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Abstract

Metabolomic time course analyses of biofluids are highly relevant for clinical
diagnostics. However, some sampling methods suffer from unknown sample sizes
commonly known as size effects, which prevents absolute quantification of
biomarkers. Recently, studies have developed mathematical post acquisition
normalization methods to overcome these problems either by exploiting already
known pharmacokinetic information or with statistics.
Here we present an improved normalization method, MIX, that unifies the

advantages of both approaches. It combines two normalization terms, one
representing pharmacokinetic normalization (PKM) and one representing a
popular statistical approach (PQN).
To test the performance of MIX, we generated synthetic data closely

resembling real finger sweat metabolome measurements. MIX was subsequently
used for normalization of the synthetic data and we were able to show that it
overcomes weaknesses of the two normalization strategies applied separately.
Moreover, we validate our results by using real finger sweat metabolome data
from literature. There, we were able to demonstrate that MIX is more robust
than the normalization strategy originally used for the data set.
In conclusion, the MIX method improves the reliability and robustness of

biomarker measurements in finger sweat and other biofluids. Moreover, it has
potential to pave the way for quantitative biomarker discovery and hypothesis
generation from metabolic time course data.
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1 Introduction

In recent years, the analysis of the sweat metabolome has recieved increased atten-

tion from several fields of study [1, 2, 3]. For example, sweat has been in the focus of

forensic scientists since it is possible to analyze metabolomic profiles of finger prints

that have been found (e.g. at a crime scene) [4]. Also, drug testing can easily be

performed on sweat samples. One advantage of this method is to not only identify

already illegal substances but their metabolic degradation products as well, thereby

allowing to distinguish between drug consumption and mere contact [1]. Another

application of sweat metabolomics is in diagnostics for personalized medicine, where

the focus is put on discerning metabolic states of the body and trying to optimize

nutrition and treatment based upon information of biomarkers in sweat [5, 6, 7].
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Sweat metabolomics offers several technical advantages. Firstly, sweat is a rich

source of biomolecules and thus offers great potential for biomarker discovery [8, 9].

Secondly, sweat sampling is easy compared to sampling of other biofluids (e.g. blood

or urine). Moreover, it is non-invasive and can in principle be rapidly repeated.

Several sampling methods have been developed [2, 3, 9, 10]. However, most of them

work in a very similar manner: a water absorbing material is put onto the skin’s

surface to collect sweat for some (short) time. Sweat metabolites are subsequently

extracted from this material and analyzed [3, 10]. Methods differ, however, in if and

how they induce sweating. Some methods induce increased sweating by physical

exercise [9] or chemical stimulation [2], whereas in other studies no sweat induction

is performed and the natural sweat rate is sufficient for metabolomic analysis [3, 11].

Regardless of the exact sampling method, most of the above mentioned studies

suffer from one major drawback. The sweat flux is highly variable, depending not

only on interindividual differences, but also on body location, temperature, humid-

ity, exercise and further factors that may change multiple times over the course of

one day [12]. For example, even with conservative estimates a variability of sweat

flux qsweat on the finger tips between 0.05 and 0.62mg cm−2 min−1 needs to be ac-

counted for [13, 14, 15]. This is a major challenge for comparative or quantitative

studies, which has been acknowledged by many, e.g. [1, 4, 8, 16, 17, 18], however

only actively approached by few – most notably [9].

The key problem is associated to the fact that often one is interested in the

true metabolite concentrations, C ∈ Rnmetabolites , of nmetabolites metabolites, which

is obscured by an unknown and time-dependent sweat flux. Thus, the measured

metabolites’ intensities are not proportional to C but to the metabolite mass vector,

M̃ ∈ Rnmetabolites ,

M̃(t) = asample

∫ t

t−τ

C(t′) qsweat(t
′) dt′. (1)

Here asample and τ denote the surface area of skin that is sampled, and the time it

takes to collect one sample, respectively. We assume that C changes little over the

integration time τ . Thus (1) simplifies to

M̃(t) ≈ C(t) Vsweat(t), (2a)

with an unknown sweat volume during sampling

Vsweat(t) := asample

∫ t

t−τ

qsweat(t
′) dt′, (2b)

and the problems reads: given M̃, how can we compute C if we don’t know Vsweat?

