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Mobile genetic elements (MGEs) carrying antibiotic resistance genes (ARGs) 

disseminate ARGs when they mobilise into new bacterial hosts. To investigate the scale 

of such horizontal gene transfer (HGT) events between human gut commensals and 

enteropathogens for the first time, we compared 1354 cultured commensal strains (540 

species) to 45,403 enteropathogen strains (12 species) and found 64,188 MGE-mediated 

ARG transfer events between the two groups using established methods. Among the 

5931 MGEs involved, we found 15 broad host range elements predicted to have crossed 

different bacterial phyla while also occurring in animal and environmental 

microbiomes. We experimentally demonstrated that predicted broad host range MGEs 

can mobilise from commensals Dorea longicatena and Hungatella hathewayi to 

enteropathogens Klebsiella oxytoca, crossing phyla simultaneously. Our work 

establishes the MGE-mediated ARG dissemination network between human gut 

commensals and enteropathogens and highlights novel broad host range MGEs as 

targets for future ARG dissemination management. 
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Humans are colonized by microbial communities dominated by bacteria from the 

Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria phyla that play an essential role 

regulating immune response1, aiding sustenance2, and providing pathogen colonization 

resistance3. Antibiotic treatment, though intended to eliminate pathogens, simultaneously 

eradicates indigenous commensal bacteria that are sensitive to the antibiotic. This can result 

in a microbiome with a vastly altered community structure and function; however, 

commensal species with intrinsic or acquired antibiotic resistance are protected from 

elimination. Antibiotic selection likely results in antibiotic resistance genes (ARGs) 

accumulation among commensal bacteria4 that may also act as a reservoir from which ARGs 

are transferred on mobile genetic elements (MGEs) to other species, including pathogens, via 

horizontal gene transfer (HGT)5-11.  

The extent of HGT in human gut microbiome and the types of MGEs involved, 

especially those associated with ARGs, have been the focus of continued research interest in 

the last decade. Several key metagenomic studies showed that HGT between gut bacteria is 

more frequent than HGT with bacteria from other body sites or environments because 

intestinal bacteria occupy the same habitat5. Most MGEs involved mobilise within the same 

phylum or lower taxonomic groups8 and the transfer of ARGs between pathogens and 

commensals is considered limited5, 12. A recent bioinformatic study utilising two separate 

genome collections has demonstrated a capacity to accurately predict compatible HGT host-

recipient pairs11. However, experimental validation of HGT has largely relied on high-

throughput chromatin conformation capture (Hi-C) which has uncovered extensive HGT in 

situ including between pathogenic and commensal species9, 10. Many studies using animal 

models have also demonstrated individual cases of increased HGT between pathogens and 

commensals during infections13, 14. Despite these advances, the majority of large-scale studies 

still do not experimentally validate MGE mobility at the isolate level.   
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It is therefore imperative to understand the true scale of HGT between pathogenic and 

commensal species coexisting in the human gut, to identify MGEs posing high risks in order 

to better inform future interventions to curb spread of ARGs. We and others have recently 

demonstrated that the vast majority of the human gastrointestinal bacteria can be cultured15-20. 

We used this resource to systematically investigate the extent of HGT between pathogens and 

commensals, with a focus on ARG-associated MGEs. We were able to confirm host range of 

MGEs with high confidence, strain-level resolution and validate in vitro putative past HGT 

events to demonstrate that these MGEs retain the ability to mobilise and can potentially 

spread associated ARG to numerous bacteria species. 

