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Abstract

Flying social insects can provide models of the interactions needed for aerial robot
swarms having limited processing resources. The ability to simultaneously make precise
measurements of insect wing and body motions on such interacting insects is a recent
capability, and chemical exposure may be used to modulate the interactions between
insects. These interaction effects must be distinguished from the chemicals’ effect on
non-interacting insects. In this experiment, four high speed cameras (9000 fps) were
used to track the wing and body motions of insects (Apis mellifera). Digitization,
consisting of data association, hull reconstruction, and segmentation, achieved the first
quantitative high speed measurements of ethanol exposed honey bees’ wing and body
motions. Kinematic analysis considered the trial wide mean and maximum values and
gross wingstroke parameters, and tested deviations for statistical significance using
Welch’s t-test and Cohen’s d test. The results indicate a decrease in maximal heading
and pitch rates of the body, and that roll rate is affected at high concentrations (5%).
The wingstroke effects include a stroke frequency decrease, stroke amplitude increase,
stroke inclination angle increase, and a more planar wingstroke. These effects due to
ethanol exposure are valuable tools to separate from interaction effects.

1 Introduction 1

Individual insects flying in crowded assemblies perform complex aerial maneuvers by 2

small changes in their wing motions. The complex behaviors and social interactions of 3

honey bees (Apis mellifera) make them good candidates for quantifying the individual 4

feedback rules that govern in-flight social interactions between animals. These 5

mathematical rules may be a strong tool informing the design of autonomous aerial 6

robotics swarm implementations on small, computationally-limited robotic platforms. 7

Previous terrestrial experiments have demonstrated that the degree of honey bee social 8

interaction (and hence these in-flight interactions) may be chemically manipulated 9

through exposure to chemicals such as isopentyl acetate, ethanol, or pheremones such as 10

9ODA and 9HDA [1]. 11

This study extends prior work on chemical exposure studies in 2D terrestrial 12

locomotion to untethered flight of honey bees by examining the in-flight wing and body 13
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kinematics effects of ethanol treatment in honey bees (which have not yet previously 14

been quantified), and by performing statistical analyses on these kinematics relative to 15

unexposed agents. Nineteen motion variables are tracked for each case: 15 body states 16

and 4 gross wingstroke parameters. The analysis approach tests mean and maximum 17

values (computed over each trial) for statistical significance using Welch’s t-test and 18

Cohen’s d test. 19

2 Previous work 20

Previous studies support the use of honey bees as a model for chemically-mediated 21

social interactions. Bees engage in a wide range of simple and complex behaviors that 22

include learning, communication. Honey bees foraging on fermenting nectar and fruit 23

may naturally consume ethanol. While honey bees do not have a life stage dependent 24

on alcohol (unlike fruit flies) [2], they readily self-administer high quantities and 25

concentrations of alcohol [3] and demonstrate preferences for specific types of alcohol [4]. 26

Bees and humans have been recorded exhibiting parallel aggression, locomotor, and 27

learning changes following ethanol consumption [5,6]. Ethanol reduces the sting 28

extension response threshold [6] and increases the number of stings [5]. High levels of 29

exposure negatively impacts passive avoidance learning [7]. 30

Locomotor activity decreases are dose-dependent [8], with small quantities inducing 31

erratic movements [9] and high EtOH doses inducing decreases in both bee flight and 32

walking activity [3, 10]. Free flight foraging behaviors suggest the species can building 33

ethanol tolerance [7]. 34

Ethanol dose-dependent learning impairments have also been recorded in honey 35

bees [8, 11,12], even in learning tasks as simple as association between an odor 36

(conditioned stimulus) and a sucrose reward (unconditioned stimulus) in proboscis 37

extension response (PER) experiments e.g. [8]. 38

The previous work indicates that general honey bee behaviour is changed under 39

ethanol influence and their flight behaviour may potentially be impacted as well. 40

However, a review of archival literature shows that digitized recordings of in-flight wing 41

and body motions for ethanol-exposed honey bees have not previously been reported. In 42

this study, high speed visual tracking is used to measure body and wing motion states in 43

flight after consumption of concentrations from 0% to 5%, and statistical tests (Welch’s 44

t-test, Cohen’s d effect size) are applied to those measurements to reveal these effects. 45