We emphasize that throughout the manuscript the mass of a metabolite is defined

as the measured abundance of the metabolite in a measured sample, and neither as

the molar mass or mass to charge ratio. Moreover, we acknowledge that without a

calibration curve the measured abundances have a relative peak-area unit and are

thus strictly neither absolute masses nor concentrations. The proportionality con-

stant that scales measured intensities to mass units is determined by the calibration
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curve. The proper calibration curve is not further discussed here but assumed to be

available when applicable.

The need to calculate absolute metabolite concentrations from small biological

samples of unknown volume is not unique to sweat metabolomics, but known

throughout untargeted metabolomics. The problem is commonly referred to as size

effects [19].

Three strategies have been developed to tackle it:

Direct Sweat Volume Measurement. Measuring Vsweat, for instance via microfluidics

[9, 20, 21], is the most straight forward method to solve (2) and typically very

accurate with minimally required volumes in the rang of ∼ 5 to 100 µL [9, 20, 21].

However, in case of sweat sampling it may take quite some time, large sample

areas or increased (i.e. induced) sweating to collect enough sweat for robust volume

quantification. Another alternative is the volume estimation via paired standards

[22], however, such method increases complexity of analysis. Either option would

impede fast and easy sample collection and analysis.

Indirect Sweat Volume Computation. If the chemical kinetics of targeted metabo-

lite concentrations are known, then kinetic parameters and the sweat volume at

each time point can be simultaneously determined by fitting the measured mass

vector to (2). Recently, we used this strategy to computationally resolve not only

sample volumes in the nL to single digit µL-range but also accurately quantify per-

sonalized metabolic response patterns upon caffeine ingestion [23]. Albeit feasible

for determination of individual differences with knowledge of reaction kinetics, this

method quickly becomes unconstrained when too little prior information is avail-

able. Therefore, it is not suited for the discovery of unknown reaction kinetics.

Moreover, this method requires several sampling time points to allow modeling the

kinetics of different metabolites thereby decreasing simplicity of sampling.

Statistical Normalization. With this approach the aim is to normalize the mass

vector by the apparent mass of a marker that scales proportionally to the sample

volume, so that the ratio becomes (at least approximately) independent of the sam-

ple volume. Various strategies have been developed for untargeted metabolomics;

for example, normalization by total measured signal [24], and singular value

decomposition-based normalization [25]. However, one of the best performing

methods–referred to as probabilistic quotient normalization (PQN) – simply as-

sumes that the median of the ratio of two apparent mass vectors is proportional to

the sample volume [19, 26, 27, 28]. Although PQN does not allow one to compute

sample volumes per se, it enables one to assess differential changes [26].

In this manuscript we explore the performance of combining targeted and untar-

geted metabolomics normalization strategies in a MIX normalization model. We

show that MIX can significantly outperform other indirect sweat volume estima-

tion methods. To validate the results we characterize caffeine metabolization in the

human body analyzed in the finger sweat.

2 Theory
2.1 Probabilistic Quotient Normalization

Definition Probabilistic quotient normalization (PQN) assumes that for a large,

untargeted set of metabolites the median metabolite concentration fold change be-

tween two samples (e.g. two measured time points, tr and ts) is approximately 1,

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2022. ; https://doi.org/10.1101/2022.01.17.476591doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.17.476591
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gotsmy et al. Page 4 of 31

QC = median

{
Cj(tr)

Cj(ts)

}
≈ 1, j ∈ [1,nmetabolites]. (3a)

Consequently, fold changes calculated from M̃ instead of C are proportional to the

ratio of Vsweat,

QM = QC
Vsweat(tr)

Vsweat(ts)
≈

Vsweat(tr)