To map the extent of horizontally shared MGEs that carry ARGs between pathogenic 

and commensal bacteria of the human gastrointestinal tract, we first compared 1354 

commensal genomes (530 species) from the Human Gastrointestinal Microbiota Genome 

Collection (HGG)21 (Supplementary Table 1) to 45,403 publicly available genomes of human 

enteropathogenic and opportunistic pathogenic species (Supplementary Table 2). These 

genomes represented 12 gastrointestinal pathogenic species including 8 Proteobacteria; 

Klebsiella oxytoca (n=139), K. pneumoniae (n=7712), Escherichia coli (n=17142), 

Salmonella enterica (n=10394), Shigella sonnei (n=1290), S. flexneri (n=453), 

Campylobacter coli (n=919) and C. jejuni (n=1554) and 4 Firmicutes; Enterococcus faecalis 

(n=1364), E. faecium (n=1706), Clostridioides difficile (n=2016) and Clostridium perfringens 

(n=138) (Fig. 1a). Some of the 12 species are among the most prevalent gastrointestinal 

pathogens globally22-24, some are posing great risk to the public as they become increasingly 

resistant to antibiotics25. 

We reasoned that genes originating either directly or indirectly through recent 

horizontal transfer events would exhibit high nucleotide homology between isolates 

incongruent with phylogenetic distance. Pairwise gene comparisons were performed between 
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the 1354 commensal genomes and 45,403 enteropathogen genomes to identify those genes 

sharing significant nucleotide identity (>99% identity across over 500bp in organisms <97% 

16S rRNA homology5) between strains from either group. This analysis found 389,541 

putative horizontally transferred genes (Fig. 1c).  

To further identify genes encoding antibiotic resistance within the 389,541 putatively 

transferred genes, we computationally defined ARGs by comparison to the Comprehensive 

Antibiotic Resistance Database (CARD)26. This identified 64,188 (16.5%) of the putative 

horizontally acquired genes shared between commensals and pathogens to be ARGs. These 

ARGs were dominated by multidrug efflux complexes, aminoglycoside resistance, cationic 

antimicrobial peptide resistance and beta-lactamases (Supplementary Fig. 1). Notably, we 

observed no statistically significant enrichment in ARG class or gene families in either 

pathogen or commensal genomes. While these results reflect that pathogen associated genes 

dominate ARG databases26, 27, they also suggest no obvious barriers to ARG dissemination 

within either pathogens or commensals and between the two groups although we cannot 

determine the directionality of these HGT events. These observed patterns suggest that ARG 

dissemination networks are highly interconnected within the gut microbiome5 and further 

demonstrate that they transcend the type of bacterial symbiosis with humans.  

To define the MGEs responsible for mediating ARG transfer events between 

pathogens and commensals, we next consolidated the 64,188 shared ARGs into the common 

genetic elements by combining elements with greater than 90% shared homology across the 

element. A total of 5931 MGEs were identified within the dataset through this process. 

Analysis of these elements demonstrated a range of ARGs including dihydrofolate 

reductases, tetracycline resistance and aminoglycoside resistance with no enrichment for any 

individual class relative to the occurrence within the larger dataset.  
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The pathogens E. faecalis (n=1364 genomes), C. difficile (n=2016 genomes) and E. 

faecium (n=1706 genomes) from the Firmicutes phylum shared the greatest number of 

distinct genetic elements with the commensal isolates with significant enrichment by Fisher 

exact test relative to numbers of genomes (q < 10-6, q < 10-4 and q < 10-6). In contrast, the 

pathogens from the Proteobacteria phylum including, Escherichia coli (q < 10-12; n=17142 

genomes), K. pneumoniae (q < 10-6; n=7712 genomes) and Shigella sonnei (q < 10-3; n=1290 

genomes), were significantly under-represented by Fisher Exact Test when evaluating the 

overall number of shared distinct MGEs with the commensal microbiota. Equally, 

commensal Bacteroidetes and Actinobacteria shared few ARG containing MGEs with any of 

the pathogenic species considered in this study. While no events were observed with 

Fusobacteria, the small number of genomes limited statistical interpretation. Thus, although 

ARG-associated MGEs are widespread, MGE diversity and abundances are not evenly 

distributed across gut bacterial phyla, with Firmicutes exhibiting the highest enrichment of 

MGE diversity (p < 0.05; Fisher Exact Test) and sharing the most MGEs between 

commensals and pathogens (p < 0.05; Fisher Exact Test). 

