a cell’s N genes can be mutated to either become susceptible 532

to PRCs (θij goes from 0 to 1), or lose susceptibility to PRCs (θij goes from 1 to 0). A 533

detailed analysis of the previous model shows robust behavior to a wide range of the 534

model’s parameters (27), which we also observe in parameter testing for our current 535

model (see Supplementary Information). 536

Phenotypic Pliancy Score 537

At the end of and during the simulated evolution, we measure phenotypic pliancy for 538

each individual in each population as follows. We consider four environmental 539

conditions: a) the cell is developed in environment 1 and has its polycomb mechanisms 540

intact; b) the cell is developed in environment 2 and has its polycomb mechanisms 541

intact; c) the cell is developed in environment 1, then post-developmentally transferred 542

to environment 2 with intact polycomb-like mechanism(s); and d) the cell is developed 543

in environment 1, then post-developmentally transferred to environment 2 with broken 544

polycomb-like mechanism(s). We only consider those individuals for which the resulting 545

gene expressions are all stable. Each experimental condition then gives rise to a 546

different stable gene expression vector which we denote Sa
G, S

b
G, S

c
G, S

d
G, respectively. 547

We employ the following heuristic to determine when an individual is pliant at gene 548
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i– if it meets two criteria: |(Sd
G)i − (Sb

G)i| < 1
2 |(S

a
G)i − (Sb

G)i| and 549

|(Sd
G)i − (Sb

G)i| < |(Sc
G)i − (Sb

G)i|. We then calculate the frequency of genes at which 550

that individual is pliant, forming an individual’s pliancy score (see Figure 2). 551

Descriptions of Head and Neck Single-Cell RNA-Sequencing 552

Data 553

The entire data set consists of expression data for single cells obtained from 18 patients 554

(5 patients with matching primary and metastatic samples) in two locations: a primary 555

tumor site (oral cavity) with 1,426 cancer cells and 2,817 non-cancer cells, and a 556

metastatic site (lymph node) with 788 cancer cells and 546 non-cancer cells. The 557

non-cancer (normal) cells include fibroblasts, endothelial cells, and B and T cells, 558

amongst others; however, we only consider fibroblasts and endothelial cells. In our 559

analysis, there are four cellular categories: metastatic in lymph node, normal in lymph 560

node, primary tumor in oral cavity, and normal in oral cavity. 561

Descriptions of Ovarian Single-Cell RNA-Sequencing Data 562

The data set consists of expression data for single cells obtained from 9 patients (4 with 563

matching primary and metastatic samples) in three locations and thus cellular 564

categories: a primary tumor site (ovary or fallopian tube) with 1,649 cells, metastatic 565

site (omentum) with 1,062 cells, and normal site (ovary) with 355 cells. The normal 566

cells are comprised of fibroblasts, stromal cells, and mesothelial cells. When we perform 567

PCA on all the cells, the normal cells do not cluster by cell type and the primary cells 568

do not cluster by location. 569

Preprocessing of single-cell RNA-sequencing data 570

Preprocessing and all further analysis of the Puram et. al. and Shin et. al. data sets is 571

performed using the R software package Seurat [49–51]. First, we eliminate cells with 572

fewer than 200 genes expressed in the cellular categories (primary, metastatic, and 573

normal at either both primary and metastatic site or just primary site) and eliminate 574

genes which have non-zero expression in only two cells or less. For H&N data set, 1,426 575

cancer and 2,817 non-cancer cells from the primary site, and 788 cancer and 546 576

non-cancer cells from the metastatic site remain. For the ovarian data set, 1,555 cancer 577

and 345 non-cancer cells from the primary site and 1,028 cancer from the metastatic 578

site remain. As for genes after preprocessing, we retain 21,294 genes in the H&N and 579