Vsweat(ts)
(3b)

with

QM = median

{
Mj(tr)

Mj(ts)

}
, j ∈ [1,nmetabolites]. (3c)

In order to minimize the influence of experimental errors

M ref
j = median

{
M̃j(ti)

}
, i ∈ [1,ntime points] (4)

often replaces the dedicated sample inMi(ts) in the denominator of (3c) [26]. There-

fore, the normalization quotient by PQN is calculated as

QPQN(t) = median

{
M̃1(t)

M ref
1

}
, j ∈ [1,nmetabolites]. (5)

QPQN is a relative measure and distributes around 1. In analogy to (3b), we define

its relation to the sweat volume V PQN
sweat as

QPQN(t) =
V PQN
sweat(t)

V ref
sweat

, (6)

where V ref
sweat denotes some unknown, time-independent reference (sweat) volume.

Note that with real data only QPQN(t) values can be calculated, but V PQN
sweat(t) as

well as V ref
sweat remain unknown.

Discussion The biggest advantage of this method is that no calibration curves

and prior knowledge about changes over time of measured metabolites is required.

Moreover, PQN is independent from the number of sample points measured in a

time series. However, its major drawback is that the normalization quotient is not

an absolute quantification and only shows relative changes. I.e. it does not quantify

Vsweat as given in Eq. 2 directly with an absolute value, but instead normalizes

relative abundances between samples and time points.

2.2 Pharmacokinetic Normalization

Definition In the pharmacokinetic model (PKM) we assume that we know at least

the functional dependence, i.e. the pharmacokinetics, but not necessarily the value
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of the k (pharmaco-)kinetic parameters θ ∈ Rk for 2 ≤ ℓ ≤ nmetabolites metabolites.

Without loss of generality we (re-)sort M̃ such that the first ℓ elements (collected

in the vector M̃ℓ) correspond to metabolites with known pharmacokinetic depen-

dence, while the remaining nmetabolites − ℓ elements (collected in the vector M̃ℓ+)

correspond to metabolites with unknown kinetics. Then (2) takes the form of

(
M̃ℓ (t)

M̃ℓ+(t)

)
=

(
Cℓ (t;θ)

Cℓ+(t)

)
V PKM
sweat (t) (7a)

with physically meaningful bounds;

Vlower bound ≤ V PKM
sweat (t) ≤ Vupper bound, (7b)

θlower bound ≤ θ ≤ θupper bound. (7c)

V PKM
sweat (t) as well as θ can be obtained by parametric fitting of M̃PKM

ℓ (t). Note that

this allows not only to compute absolute values of CPKM
ℓ (t;θ) but – with V PKM

sweat (t)

– also of all other concentrations via Cℓ+(t) = M̃ℓ+(t)/V
PKM
sweat (t).

As V PKM
sweat (ti) may be different at every time step ti, we need to know the

(pharmaco-)kinetics of at least two metabolites, otherwise the number of parameters

is larger than the number of data points.

Discussion The biggest advantage of this method is that is can implicitly esti-

mate absolute values of Vsweat without the need of direct measurements. Therefore,

sweat volumes can become smaller than the minimum required in volumetric meth-

ods and shorter sampling times also become possible. A drawback of this method is

the fact that it is only feasible if one has prior knowledge on relevant pharmacologi-

cal parameters (i.e. ingested dose of metabolites of interest, volume of distribution,

body mass of specimen, range of expected kinetic constants), which is limiting the

approach to studies where at least two metabolites together with their pharma-

cokinetics are well known . Moreover, calibration curves of metabolites of interest,

and sufficiently many samples in a time series are required for robustly fitting the

equation system. In a previously performed sensitivity analysis, an increase in the

quality of fit was observed as the number of samples increased from 15 to 20 time

points per measured time series [23].

2.3 Mixed Normalization

Definition The mixed normalization model (MIX) is a combination of PQN and

PKM. It is designed to incorporate robust statistics of untargeted metabolomics via

its PQN term as well as an absolute estimation of Vsweat via its PKM term.