3 Methods and approach 46

3.1 Experimental procedure 47

Chemically-exposed honey bee preparation Foragers exiting a research hive 48

were captured and anesthetized via storage below 0◦ C for 3 minutes and restrained in a 49

harness made from a modified micro centrifuge tube. The insects were fed sucrose 50

solution until no PER was present and let rest for approximately 24 hours at 22◦ C. This 51

preparation ensured a consistent metabolic state at the beginning of experiments [13] 52

and minimized STRANGE effects [14]. A subset of insects were then fed sucrose-based 53

solutions with varying ethanol concentration [8], kept for 15 minutes, and added to the 54

flight test chamber. Each insect was removed from the test chamber less than 40 55

minutes after introduction to ensure flight is recorded under chemical influence. 56

High speed kinematics measurement A transparent T-shaped tunnel was 57

attached to an Apis mellifera hive entrance with the two remaining exits exiting to 58
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outdoor space. Four Photron high speed cameras filmed the T-joint intersection at 9000 59

Hz. The intersection was isolated with partitions in order to work as a confined 60

2337.80 in3 test volume, with an 875.67 in3 simultaneous capture volume. Recording 61

was initiated manually when the insects started flying in the visible volume and ended 62

when they left the volume covered by 3 or more cameras. 63

Digitizing tool Recorded insect flight trajectories were digitized using a high speed 64

visual insect swarm tracker (Hi-VISTA) [15] implemented in MATLAB which can 65

provide high-resolution tracking of multiple insects using a multiple camera system. The 66

Hi-VISTA tracker takes synchronized frames from different cameras, identifies and 67

removes background to recover multiple insect “blobs” which are then associated in 68

different views. These insect targets reconstructed through voxel carving by checking 69

consistency in views with the aid of camera projection matrices. Using the 70

reconstructed insect visual hull, Hi-VISTA then segments the insects into wing and body 71

and applies principal component analysis to vector geometry to determine their poses. 72

3.2 Analysis 73

Body parameters considered For this study, the state variables in each flight 74

sequence are represented by 15 scalar variables. For a time history over [0, Tr], where Tr 75

is the time length recorded, time t was discretized as ti, i = 1, 2, 3..., n at a constant 76

sample frequency, and the mean value of a variable h(t) measured the flight sequence 77

was calculated as 78

h̄ :=
1

n

n∑
i=1

h(ti), ti ∈ [0, Tr] (1)

and the maximum value is defined as 79

hmax := max
t∈[0,Tr]

[h(t)]. (2)

Body parameters in each flight sequence was characterized by 13 scalar values as 80

shown in Table. 1. We define the set of these scalars as B. Each of these variables are 81

measured from the stability axes of the insect. For each s ∈ B we consider 82

population-wise mean and standard deviation. 83

The population mean value of a variable was defined as 84

µ(s) :=
1

n

n∑
i=1

si. (3)

where n is the number of flight sequences recorded in the respective category 85

(0%,1%,2.5%,5%,). The population standard deviation of a variable was defined as 86

σ(s) :=

(
1

n

n∑
i=1

(si − µ(s))2

)1/2

. (4)

Wing parameters considered The insect wingstrokes were analyzed as a set W 87

comprised of 4 scalar variables. 88

The wing stroke, elevation, and pitch angles are represented as 3-1-2 Euler angles 89

(ϕ, ψ, α). Gross stroke frequency was determined by peak to peak time difference 90

Tp = 1/f in ϕ(t) of left wing. ϕ, ψ timehistories are then resampled to have a fixed 91

number of discrete data points N over each wingstroke. For each wingstroke the stroke 92

plane angle β and bias δ is determined by fitting 93

ψ(k) = −ϕ(k) tanβ + δ, k ∈ [1, N ]. (5)
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Set Notation Description

B

θ̄b Mean body pitch angle
¯|u| Mean absolute forward speed
¯|v| Mean absolute sideways speed
¯|w| Mean absolute heave speed
¯|p| Mean absolute roll rate
¯|q| Mean absolute pitch rate
¯|r| Mean absolute yaw rate

|u|max Maximum absolute forward speed
|v|max Maximum absolute sideways speed
|w|max Maximum absolute heave speed
|p|max Maximum absolute roll rate
|q|max Maximum absolute pitch rate
|r|max Maximum absolute yaw rate

W

f Peak wingbeat frequency
Φ Peak wingbeat amplitude
β Stroke plane angle
δ Wingbeat shift

Table 1. Characterizing body B and wing W variables in flight sequence

β can be used to compute planar motion of wing as in [16,17] 94

γ(k) = ϕ(k) cosβ − ψ(k) sinβ k ∈ [1, N ]. (6)

The stroke amplitude Φ for the wingstroke can be determined from the peak frequency 95

of the Fourier transform of γ. Both wing motions were considered while determining 96

β, δ,Φ by concatenating the datapoints. 97

The population mean and standard deviation of these variables s ∈W are 98

determined as 99

µ(s) :=
1

2M

2M∑
i=1

si. (7)

