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ABSTRACT 
 
Floral phenology is useful information as an indicator on 
climate change and ecosystem services, however its 
observation is not straightforward over space and time. 
Satellite remote sensing and official and volunteer-based in-
situ observations have been conducting, but the long-term 
and accurate data collection is challenging due to the 
insufficient quality and quantity of observations and the lack 
of financial and human resources to sustain. Here, we 
demonstrate a flower detection model from street-level 
photos, which can be the core function of a semi-automatic 
observation system to tackle those issues above. We 
detected cherry blossoms by this model from geotagged 
images with the observation date, obtained from Mapillary, 
which is one of social sensing data sources, and mapped 
dates of flowering in a study site, Aizuwakamatsu, Japan in 
April 2018. This approach enables us to collect floral 
phenology information semi-automatically as a data-driven 
approach. It is expected to collect a large number of 
observations with a certain level of quality by avoiding 
human-induced biases for the observations. 
 

Index Terms— Phenology, Social Sensing, Mapillary, 
object-detection. 
 

1. INTRODUCTION 
 
Monitoring floral phenology is challenging. Many satellite-
based remote sensing techniques have been applied to floral 
phenological studies and some successful approaches has 
been reported [1], [2]; however, it is not yet straightforward 
to identify flowering events due to less observation 
frequency and coarse spatial resolution. The long-term in-
situ observation has been making efforts to record 
phenology. For example, Japan Meteorological Agency 
(JMA) has been conducting seasonal observations of plants 
and animals every year since 1953 to monitor seasonal 
changes in their condition. However, the target has 
significantly been declined since 2021 because of 
difficulties observing some species, with inadequate funding 
[3]. The 40% of target sites have been terminated, and 94% 

of phenological events (including plants and animals) have 
been no more observed. Instead, citizen science programs 
attempt to substitute the phenological observations. 
Although we expect the quantity and quality of observations 
to be the same as JMA did, it is still challenging to 
implement citizen science approaches robustly because of 
human-related issues. Not all observers are not trained 
enough to monitor phenological events, and thus records 
collected from observers would include some inevitable 
errors and biases [4], [5]. As such human-induced issues 
may be critical obstacles for phenological monitoring, a 
semi-automatic observation system would be helpful to 
collect and record phenological events over space and time 
by a data-driven approach. To achieve this, we demonstrate 
a flower detection model from street-level photos, which 
can be the core function of such a system. We focus on 
cherry blossoms in spring as a first step because the 
flowering cherry blossoms can be an important indicator of 
environmental change and cultural ecosystem services [6]. 
Our model enables us to detect cherry blossoms from a 
street-level photo, and as such, it is applicable to social 
sensing photo data with the observation date and 
geolocation to map cherry blossoms. We obtained a series of 
street-level photos via Mapillary API in Aizuwakamatsu, 
Japan, in April 2019 and successfully recorded flowering 
events over space and time. 
Although cherry blossoms will be monitored continuously 
by JMA, our approach can be an additional way to record 
flowering events spatiotemporally. 
  
 

2. MATERIALS AND METHODS 
 
We build a deep-learning model by ‘YOLOv4’ [7] to detect 
cherry blossoms from a street-level photo. In the total of 200 
photos are annotated manually to train cherry flowers 
(Figure 1). We only target Japanese cherry trees (Prunus × 
yedoensis, Someiyoshino) because this species is the most 
popular and widely planted across Japan. Estimated photos 
with a detection probability of over 80% are only selected as 
cherry blossoms. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.18.476550doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.18.476550
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 1. An example of images with the annotation of 
cherry blossoms. 
 
We set the study area in Aizuwakamatsu, Japan, covering 
famous Cherry blossom sightseeing spots, Tsurugajo castle 
and Ishibe-Sakura. We collect 28,999 street-level photos via 
Mapillary (https://www.mapillary.com/) within the study 
area from 1st April to 30th April 2018. The target period is 
overlapped with the first start flowering date in 2018 (4th 
April) at Tsurugajo castle, according to the report found at 
https://www.tsurugajo.com/turugajo/sakura.html. 2,570 of 
estimated photos were validated by visual inspection to 
evaluate whether cherry blossoms were successfully 
detected or not. 

 
3. RESULTS 

 
A successful example of the detection of the cherry 
blossoms in a street-level photo is shown in Figure 2. Our 
model estimates the extent of flowers on a Japanese cherry 
tree and does not attempt to detect every flower in a photo.  
By using this approach, we make a cherry blossom map 
from Mapillary photos (Figure 3). This indicates that cherry 
blossom events vary over space and time. It is yet difficult 
to continuously monitoring due to insufficient photos 
available, but this map depicts when and where cherry 
blossoms were found.  
The confusion matrix reports the evaluation of the detection 
from 2,570 test photos. The overall accuracy was 0.83. 
Precision and recall were 0.80 and 0.51, respectively. Low 
recall suggests that the detection model may tend to 
overlook the actual flowering events. 
 

4. DISCUSSION  
 
The object-detection model we built detects the cherry 
blossom from street-level photos with 83% of accuracy. 
This achievement contributes to the development of a semi- 
automatic phenological observation system using social  

 
Figure 2. An example of the cherry blossom detection from 
a street-level photo by our model. 
 
sensing photo data. The detection ability depends on the 
model performance. Our model shows relatively low recall, 
suggesting the result may tend to overlook cherry blossoms 
found in a photo to some extent. This issue should be 
overcome to develop the model with additional trained 
photos by annotation efforts. However, as the bias of 
misclassification relies on the model performance, we 
expect to minimize human errors and biases for 
observations. The critical issue of this approach is the data 
availability. A large number of photos obtained via 
Mapillary are available in the study area and the study 
period, but the frequency and spatial extent of observations 
are not sufficient to observe all floral phenological events. 
Thus, it should be noted that the map shown in Figure 3 
represents not the timing of flowering events, but the timing 
of the flower detection.  
 
Table 1. A confusion matrix of the detection result by the 
proposed model from 2,570 samples. 
 
  Model results 
 Detected undetected 

Re
fe

re
nc

e 

Positive 371 350 

Negative 90 1759 
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Figure3. A result cherry blossoms detections. The legend 
denotes days in April. Black dots represent no cherry 
blossoms found in photos. 

 
 

5. CONCLUSIONS 
 
We propose a novel approach to detect cherry blossoms 
from street-level photos. The object-detection model we 
built achieved 83% overall accuracy: relatively high 
precision of 80% but low recall of 52%. This model was 
applied to social sensing photos sourced from Mapillary. 
The cherry blossom map tells when and where flowering 
was found. This approach is a novel semi-automatic 
observation as a data-driven approach. Further 
developments on the model will be needed to reduce the 
misclassification rate. In the future, we also attempt to 
develop models for other species to extract phenological 
information from a set of available data sources. 
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