Our ability to confidently assign specific MGEs to bacterial host species provided a 

unique opportunity to generate a phylogenetic framework to study MGE host range. It is 

known that the horizontal transfer range of a MGE is limited by phylogenetic barriers of the 

bacterial hosts8, although this has not been investigated at large scale across human gut 

bacteria. We found that 79.33% of MGEs transferred within a genus, 11% transferred across 

classes and, interestingly, 1.5% of MGEs had a broad host range being found across multiple 

phyla (Fig. 1b). Our results demonstrate the widespread presence of phylogenetic barriers 

which prevent the majority of MGEs disseminating broadly across bacterial phyla, with the 

majority of ARG transfer being restricted to within a bacterial genus. 
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 Given the obvious risks to human health associated with the capacity to disperse 

between bacterial phyla, we focused our analysis on those MGEs capable of broad host range 

and wide-scale dissemination between pathogens and commensals inferred from diverse 

phylogenetic occurrence. This analysis identified 15 broad host range MGEs shared between 

more than one bacterial phylum within our dataset. To provide a greater understanding of the 

genomic architecture surrounding the identified elements we coupled long-read sequencing 

technology with automated and manual annotations to generate high-quality reference 

genomes for the 15 broad host range MGEs (Supplementary Information).  

The 15 promiscuous MGEs include three plasmids (PLASMID_1-3), three integrative 

and conjugative elements (ICEs; ICE_1-3) and nine integrative and mobilizable elements 

(IMEs; IME_1-9) (Supplementary Table 3). While the majority (n=14) of these elements 

could be found in commensal Firmicutes, six were also found in commensal Actinobacteria, 

five in commensal Bacteroidetes and three in commensal Proteobacteria (Fig. 2). Elements 

occurred in a median of 5 of the 12 pathogenic species within this study (41.6%; min: 3; max: 

10) with elements in three Firmicutes (75%; min=1, max=4) and two Proteobacteria (25%; 

min=0, max=7) species. Between one and four ARGs were found on each element, with 

tetracycline and aminoglycosides being the most common encoded resistance. There were no 

common genetic elements that provide a universal explanation for the observed broad host 

range. 

We next classified the broad host range MGEs in the context of previously reported 

incompatibility (Inc) groups28-30 based on the type of MGE replication machinery. We 

examined each element for the presence of a gene encoding RepA protein using PSI-BLAST 

(cutoff E-value<1e-05). Our analysis identified putative RepA proteins in eight MGEs that 

share limited similarity (between 20% and 40%) with known Inc groups, and one element, 

PLASMID_1 (Supplementary Fig. 2), that contains a putative RepA which is not closely 
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related to any known Inc group (Supplementary Table 4). Thus, nine MGEs have putative 

novel replication proteins, but no identifiable genes encoding RepA could be recognized in 

the remaining six elements (Supplementary Table 3). We found that four elements (IME_1, 

IME_5, ICE_3, IME_8) encode RepA proteins that belong to a clade including the RepA 

found in IncQ plasmids and one element (PLASMID_2) that encodes a RepA that belongs to 

a clade that contains RepA found in IncA/C plasmids (Fig. 3a). In another cluster, RepA 

proteins from another three elements (ICE_1, ICE_2, IME_4) share ancestry with RepA from 

IncP1 plasmids (Fig. 3b). Importantly, MGEs belonging to IncA/C, IncQ and IncP1 groups 

commonly carry ARGs in Proteobacteria19,20 but MGEs with related replication machineries 

have not been previously recognized as drivers of broad host range ARG dissemination in 

Firmicutes and Bacteroidetes from the human microbiome. 