Optimal parameters of MIX are found via optimization of two equations,

(
M̃ℓ (t)

M̃ℓ+(t)

)
=

(
Cℓ (t;θ)

Cℓ+(t)

)
V MIX
sweat(t) (8a)
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and

QPQN(t) =
V MIX
sweat(t)

V ref
sweat

(8b)

where V ref
sweat is an additional, time-independent parameter of the model that scales

the absolute values of V MIX
sweat to the relative abundances of QPQN. V MIX

sweat and θ are

constrained between physically meaningful bounds,

Vlower bound ≤ V MIX
sweat(t) ≤ Vupper bound, (8c)

θlower bound ≤ θ ≤ θupper bound. (8d)

Bounds for Vsweat are calculated by Equation 2a and minimal and maximal sweat

rates from literature. The weighting of error residuals of both equations (8a, 8b) is

implemented over a hyperparameter, λ, as explained in Section 3.1.2.

Discussion We hypothesize that MIX model can combine the advantages of PQN

and PKM normalization models. Firstly, in many metabolomics studies a combina-

tion of targeted and untargeted measurements is used and thus the data is already

available resulting in less to little additional effort. Moreover, we believe that MIX

inherits the statistical robustness of PQN while simultaneously estimating absolute

values as fitted by PKM.

3 Methods
3.1 Implementation

A generalized version of PKM and MIX was implemented as a Python class. As

input it requires the number of metabolites measured (nmetabolites), a vector of

time points as well as the measured mass data (M̃(t), matrix with samples in

the rows and metabolites in the columns). MIX additionally takes a QPQN vector

(calculated with the PQN method from untargeted data) for all time points of

a time series. Upon optimization (carried out with self.optimize monte carlo,

which is a wrapper for SciPy’s optimize.curve fit [29]) the kinetic constants and

sweat volume parameters are optimized to the measured data by minimizing the

functions listed in Equation 9b and 9a for PKM and MIX respectively:

LMIX = LPKM + LPQN (9a)

where

LPKM =

ntime points∑
i=1

nmetabolites∑
j=1

L

[
λ
(
M̃ij − Cij V MIX

sweat i

)2]
(9b)

LPQN =

ntime points∑
i=1

L

[
(1− λ)

(
V MIX
sweat i/V

ref
sweat −QPQN

sweat i

)2]
(9c)

and L is the loss function. The key difference between PKM and MIX is that the

fitted Vsweat in MIX are biased towards relative abundances as calculated by PQN.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2022. ; https://doi.org/10.1101/2022.01.17.476591doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.17.476591
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gotsmy et al. Page 7 of 31

An important additional hyperparameter of the MIX model is λ, which weights the

error residuals of LPKM and LPQN. Its calculation is discussed in Section 3.1.2. If

λ = 1, the MIX model simplifies again to a pure PKM model. If λ = 0 then the

MIX model simplifies to the PQN within the constraints defined in Equation 8c.

To summarize, an overview of the differences of PKM and MIX model is given in

Supplementary Table 1.

Figure 1 Examples of concentration time series that can be modeled with the modified
Bateman equation used. The legend shows the kinetic parameters used to create the respective
curves. All parameters are within the bounds that were used for kinetic parameter fitting.

3.1.1 Hyperparameters

Several hyperparameters can be set for the PKM and MIX Python classes.

Firstly, it is possible to choose the kinetic function used to calculate C. In this

study we focused on a modified Bateman function (F (t)) with 5 kinetic parameters

(ka, ke, c0, lag, d):

F (t) =

{
b(t) + d if b(t) ≥ 0

d if b(t) < 0
(10)

with

b(t) = c0
ka

ke − ka

(
e−ka(t−lag) − e−ke(t−lag)

)
. (11)

This function was designed to be flexible and able to represent several different

metabolite consumption and production kinetics as exemplified by Figure 1. Intu-
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itively, ka and ke correspond to kinetic constants of absorption and elimination of

a metabolite of interest with the unit h−1. c0 is the total amount of a metabolite

absorbed over the volume of distribution with the unit mol L−1. The lag term with

the unit h shifts the function along the X-axis, intuitively defining the starting time

point of absorption of a metabolite of interest, whereas the d term with the unit

mol L−1 shifts the function along the Y-axis.