18,973 genes in the ovarian data set for further analysis. For H&N data, 65 of these 580

genes are involved in a PcG-like mechanism including 22 PcG genes, 31 TrxG genes, 581

and 12 genes that have been verified to be controlled by PRCs. For ovarian data, 65 of 582

these genes are involved in a PcG-like mechanism including 21 PcG genes, 35 TrxG 583

genes, and 9 PRC target genes. We then normalize by log transforming and centering 584

the data and by using SCTransform in the Seurat package54,55, finding that the genes’ 585

estimated count-depth relationships were indeed zero for all the cellular categories in 586

each data set. Finally, we regress out cell cycle genes to eliminate any variance due to 587

difference in cell cycles. 588

Data Availability Statement 589

The code for both our computational model data generation, model data analysis, and 590

metastatic cancer data analysis can be accessed at: 591

https://github.com/AvivLab/Phenotypic-Pliancy. 592
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Figures 593
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Fig 1. Schematic of Polycomb Mechanisms During Development: The
evolution of Polycomb mechanisms carves the overall gene regulatory network into
subnetworks based on the environments encountered during development, which leads
to different differentiated phenotypes at the end of development.

Fig 2. Schematic of our Computational Model: Schematic of both the
population dynamics and gene regulatory network dynamics components of our model
under environment 1, where each simulated cell’s phenotype in the population is
represented by a blue sphere. Not shown in this schematic but simultaneously
happening in our model is the evolution under environment 2, where each simulated
cell’s phenotype is represented as a purple star. This figure also shows a schematic of
phenotypic pliancy assessment when switch a simulated cell from environment 1 to
environment 2 after evolution.
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Fig 3. Phenotypic Pliancy Results from Computational Model: A. Principle
Componenet Analysis (PCA) results for all individuals in population right after
generation 50 during evolution when polycomb mechanisms have not more fully evolved
to visually assess phenotypic pliancy. When transfer from environment 1 to environment
2, both the cases when polycomb mechanisms are left intact (cyan) and broken (red)
alter their phenotypes to resemble that of environment 2 that moved to (blue X’s). B.
PCA results for all individuals in population at the end of evolution (after generation
1,000) when polycomb mechanisms have more fully evolved to visually assess phenotypic
pliancy. When transfer from environment 1 to environment 2, only the case when
polycomb mechanisms are broken and switched to environment 2 (red) alter their
phenotypes to resemble that of environment 2 that moved to (blue X’s). The
individuals with polycomb mechanisms left intact and moved to environment 2 (cyan)
have phenotypes that do not switch and resemble more closely environment 1 that
moved from (green). C. Average phenotypic pliancy score when vary degree of PcG-like
mechanisms dsyregulation during evolution for all 10,000 populations when move from
environment 1 to environment 2 to quantitatively assess pliancy. We vary degree of
dsyregulation by breaking PRC1 alone (blue), PRC2 alone (cyan), or both PRC1 and 2
(red) for all 10,000 populations for a total of 10 million simulated cells pliancy score
averaged (y-axis) for different generations throughout evolution (x-axis).

Fig 4. UMAP Results for Metastatic Cancer SC-RNA-Seq Datasets:
UMAP results for the two single-cell RNA-sequencing data sets: A. H&N data and B.
ovarian data. Note: the primary tumor cells are colored based on the PCA
sub-clustering in Supplementary Figure 4.
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Supporting information