100

σ(s) :=

(
1

2M

2M∑
i=1

(si − µ(s))2

)1/2

. (8)

where M is the number of total wingstrokes recorded in the respective category (0%, 101

1%, 2.5%, 5%). 102

Statistical analysis tools In order to identify variables where data showed 103

statistical differences, binary statistical analysis was applied by dividing the data in 104

groups (G1 : 0%, G2 : 1%, G3 : 2.5%, G4 : 5%, G5 : 1, 2.5, 5%). 105

The statistical tools applied to this dataset were Welch’s t-test and Cohen’s d test. 106

Welch’s t-test tests the null hypothesis that two populations have equal means for some 107

variable. This hypothesis was tested for each s ∈ S and s ∈W where the null 108

hypothesis is 109

µG1(s) = µGi(s), i = 2, 3, 4, 5

Welch’s t-test does not assume equal variance and is helpful when sample sizes are 110

not equal. p-values are used to indicate the probability of the null-hypothesis being true. 111

Cohen’s d quantifies effect size by µ(s) deviation in terms of pooled standard deviation. 112
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Var \ Mean/SD µ0% σ0% µ1% σ1% µ2.5% σ2.5% µ5% σ5%
θ̄b (deg) 38.33 8.43 30.78 10.47 40.18 15.79 44.55 8.51
¯|u| (m/s) 0.30 0.08 0.32 0.08 0.28 0.10 0.34 0.17
¯|v| (m/s) 0.19 0.05 0.17 0.07 0.14 0.09 0.21 0.10
¯|w| (m/s) 0.12 0.03 0.17 0.09 0.16 0.13 0.16 0.06
¯|p| (deg/s) 656.57 171.16 540.40 158.75 510.14 235.92 408.17 92.95
¯|q| (deg/s) 226.93 104.92 131.17 61.97 159.95 94.17 188.87 57.16
¯|r| (deg/s) 579.67 258.26 337.52 160.85 413.47 175.33 410.98 92.62
|u|max (m/s) 0.56 0.09 0.47 0.10 0.41 0.10 0.54 0.16
|v|max (m/s) 0.50 0.15 0.37 0.10 0.35 0.12 0.42 0.18
|w|max (m/s) 0.37 0.11 0.39 0.17 0.29 0.12 0.37 0.10
|p|max (deg/s) 3648.32 1391.59 3131.99 1847.50 2388.81 1465.98 1623.18 551.47
|q|max (deg/s) 1306.49 750.40 620.02 258.81 472.10 185.23 570.74 152.61
|r|max (deg/s) 3253.09 1784.58 1741.28 821.30 1699.60 574.15 1665.31 584.09
f (Hz) 239.25 15.65 254.18 12.61 229.88 14.26 223.17 14.81
Φ (deg) 43.86 8.01 42.68 9.40 51.38 7.86 55.08 7.01
β (deg) 27.41 9.60 31.40 5.91 33.99 7.35 33.70 6.80
δ (deg) 15.81 7.72 11.96 4.73 14.30 6.77 21.10 6.80

Table 2. Mean µi and standard deviation σi of i =[0%, 1%, 2.5%, 5%] concentration
datasets.

4 Results and discussion 113

In this experiment we recorded flights in bees exposed with 20% sucrose and various 114

ethyl alcohol concentrations (by volume): 0% (Control), 1%, and 2.5% and 5%. 33 trials 115

were collected. 116

The overall data used in this study is summarized in Table. 2, and the results of 117

statistical tests are presented in Fig. 1 and 2. 118

4.1 Body variable characteristics 119

Pitch rates: ¯|q|, |q|max Mean absolute pitch rates decreased in all percentages but 120

the decrease is significant only in the 1% case. Maximum absolute pitch rate |q|max is 121

significantly reduced over all exposure levels. The changes in maximum pitch rates have 122

a large Cohen-d effect size with p < 0.05. A number of previous analyses indicate that 123

airframe pitch modes are often unstable without neural feedback [18–20], this shift 124

could signify that the pitch rate control mechanisms may have been affected and the 125

unexposed insects flight envelopes include more aggressive motions. 126

Heading rate ¯|r|, |r|max The overall decrease in mean absolute heading rates in all 127

percentages is significant only in the 1% case. Maximum absolute heading rate |r|max is 128

significantly reduced over all exposure levels, with a large Cohen-d effect size ( 129

p < 0.05). Previous work has indicated that “flapping counter-torque” provides passive 130

stabilization through aerodynamic damping on this axis [21,22], suggesting the 131

reduction in maximum heading rate may have different interactions with the underlying 132

airframe relative to pitch rate. 133

Roll rate: ¯|p|, |p|max Both the maximum and mean absolute roll rates show that they 134

are significantly reduced in the 5% case compared to control bees and not significantly 135

in 1% and 2.5% groups. However, the overall comparison of control and exposed bees 136

show reduction in both ¯|p|, |p|max. 137
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Figure 1. p values from Welch’s t test and Cohen’s d effect sizes are reported for the
body variables in B. The comparisons are presented between the control honey bees
(0%) and either all exposed data groups G5(1%, 2.5%, 5%) and individual percentages in
order to show which group is responsible for a statistically significant deviation from
mean.