Despite the observed wide host range of these ARG-associated MGEs based on our 

genomic analysis, the HGT events could be ancient. We next used in vitro conjugation assay 

to test the ability of these MGEs, especially ICEs and plasmids, to mobilise between 

commensals and pathogens of different classes or phyla. ICE_1 carries aadK (streptomycin 

resistance) and can be found in a Faecalicatena contorta strain (Clostridia class of 

Firmicutes). ICE_2 carries tetM (tetracycline resistance) and can be found in a Hungatella 

hathewayi strain (Clostridia class of Firmicutes). Both ICEs can be transferred into a 

streptomycin and tetracycline sensitive E. faecalis strain (Bacilli class of Firmicutes) by dry 

patch conjugation, demonstrating their ability to mobilise across different classes (Fig. 3c&d; 

Supplementary Fig. 3). Based on earlier analysis of this study, ICE_2 is predicted to be able 

to mobilise across phyla as well. We further selected a novel plasmid PLASMID_1 which 

carries a poorly characterised tetracycline resistant determinant and can be found in a Dorea 

longicatena strain (Lachnospiraceae family of Firmicutes). Using filter and dry patch 

conjugation respectively, ICE_2 and PLASMID_1 were transferred into a tetracycline 
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sensitive Klebsiella oxytoca strain (Enterobacteriaceae family of Proteobacteria), 

demonstrating the ICE and plasmid still retain the ability to mobilise between different 

bacterial phyla (Fig. 3e; Supplementary Fig. 3). In all four pairs of conjugation assays, 

transfer of the MGE of interest into recipient bacterial strains was confirmed by PCR on all 

transconjugants (Supplementary Fig. 4) and long read sequencing of some randomly selected 

transconjugants. Interestingly, we noted that formerly tetracycline sensitive E. faecalis strain, 

after receiving either PLASMID_1 or ICE_2, exhibit higher MIC (minimal inhibitory 

concentration) than the original donor strains (Fig. 3d&e). This implies the same ARG 

containing MGE can be responsible for quantitatively variable antibiotic resistant phenotypes 

in different bacterial host species within the gastrointestinal microbiota. 

To understand the prevalence and environmental range of the 15 broad host range 

elements we next examined 4,349 high coverage human gastrointestinal microbiome-

associated metagenomes available within the HPMC database31. We determined prevalence 

rates of these elements to be between 0.52% and 98.2% with no statistically significant 

enrichment observed with Fisher Exact Test based on element type, size or antibiotic 

resistance genes carried (Fig. 4). To understand if these elements or associated homologues 

are also found within the microbiome communities of other human body sites, we determined 

the occurrence and prevalence of these elements within the skin, nasal cavity and female 

reproductive tract datasets of the Human Microbiome Project dataset. This analysis identified 

five elements limited in distribution to the human gastrointestinal tract, eight were detected in 

samples from the human nasal cavity, nine were detected in samples from the human vagina 

and three were detected in samples from the human skin with a coverage of 99% and 

detection rate of 0.001% (Fig. 4). Considered together, these results suggest an 

interconnection within the human microbiome, potentially limited by movement of species 

between body sites32. Equivalent analysis of samples from ruminant gastrointestinal 
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microbiome identified the presence of six elements, all of which can be also detected in both 

human gut, nasal cavity and vagina. On the other hand, only three elements were detected 

within environmental soil samples (Fig. 4). Hence, we demonstrate the presence of identical 

broad range MGEs in humans, animals and environmental sources, highlighting the need for 

a One Health approach to understand ARG distribution. 

While the prevalence of ARGs within human gut microbiome has been well 

established, we are lacking an understanding of ARG-associated MGE host range and 

prevalence in the context of the entire human microbiome. Our work represents the first 

large-scale, whole-genome, strain-level analysis coupled with experimental validation to 

generate an MGE-mediated ARG dissemination network between human commensals and 

enteropathogens. This work characterizes the diversity and host range of MGEs harboured by 

the gut microbiome, demonstrates the retained ability of key, novel broad host range MGEs 

to mobilize between diverse commensal and pathogenic species. In a medical context, these 

novel broad host range MGEs may represent a significant threat aiding ARG dispersal 

independently of the infection control measures established to contain specific pathogens. 