Model Parameter Testing

We test the sensitivity of the model’s behavior, and the generality of our results, by
measuring the change in the percent of cells exhibiting overall phenotypic pliancy when
PcG-like mechanism is intact versus broken over a wide range of parameters and 10
randomly chosen starting gene-regulatory network architectures. Specifically, we vary
the following five parameters: gene-regulatory network connectivity density (=0.1, 0.3,
0.5), selection strength (=0.5, 1, 2), gene-activation sigmoidal strength (=1, 4, 6), gene
threshold level that triggers PRC repression (=0.1, 0.15, 0.2), and mutation rates (gene
mutation rate per genome, environment interaction mutation rate, and PcG-like
mechanism mutation rate) (=0.1, 0.2, 0.3). Therefore, we obtain results for 243 different
parameter settings. We vary these five parameters independently, and we use the same
starting population that undergoes the same 100 different evolutionary trajectories for
each parameter setting. We then calculate the percent of phenotypically pliant
individuals in each evolved population when PcG-like mechanism is left intact or is
broken, then calculate the average for each of these two cases over the 100 different
evolved populations for each parameter setting. Given that our phenotypic pliancy score
(see Materials and Methods) can only be measured for the individuals with broken
PcG-like mechanism, we measure overall phenotypic pliancy for each case when
PcG-like mechanism is broken vs. left intact to better compare parameter effects. We
measure overall phenotypic pliancy by calculating the distance between its stable
phenotype after development in its original environment, SW , and the resulting stable
phenotype upon transferring it post-developmentally to another environment, S′W .
Phenotypic pliancy for a given cell corresponds to a large Euclidean distance
|SW − S′W |, and phenotypic fidelity to a small distance. In our preliminary work, we
used a threshold distance of 0.05 to determine phenotypic pliancy, such that if the
Euclidean distance is greater than 0.05 then that cell is considered phenotypically pliant.
We see a drastic increase in the average phenotypic pliancy when PcG-like mechanism is
broken for each of the 243 different parameter settings (p-value = 10−16)
(see Supplementary Figure 8). Our parameter testing results show the different
parameter settings and network architectures do not change our phenotypic pliancy
results, strongly suggesting that, while our model lacks biological specificity, it is still
biologically relevant in its general implications.

Supplementary Figures and Tables
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Figure S 1. Sustained Phenotypic Pliancy due to PcG-like Breakdown in
Model: Principle Component Analysis (PCA) showing that when PcG-like mechanisms
are dysregulated in our model that phenotypic switching is sustainable, such that after
switching from environment 1 to environment 2 (red circles) and then back to
environment 1 (purple X’s) that the phenotypes more closely resemble what
environment they were switched to. As a control, we also see that if break PcG-like
mechanisms but keep in environment 1 (tan circles) then phenotype stays close to that
of the evolved phenotype in environment 1 when PcG-like mechanisms were intact.

Figure S 2. Average Number of Unstable Cells For Varying Degree of
PcG-like Mechanisms Breakage: The average number of unstable cells in each of
the 10,000 different populations when break PRC1 alone (blue), PRC2 alone (cyan),
and PRC1 and PRC2 together (red).
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Figure S 3. Effective Connectivity of the Gene Regulatory Networks
Throughout Evolution: The average incoming (A) and outgoing (B) effective
connectivity of the gene regulatory networks for all 10 million cells. The effective
connectivity averaged across all the genes in the network for environment 1 (dotted
lines) and environment 2 (solid lines) decreases throughout evolution as would expect
(magenta and cyan). The average connectivity of only the target PRC genes (green) and
genes repressed by any PRC (red and blue) are shown as well. Genes that are repressed
by any PRC have a higher incoming connectivity as compared to all the target genes.
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Figure S 4. Genes Repressed by PcG-like mechanisms During Evolution:
The average number of genes that are repressed by any PRC during evolution in
environment 1 (red) or environment 2 (blue).
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Figure S 5. Principle Component Analysis (PCA) Results for Metastatic
Cancer Datasets: PCA results for A. Head and Neck and B. Ovarian metastatic
cancer dataset, where metastatic cells’ phenotypes (given by their gene expression
patterns) are each represented by dark blue circles, primary cancer cell’s phenotypes are
represented by both green and cyan, and the normal non-cancer cells’ phenotypes at the
metastatic site and primary site are represented by black and red circles, respectively.
Note, the primary cells are split by principle component 2 (y-axis), such that primary
cells with PC2 values greater than zero are represented by cyan circles and primary cells
with values less than zero are represented by green circles.
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Figure S 6. Gene-Wise Differences for Metastatic Cancer Datasets: Plot of
the gene-by-gene the differences between primary and normal at the primary site
(x-axis) versus the differences between metastatic and normal at the lymph node site or
ovary site for the A. head and neck and B. ovarian metastatic cancer dataset,
respectively (y-axis). We have included lines y = x and y = −x for comparison. There
is a trend for the gene-wise differences between metastatic and normal at the lymph
node site being smaller in absolute value than gene-wise differences between primary
and normal at the primary site, which is the case for 68% of the genes differentially
expressed between primary tumor versus metastatic cells (p-value < 10−8) for A. H&N
and B. 72% (p-value < 10−9) for ovarian (shown in red).
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Figure S 7. : Bootstrapping results by randomly picking 1000 samples of PcG
mechanism control genes and performing linear regression of the score as a function of
these genes’ expression profiles for A. HN and B. ovarian data, respectively. Each plot
is the distribution of the positive coefficients computed for each random sample. The
red line is the number of PcG mechanism genes with positive coefficients, which is 30
for HN data and 21 for ovarian data. The mean is 22.3 out of 53 for HN data, and mean
is 10.6 out of 56 for the ovarian data, so the mean for both A. and B. (red line) is
statistically significant (p-value < 0.05 and p-value < 10−5, respectively).