Body Speeds The mean body speeds are unaffected over the dataset in every 138

comparisons. ¯|u|max and ¯|v|max had reduced in 2.5% to significantly affect the control 139

vs exposed case. This trend is not continued in 5% case and cannot be conclusively 140

linked to ethanol exposure. 141

4.2 Gross wingstroke characteristics 142

Insect asynchronous flight muscles generally operate near mechanical resonance [23] and 143

frequency deviations often result in reduced performance. Hovering honey bees have 144

primarily use relatively short amplitude and high frequency wingstrokes and maneuver 145

via amplitude tuning [24,25]. Compared to control honey bees we see frequency increase 146

and amplitude decrease in 1% group and frequency decrease with amplitude increase in 147

2.5 and 5%. The 1% bees does not follow the trend of decreasing frequency with 148

increased exposure level. Frequency decrease and amplitude increase was also observed 149

in a separate dataset with manual determination of frequency by video footage 150

observation [13]. 151

Stroke plane inclination β increased in all ethanol-exposed groups with a medium 152

effect size. β as a control input affects both forward flight speed u and pitch rate q [26]. 153

Although increasing β tends to increase forward speed, this effect can be mitigated by 154

changes in flight force due to the frequency and amplitude changes. The wingstroke 155
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Figure 2. The mean wingstroke over all wingbeats are presented in the top which
shows diminishing loop sizes in wingbeats with increased ethanol exposure. p values
from Welch’s t test and Cohen’s d effect sizes are reported for the wing variables in
W . The comparisons are presented between the control honey bees (0%) and either
all exposed data groups G5(1%, 2.5%, 5%) and individual percentages in order to show
which group is responsible for a statistically significant deviation from mean. For all
cases except for δ in 0% vs exposed, (p < 0.05)

shift δ increased significantly only in the 5% group. A gradual mean loop size decrease 156

with ethanol concentration (i.e., more planar wingstroke) is also visible in Fig. 2 (top). 157

The mechanics and effect of non-planar wingstrokes are still not well 158

understood [17,27,28] and require further aerodynamic analysis. 159

4.3 Limitations and observations 160

Honey bees exposed to 10% ethanol solution did not initiate flight within 60 minutes in 161

the test chamber and this study did not consider their flights. The 2.5% and 5% 162

subjects initiated flight within 30 minutes of introduction to the test volume and 163

displayed erratic ground movements prior to flight. Trials conducted at the 1% 164

concentration in free-flight are quantitatively different from control insects and are 165

distinct from the effects at higher concentrations, suggesting ethanol treatment effects 166

are not a simple monotonic trend. 167

Statistical analyses such as these are limited to quantifying effects and the relative 168
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likelihood of such a measurement occurring due to chance. They do not identify the 169

physiological or neural mechanisms behind such effects. This analysis also does not 170

account for inter-dependence of variables. These are the first recorded quantitative high 171

speed measurements of ethanol exposed honey bee flight, and experimental limitations 172

on the number of animals constrain the dataset size. The differences were indicated as 173

statistically significant and persisted when individual wingstrokes were analyzed (versus 174

trial wide analysis), a combination which strengthens the study’s applicability. 175

5 Summary 176

This paper presents the first quantitative high speed measurements of ethanol-exposed 177

honey bee flight body and wing kinematic parameters. Kinematic changes induced by 178

exposure to ethanol concentrations from 0% to 5% were studied using statistical 179

analysis tools. The maximum heading and pitch rates reduce with increased ethanol 180

exposure, while roll rates were affected at the 5% exposure level. Wingstroke analysis 181

indicates a frequency decrease and amplitude increase for greater than 1% percentage 182

exposure. Wingstroke loop size decreased and wing inclination angle increased with 183

increased exposure level. Understanding the flight variables induced by this chemical 184

manipulation in non-interacting flight conditions is an important result to distinguishing 185

the effects of chemically mediated social interactions with neighboring flyers from 186

chemical effects themselves. 187
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