These insights suggest effective antimicrobial stewardship will require a focus not only on 

controlling antibiotic resistant pathogens but tracking, managing and limiting ARG-

associated MGE dissemination33 from both pathogenic and commensal bacterial species.  
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Figure 1: Patterns of horizontally transferred genetic elements between gastrointestinal 

commensal and pathogen species.  

a, Number of genomes from each of the twelve pathogenic species included in the analysis. 

b, Phylogenetic barriers of MGE demonstrating intra-genus (79.3%), intra-family (34.2%), 

intra-order (11.14%), intra-class (11.12%) and broad host range, intra-phyla (1.5%) 

horizontal transfer. c, Actinobacteria (Gold), Bacteroidetes (Green), Firmicutes (Blue), 

Fusobacteria (Grey) and Proteobacteria (Orange) are indicated by the surrounding border. 

Red boxes indicate location of pathogens on the phylogenetic tree. Connecting lines indicate 

shared putative horizontally transferred genes. Links from Escherichia (Red), Klebsiella 

(Dark Red), Campylobacter (Orange), Enterococcus (Dark Blue) and Clostridia (Light Blue) 

pathogens are shown.   
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Figure 2: Taxonomic distribution and functional composition of 15 broad host range 

mobile genetic elements.  

Occurrence of 15 promiscuous elements shared between pathogenic bacteria and commensal 

Actinobacteria (yellow), Bacteroidetes (green), Firmicutes (blue) and Proteobacteria (red). 

The presence of 1 (light blue), 2 (moderate blue) or 3 (dark blue) ARGs (Aminoglycoside, 

Tetracycline, Macrolide). Connecting lines show the presence of promiscuous elements in 

respective pathogenic bacteria.  
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Figure 3: Classification of novel, broad host range mobile genetic elements and 

experimental validation of horizontal transfer between distantly related species. 

a, b, Phylogeny of the RepA proteins from 8 elements with representatives from closely 

related incompatibility groups. c, ICE_1 from F. contorta and d, ICE_2 from H. hathewayi 

can conjugate into E. faecalis. e, ICE_2 and plasmid PLASMID_1 from D. longicatena can 

be transferred into K. oxytoca by conjugations. The median and interquartile range of each 
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data set is indicated. The dashed line indicates the epidemiological cut-off values (ECOFF) 

for minimal inhibitory concentration (MIC) of either streptomycin or tetracycline against the 

recipient (b, n = 11, 17, 10; d, n = 10, 10, 30; e, n = 10, 10, 13, 15, 17; two-tailed Mann-

Whitney test, ****P-value < 0.0001), while the dotted line indicates the maximal antibiotic 

concentration of respective E-strips (MAX).   
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Figure 4: Prevalence of the promiscuous mobile elements in human body, ruminant gut 

and environmental microbiomes. 

Prevalence of promiscuous elements across the human gastrointestinal tract, nasal cavity, 

vagina, skin, ruminant gut and environmental samples. Blue represents the frequency with 

which an element was detected within a metagenomic sample derived from the site. No 

detection is represented in white.  
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Methods 

Bacterial culturing  

Culturing was performed from fresh faecal samples under anaerobic conditions in a Whitley 

A95 anaerobic workstation (Don Whitley) as described previously15. Standard culturing was 

performed on YCFA media at 37°C and colonies were picked 72 hours after plating and re-

streaked to confirm purity. Selective culturing was performed anaerobically and aerobically 

on YCFA media supplemented with antibiotic at indicated concentration at 37°C. 