Figure S 8. Overall Phenotypic Pliancy for Model Parameter Testing:
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Table 1. Polycomb Mechanism Genes Used in Single-Cell RNA-Sequencing Data Analysis:

PcG Protein TrxG Protein Controlled by PRC

RING1 CHD8 PCDH15
RNF2 ASH2L PCDHB1
CBX2 SMARCA1 PCDHB4
CBX4 SMARCA2 PCDHB15
CBX6 RBBP5 CDH8
CBX7 WDR5 CDH13
CBX8 CHD3 CDH18

PCGF1 CHD4 CDH19
PCGF2 CHD1 CDH23
PCGF3 CHD2 RAP1A
BMI1 MTA1 RAP1B

PCGF5 MTA2 RAP1GAP
PCGF6 MTA3
SCMH1 HDAC1
RYBP HDAC2
YAF2 MBD2
EZH1 MBD3
EZH2 POLD3
EED BPTF

SUZ12 SMARCB1
RBBP4 DPF1
RBBP7 KMT2A

KMT2D
KMT2C
KMT2B
KAT8
DPY30

SETD1A
SETD1B
CXXC1
WDR82
KDM6A
NCOA6
PAXIP1
PAGR1

Table 2. Differential gene expression analysis for metastatic cancer data sets.

Data (Tumor) DE All Genes DE PcG Genes Log-Fold Change Sum

H&N (Primary) 9,401 genes 42 genes -20.1
H&N (Metastatic) 9,038 genes 45 genes -29.2
Ovarian (Primary) 3,422 genes 25 genes 20.2

Ovarian (Metastatic) 2,304 genes 16 genes -14.3
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Table 3. Model Parameters and Values

Parameter Value

Genes 50
Population Size 1,000
Gene Regulatory Network Connectivity 0.1
Generations 1,000
Environment Components 50
Maximum Iterations 100
Gene Mutation Rate 0.1
Environment Interaction Mutation Rate 0.1
PcG-like Mechanism Mutation Rate 0.1
Selection Strength 0.5
Gene-Activation Sigmoidal Strength 1.0
PRC Repression Gene Threshold Level 0.15
PRC Critical Time Point 2
Number Different Environments 2
Number of Different PRCs 2
Proportion of Env. Components Affecting Cell > 0 0.4
Proportion of Genes Able to be Affected by Envs. 0.4
Proportion of Env. Components Affecting Gene 0.4
Minimum Difference Between Env. 1 and Env. 2 70%
Minimum Difference in Env. Optimum States 40%
Individual Weights Gaussian
Sexual Reproduction Flag true
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