Secondly, the loss function can be set to either any loss function imple-

mented by SciPy’s curve fit [29] or one of two separately implemented functions

(max linear loss, max cauchy loss). The reason for the addition of custom loss

functions was that a good performance can be achieved when the relative and

absolute error residuals were calculated and their maximum was used for loss esti-

mation (thus the word max is expressed in their names) [23]. In this study we used

the max cauchy loss loss function, which first calculates said maximum and then

estimates its loss with the Cauchy loss function implemented according to SciPy

[29].

Thirdly, a weighting constant for every measured data point can be used by the

model (via the function self.set sigma) and is required for its optimization. The

optimization of both, PKM and MIX models, is done with a Monte Carlo strategy

where the initial parameter guesses are randomly sampled from an uniform distribu-

tion between their bounds. Performing a sensitivity analysis, we previously showed

that this method is preferable to a single fitting procedure [23]. In this study the

number of Monte Carlo replicates for model fitting was set to 100.

3.1.2 Weighting of MIX Loss Terms

Different arguments for the extend of λ corresponding to more or less importance of

the PKM or PQN in the parameter optimization can be used. In the following para-

graphs we present two diametrical approaches to the estimation of λ (metabolite-

dependent weighting and equal weighting), which span the space of reasonable so-

lutions to the problem. In reality, we expect the optimal size of λ to be between

these extreme points.

Metabolite-Depending Weighting On one hand, one could argue that the loss terms

should be weighted twofold, firstly, according to the number of metabolites used for

their calculation respectively and, secondly, the number of data points in each loss

term (Supplementary Equations 15). The solution for λ in such a case is given in

Equation 12. This solution is the most reasonable if the confidence of measured

data is exactly the same for all metabolites.

λ =
1

nPQN
metabolites + 1

(12)

Equal Weighting On the other hand, however, one can argue that targeted metabo-

lites have higher confidence (i.e. smaller experimental error) than the average

metabolite measured in an untargeted fashion. In the most extreme case one would

propose a method where the loss terms are just weighted by the number of data
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points, but not by the number of metabolites used in the calculation of each term

(Supplementary Equations 16). For such a method the solution for λ is given by

Equation 13.

λ =
1

nPKM
metabolites + 1

(13)

3.1.3 Full and Minimal Models

In this study we differentiate between full and minimal models. With full models we

refer to pharmacokinetic normalization models (PKM or MIX) where all metabolites

of a given data set are used for the pharmacokinetic normalization. This means that,

for example, if nmetabolites = 20 all 20 metabolites were modeled with the modified

Bateman function and thus in Equations (7a) and (8a) ℓ = nmetabolites and M̃ℓ+ is

an empty vector. On the other hand, minimal models are models where only the few,

known, better constrained metabolites were modeled with a kinetic function. This

means that the information used for PKMminimal does not change upon addition of

synthetic metabolites. Therefore, its goodness of fit measure should stay constant

within statistical variability upon change of nmetabolites. This behaviour was used

to verify if the simulations worked as intended and no biases in the random num-

ber generation exist. On the other hand MIXminimal model still gained information

from the increase of nmetabolites as the PQN part of this model was calculated with

all nmetabolites. Therefore, changes in the goodness of fit measures for MIXminimal

are expected. We emphasize that the definition of full and minimal models is spe-

cific to this particular study. Here we explicitly set ℓ = 4, which originates from

previous work where 4 targeted metabolites (caffeine, paraxanthine, theobromine,

theophylline) with known kinetics were measured [23].

