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Abstract 

Motivation: Large-scale kinetic models are an invaluable tool to understand the dynamic and 
adaptive responses of biological systems. The development and application of these models 
have been limited by the availability of computational tools to build and analyze large-scale 
models efficiently. The toolbox presented here provides the means to implement, parametrize 
and analyze large-scale kinetic models intuitively and efficiently. 

Results: We present a Python package (SKiMpy) bridging this gap by implementing an efficient 
kinetic modeling toolbox for the semiautomatic generation and analysis of large-scale kinetic 
models for various biological domains such as signaling, gene expression, and metabolism. 
Furthermore, we demonstrate how this toolbox is used to parameterize kinetic models around a 
steady-state reference efficiently. Finally, we show how SKiMpy can imple-ment multispecies 
bioreactor simulations to assess biotechnological processes. 

Availability: The software is available as a Python 3 package on GitHub: 
https://github.com/EPFL-LCSB/SKiMpy, along with adequate documentation. 

Contact: vassily.hatzimanikatis@epfl.ch 
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1 Introduction  

Organisms are complex and adaptive systems, posing a challenge when investigating 
their response to environmental or genetic perturbations (Kitano, 2002). In this context, 
large-scale kinetic models are an essential tool to understand how the underlying 
biochemical reaction networks respond to such perturbations (Chowdhury et al., 2015). 
However, currently, no modeling framework allows users to build and analyze large-
scale kinetic models efficiently. Therefore, we propose a novel Python toolbox that 
enables the user to semiautomatically reconstruct a kinetic model from a constraint-
based model (Salvy et al., 2019). Furthermore, we express the models in terms of 
symbolic expressions, allowing the straightforward implementation of various analysis 
methods, e.g., numerical integration of the ordinary differential equations (ODEs).  

Such numerical analysis requires a set of kinetic parameters describing the individual 
reaction characteristics. However, as parameters from literature or databases 
(Schomburg et al., 2013) are collected in vitro and often fail to capture the in vivo 
reaction kinetics (Weilandt and Hatzimanikatis, 2019), a series of methods have been 
developed to infer parameters from phenotypic observations (Khodayari and Maranas, 
2016; Saa and Nielsen, 2016; Gonzalez et al., 2007; Wang et al., 2004). To this end, we 
here present the first open-source implementation of the ORACLE framework to 
efficiently generate steady-state consistent parameter sets (Wang et al., 2004; Miskovic 
and Hatzimanikatis, 2010; Chakrabarti et al., 2013; Savoglidis et al., 2016; Tokic et al., 
2020). 

2 Methods 

Implementing kinetic models 

The system of ordinary differential equations describing the kinetics of a biochemical 
reaction network can be derived directly from the mass balances of the � reactants 
participating in the � reactions of the network: 

 
���

��
� ∑ ���  ���	, ��, 
 � � 1, … , ��

�  (1) 

where 	� denotes the concentration of the chemical �, ��� is the stoichiometric coefficient 

of reactant � in reaction � and ����, �� is the reaction rate of reaction � as a function of 

the concentration state variables � � �	�, 	�, … , 		�
 and � kinetic parameters � �

���, ��, … , ���
. The functions ����, �� are the given rate laws of each reaction �. An 

overview of the implemented rate laws is given in Table S1. Are the reactants 
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distributed across multiple compartments of each reactant's mass balance is modified 
according to (For details, see supplementary material): 

 
���

��
�

�����

��
∑ ���  ����, ���
� , 
 � � 1, … , � (2) 

where �
��� is the overall cell volume and �� is the compartment volume for 
concentration 	�. 

Efficient steady-state consistent parametrization 

To overcome the scarcity of kinetic data, SKiMpy provides the means to infer the 
parameters efficiently on a large scale by sampling sets of kinetic parameters consistent 
with steady-state physiology (Wang et al., 2004; Wang and Hatzimanikatis, 2006; 
Miskovic and Hatzimanikatis, 2010). These parameter sets are then evaluated with 
respect to local stability, global stability, and relaxation time to discard unstable models 
and models with non-physiological dynamics. 

3 Usage 

This toolbox implements various methods and resources that allow the user to build 
and analyze large-scale kinetic models in an efficient manner with a detailed account of 
the implemented methods given in the supplemental material. We further provide 
different tutorials demonstrating the modeling capabilities (Fig 1 A-C, for details, see 
supplementary material) 

4 Conclusion 

SKiMpy enables the user to reconstruct kinetic models for large-scale biochemical 
reaction systems. With an extensive palette of analytic methods, the software presents 
a versatile platform to model biological systems, as shown with the examples given in 
the supplemental material with models of i) E. coli's metabolism, ii) a signaling pathway, 
iii) synthetic gene-expression circuits, and iv) different strains in a bioreactor. 
Furthermore, as the software generates symbolic expressions directly available to the 
user, SKiMpy facilitates the implementation of novel parameter inference and consistent 
sampling methods. Thus, SKiMpy represents a method development platform to 
analyze cell dynamics and physiology on a large scale. Finally, the presented toolbox 
increases the accessibility of large-scale kinetic models to various biological disciplines 
and studies ranging from biotechnology to the medical sciences. 
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Fig. 1. Software capabilities. A) Building and simulation of different types of models
B) parameterization of kinetic metabolic models around a reference steady-state C)
reactor modeling and multispecies simulations 
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