Bacterial conjugation and antibiotic sensitivity testing 

Donor and recipient isolates were grown in YCFA broth anaerobically overnight without 

shaking. For filter conjugation, donor and recipient cultures were diluted to OD600=1, then 

mixed in 4:1 ratio and immobilized onto a sterile 0.45 µm mixed cellulose ester membrane 

(Whatman) which was then placed on a YCFA plate with the side containing bacterial cells 

facing up. For dry patch conjugation, donor and recipient cultures were concentrated to 

OD600=40 and OD600=10 respectively, mixed by equal volume (4:1 ratio by cell density) and 

spotted on YCFA plate. All conjugation plates were incubated anaerobically overnight and 

washed with 1-1.5 mL PBS to harvest cells. The cell suspension was plated on YCFA plates 

with or without antibiotic for transconjugants selection and enumeration respectively. The 

concentration of streptomycin used is 300 μg/mL. The concentrations of tetracycline used is 

50 μg/mL (low selection) and 60 μg/mL (high selection). These plates were incubated 

aerobically to select against obligatory anaerobic donors. All the recipient controls were 

treated following the same protocol respectively. The MIC of specific antibiotic against 

donor, recipient and transconjugants were measured using E-strips (bioMerieux) according to 

manufacturer’s instructions on YCFA media. Donor isolates for ICE_1 (DSM 108236; JCM 

31258), PLASMID_1 (DSM 108233) and ICE_2 (CCUG 68736) are available in public 

depository.  
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Polymerase chain reaction (PCR) for mobile element detection 

PCR was performed to confirm transfer of mobile element into recipient bacteria. ICE_1 

forward primer (TGATATCATGGAAGGTCGGCA) and reverse primer 

(ACCGCCCTGAACAATTGATG) target a 181 bp region within the aadK gene. 

PLASMID_1 forward primer (AAAGCAGCTATCATTCCGGGT) and reverse primer 

(TGCCCGCCTTTGAAGATACC) target a 301 bp region within the mobC gene. ICE_2 

forward primer (TTGATGCCCTTTTGGAAATC) and reverse primer 

(ACTGCATTCCACTTCCCAAC) target a 294 bp region within tetM gene. 

Statistical tests 

Two-tailed Mann-Whitney test (unpaired, nonparametric) was used to compare MIC or 

conjugation frequency data where applicable. 

Short read genome sequencing and annotation 

Genomic DNA was extracted from bacterial cell pellets using a phenol-chloroform method 

described previously15. Libraries were prepared and paired end- sequencing performed on the 

Illumina Hi-Seq platform with a target library fragment size of 450 bp and a read length of 

150 bp at the Wellcome Sanger Institute according to standard protocols. Annotated 

assemblies were produced using the pipeline standard Wellcome Sanger Institute prokaryotic 

assembly and annotation pipeline34. Briefly, for each sample an optimal assembly was 

created using Velvet v1.235 and VelvetOptimiser v2.2.5, scaffolded using SSPACE v3.036 

and sequence gaps filled using GapFiller v1.1037. PROKKA v1.1438 was used for automated 

gene annotation. Genome sequences have been deposited in the European Nucleotide 

Archive. 

Long read genome sequencing and annotation 

Genomic DNA was extracted from bacterial cell pellets using MasterPure™ complete DNA 
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purification kit (Lucigen). Oxford Nanopore Minion Sequencing, multiplexed libraries were 

sequenced using the ligation sequencing kit according to manufacturer’s instructions. Where 

required, genomes were demultiplexed using guppy v1.1 and assembled using canu v1.939. 

Within genomes mobile genetic elements were located by the ARG previously identified. The 

element boundaries were determined as a consensus from predictions by IslandViewer 440, 

ICEfinder v1.041, Alien_Hunter v1.742 and the presence of inverted and direct repeat 

sequences. 

Phylogenetics and Reference Genomes 

The phylogenetic analysis was conducted by extracting amino acid sequence of 40 universal 

single copy marker genes43, 44 from bacterial collection using SpecI v1.045. The protein 

sequences were concatenated and aligned with MAFFT v. 7.2046, and maximum-likelihood 

trees were constructed using raxML v8.2.11 with default settings. All phylogenetic trees were 

visualized in iTOL v5.647. Average nucleotide analysis (ANI) was calculated by performing 

pairwise comparison of genome assemblies using MUMmer v3.048. Genomes from 12 

pathogenic species were obtained from NCBI based on taxonomic classification. 