3.2 Synthetic Data Creation

Three different types of synthetic data were investigated. In all three cases data cre-

ation started with a simple toy model closely resembling the concentration time se-

ries of caffeine and its degradation products (paraxanthine, theobromine, and theo-

phylline) in the finger sweat as described elsewhere [23]. The respective parameters

are listed in Supplementary Table 2. With them the concentration of metabolites #1

to #4 were calculated for 20 time points (between 0 and 15 h in equidistant intervals,

Figure 2). Subsequently, new synthetic metabolite concentration time series were

sampled and appended to the toy model (i.e. to the concentration vector, C(t)).

Three different synthetic data sampling strategies were tested and their specific

details are explained in the following sections. Next, sweat volumes (Vsweat) were

sampled from a log-normal distribution truncated at (0.05 ≤ Vsweat ≤ 4µL) closely
resembling the distribution of sweat volumes estimated in our previous publication

[23], Supplementary Figure S2. Finally, an experimental error (ϵ) was sampled for

every metabolite and time point from a normal distribution with a coefficient of

variation of 20% and the synthetic data was calculated as

M̃(t) = diag(C(t)) Vsweat(t) ϵ(t). (14)
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Figure 2 C for the first four metabolites of the synthetic data. Kinetic parameters used for
calculation are listed in Supplementary Table 2.

For every tested condition 100 synthetic data replicates were generated and the

normalization models were fitted.

3.2.1 Sampled Kinetics

In simulation v1, data was generated by sampling kinetic parameters for new

metabolites from an uniform distribution. The distribution was constrained by

the same bounds also used for the PKM and MIX model fitting: (0, 0, 0, 0)T ≤
(ka, ke, c0, lag, d)

T ≤ (3, 3, 5, 15, 3)T. Subsequently the concentration time series of

the synthetic metabolites were calculated according to the modified Bateman func-

tion (Equation 10).

3.2.2 Sampled Mean and Standard Deviation

Means and standard deviations of the concentration time series of metabolites were

calculated from untargeted real finger sweat data (for details see Section 3.4). The

PDF of both can be described by a log-normal distribution (Supplementary Fig-

ure S5). For the data generation of simulation v2, per added metabolite one mean

and one standard deviation were sampled from the fitted distribution and used as an

input for another log-normal distribution from which a random concentration time

series was subsequently sampled. This results in synthetic concentration values that

behave randomly and, therefore, cannot be easily described by our pharmacokinetic

models.
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3.2.3 Sampled from Real Data

To get an even better approximation to real data, in simulation v3 concentration

time series were directly sampled from untargeted real finger sweat data (for details

see Section 3.4). To do so, the untargeted metabolite M̃ time series data set was

normalized with PQN. As the number of metabolites in this data set was comparably

large (nmetabolites = 3446) we could assume that the relative error (or rSD, for more

explanation see Section 4.1) was negligibly small. Therefore, the PQ normalized

data set could be used as ground truth for concentration time series sampling.

Subsequently, a subset of the original ground truth data was sampled for synthetic

data generation.

3.3 Normalization Model Optimization

Normalizing for the sweat volume by fitting kinetics through the measured values

only has a clear advantage over PQN if it is possible to infer absolute sweat vol-

umes and concentration data. In order to be able to do that, some information

about the kinetics and the starting concentrations of metabolites of interest need

to be known. For example, when modeling the caffeine network in our previous

publication [23] we knew that the lag parameter of all metabolites was 0 and that

the total amount of caffeine ingested (which corresponds to c0) was 200mg. More-

over, we knew that caffeine and its metabolites are not synthesized by humans and

implemented the same strategy into our toy model (corresponding to d). As the toy

model was designed to resemble such a metabolism we translated these informa-

tion to the current study. Therefore, we assumed that the first 4 metabolites in our

toy model had known c0, lag, and d parameters. For their corresponding ka and

ke and the parameters of all other metabolites the bounds were set to the same

(0, 0, 0, 0)T ≤ (ka, ke, c0, lag, d)
T ≤ (3, 3, 5, 15, 3)T used in kinetic data generation.

Figure 1 shows examples of concentration time series that can be described with

the modified Bateman function and parameters within the fitting bounds.

3.4 Real Finger Sweat Metabolome Data

The real world finger sweat data was extracted from Study C of ref. [23]. It was

downloaded from MetaboLights (MTBLS2772 and MTBLS2776).

Preprocessing The metabolome data set was split into two parts: targeted and

untargeted. The targeted data (i.e. the mass time series data for caffeine, parax-

anthine, theobromine, and theophylline) was directly adopted from the math-

ematical model developed by [30]. This data is available on GitHub (https:

//github.com/Gotsmy/finger_sweat).

For the untargeted metabolomics part, the raw data was converted to the mzML

format with the msConvert tool of ProteoWizard (version 3.0.19228-a2fc6eda4)[31].

Subsequently, the untargeted detection of metabolites and compounds in the sam-

ples was carried out with MS-DIAL (version 4.70)[32]. A manual retention time

correction was first applied with several compounds present in the majority (more

than 90%) of the samples. These compounds were single chromatographic peaks

with no isomeric compounds present at earlier or later retention times (m/z 697.755

at 5.57 min, m/z 564.359 at 5.10 min, m/z 520.33 at 4.85 min, m/z 476.307 at 4.58
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min, m/z 415.253 at 4.28 min, m/z 371.227 at 3.95 min, m/z 327.201 at 3.56 min,

m/z 283.175 at 3.13 min, m/z 239.149 at 2.633 min, m/z 166.144 at 1.69 min,

m/z 159.113 at 1.19). After this, untargeted peak detection and automated align-

ment (after the manual alignment) were carried out with the following settings:

Mass accuracy MS1 tolerance: 0.005 Da, Mass accuracy MS2 tolerance: 0.025 Da,

Retention time begin: 0.5 min, Retention time end: 6 min, Execute retention time

correction: yes, Minimum peak height: 1E5, Mass slice width: 0.01 Da, Smoothing

method: Linear weighted moving average, Smoothing level: 3 scans, Minimum peak

width: 5 scans, Alignment reference file: C D1 I o pos ms1 1.mzML, Retention time

tolerance: 0.3 min, MS1 tolerance: 0.015 Da, Blank removal factor: 5 fold change).

No blank-subtraction was carried out as the internal standard caffeine was spiked

into each sample including the blanks. Peak abundances and meta-information were

exported with the Alignment results export functionality.

Features with retention times after 5.5min as well as features with sample abun-

dances of < 5× blank average (except for the internal standard, caffeine-D9) were

excluded from the data set. Additionally, we excluded isomers within a m/z dif-

ference of less than 0.001Da and a retention time difference of less than 0.5min.

Moreover, features that were present in less than 80% of finger sweat measurements

were excluded. Data imputation for both targeted and untargeted was done with

quantile regression imputation of left-censored data (QRILC) performed in R 4.0.2

using the ImputeLCMD package [33, 34].

Real Data Normalization In this finger sweat data set, time series of targeted

as well as untargeted metabolomics are listed. The kinetics of the four targeted

metabolites (caffeine, paraxanthine, theobromine, and theophylline) are known. A

reaction network of the metabolites is shown in Supplementary Figure S3. Briefly,

caffeine is first absorbed and then converted into three degradation metabolites.

Additionally, all four metabolites are eliminated from the body. All kinetics can be

described with first order mass action kinetics [35, 36].

In order to assess the performance of the sweat volume normalization methods

the full network was split up into three subnetworks that all contained caffeine and

one degradation metabolite each (Supplementary Figure S4). The solution of the

first order differential equations describing such network is given in Supplemen-

tary Equations 17a and 17b. Moreover, the 3446 untargeted metabolite time series

were randomly split up into three (almost) equally sized batches and each batch

was assigned to one subnetwork. All three networks were subsequently separately

normalized with PKMminimal and MIXminimal methods with kinetic parameters

that were adjusted to the specific reaction network (Supplementary Figure S4).