Horizontally Acquired Gene Analysis 

Shared genes were identified by pairwise BLAST v2.6.0+ of annotated genes (greater than 

99% identity across 500bp or greater sequence). Putative horizontally acquired genes were 

identified by shared gene in organisms with greater than 97% 16S rRNA homology7. The 

CARD database version 1.9 was used to identify ARG with a 95% identity and 90% coverage 

cutoff. 

Mobile Element Identification and Novelty 

Complete mobile element sequences were retrieved from the PLSDB plasmid database v. 

2019_06_0349 and the ICEberg 2.0 database. Mash v2.1.1 sketches were generated (-i -S 42, -
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k 21 –s 1000) and putative mobile elements screened with Mash screen (-v 0.1, –i 0.95). 950 

of 1000 shared Mash hashes was used as the distance cutoff for novel element identification. 
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Replication Initiation Protein (RepA) Classification 

RepA proteins were identified by PSI-BLAST v2.6.0+ (Position-Specific Iterated BLAST) 

against a plasmid replication protein database created from three studies50-52 with a cutoff E-

value of 1e-05 and RepA protein sequences available on NCBI. 

Metagenomic Prevalence 

Prevalence of mobile elements was assessed using bowtie2 v2.3.4.1 searches of metagenomic 

datasets retrieved from the HPMC database21 and the HMP database. Elements were 

considered present within the sample when occurring at greater than 0.001% of sample with 

greater than 99% coverage.  
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Supplementary Figures 

 

 

Supplementary Figure 1: ARG classes identified as shared between the pathogenic and 
symbiont bacterial genomes.   
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Supplementary Figure 2: Maximum likelihood Tree of RepA from PLASMID_1. 
Maximum likelihood tree of RepA from PLASMID_1 and 17 closely related homologues (14 
Firmicutes (Blue); 2 Proteobacteria (Red); 1 Actinobacteria (Yellow).   
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Supplementary Figure 3: Conjugation frequency of E.  faecalis and K. oxytoca 
(transconjugants per recipient).  a, Tetracycline resistance arising from spontaneous 
mutation was below detection limit 10-10 (n = 12, 12; high selection). b, Streptomycin 
resistance arisen from spontaneous mutation in the recipient subjected to the same 
conjugation protocol without the donor was about 1,000 times lower than that of the 
conjugation (Two-tailed Mann-Whitney test, ***P-value = 0.0004; n = 6, 9). c, The rate of 
spontaneous tetracycline resistant mutation was below detection limit 10-10 (n = 12, 6, 6; low 
selection). The mean of each data set is indicated. Data points below detection limit are not 
shown.  
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Supplementary Figure 4: Agarose gel (2%) electrophoresis of PCR products from all 
conjugations. a, conjugation of ICE_1 from F. contorta into E. faecalis; conjugation of 
ICE_2 from H. hathewayi b, into E. faecalis and c, into K. oxytoca; d, conjugation of 
PLASMID_1 from D. longicatena into K. oxytoca. Two transconjugants were selected for 
each pair of conjugation. HyperLadder™ 1 kb (bioline) used. 
 

H. h
at

hew
ay

i+
IC

E_2

K. o
xy

to
ca

K. o
xy

to
ca

+IC
EE_2

D. lo
ngica

te
na+

PLASMID
_1

K. o
xy

to
ca

K. o
xy

to
ca

+P
LASMID

_1

H. h
at

hew
ay

i+
IC

E_2

E. f
ae

ca
lis

E. f
ae

ca
lis

+IC
E_2

F. 
co

nco
rta

+IC
E_1

E. f
ae

ca
lis

E. f
ae

ca
lis

+IC
E_1

a b

c d

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2022. ; https://doi.org/10.1101/2022.01.18.476738doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.18.476738
http://creativecommons.org/licenses/by-nc-nd/4.0/