Subsequently, the kinetic constants (k′1, k
′
2, k

′
3, k

′
4) were estimated for 37 measured

concentration time series. As all three subnetwork data sets originate from the same

finger sweat masurements, the underlying kinetic constants should be exactly iden-

tical. As the kinetic constants of absorption (= k′1) and elimination (= k′2 + k′3) of

caffeine are estimated in all three subnetworks we used their standard deviation to

test the robustness of the tested normalization methods.
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Figure 3 Relative and absolute normalization performance. In the top row the predicted
Cij/C0j (i ∈ {1, ...,ntime points}, j ∈ {1, ...,nmetabolites}) are plotted as a function of the true,
underlying Cij/C0j . The bottom row shows the predicted Vsweat as a function of the true,
underlying Vsweat. The columns represent different normalization models (PQN, PKMfull, and
MIXfull from left to right). As no absolute Vsweat can be calculated from PQN the bottom left plot
is omitted. To illustrate the effect of different SD and rSD sizes (which both are calculated from
Vsweat), we show their mean over 100 replicates in comparison to the R2 values calculated from
the points plotted. Intuitively rSD is a measure of good correlation on the top row whereas SD is
a measured of good correlation on the bottom row (high R2, low rSD/SD respectively).

3.5 Data Analysis

Goodness of Normalization Two goodness of fit measures are calculated to analyze

the performance of the tested methods. SD is the standard deviation of the residuals

of a sampled sweat volume time series vector (Vtrue
sweat) minus the fitted sweat volume

vector (Vfit
sweat), while rSD is the standard deviation of the ratio of sampled and

fitted Vsweat vectors normalized by its mean. Intuitively, SD is a measure of how

much absolute difference there is between the fit and a true value, rSD on the other

hand gives an estimate on how good the fitted sweat volumes are relative to each

other. A visual depiction of SD and rSD is shown in Supplementary Figure S1 and

their exact definition is given in the equations in 3.3.

Statistical Analysis The significant differences in the mean of goodness of fit mea-

sures were investigated by calculating p values with the non-parametric pairwise

Wilcoxon signed-rank test [37] (SciPy’s stats.wilcoxon function [29]). Significance

levels are indicated by *, **, and *** for p ≤ 0.05, 0.01, and 0.001 respectively.

4 Results
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Figure 4 Goodness of normalization measures of simulation v3. The mean for 100 replicates for
different sweat volume normalization models is given for SD (left panel) and rSD (right panel).
The error bars represent standard deviations of the replicates. For the PQN method no SD was
calculated.

4.1 Synthetic Data Simulations

In order to test the performance of different normalization models we generated

100 synthetic data sets with three different methods (simulations v1, v2, v3) and

five different nmetabolites (4, 10, 20, 40, 60) each, where the underlying C, Vsweat,

and ϵ values were known. Simulations v1, v2, and v3 differ in the way how C was

generated (kinetic, random, sampled from real data set, respectively). In order to

quantify the the normalization model performance two measures of goodness of

normalization were used for the analysis of the results: SD and rSD.

To visualize the obtained normalization performances we plotted the results for

simulation v3 and nmetabolites = 60 in Figure 3 for three normalization models (from

left to right column, PQN, PKMfull, and MIXfull). The top row shows the predicted

Cj(ti;θ)/Cj(0;θ) (i.e. the concentration of each metabolite j at each time point i

divided by its concentration at time 0) as a function of the true Cj(ti)/Cj(0) values.

It illustrates the correlation of the relative abundances of one metabolite across all

time points. Good correlations (i.e. high R2) as seen for PQN and MIXfull result in

a low rSD measure. On the bottom row of Figure 3 the absolute values of predicted

Vsweat are plotted as a function of the true Vsweat. There it becomes evident that

good correlations of absolute values result in low SD measures.

In the following sections we will focus on the size of SD and rSD respectively as

they are both calculated from the predicted Vsweat directly. Note that for PQN no

absolute Vsweat can be estimated and, therefore, no SD is calculated.

Dependence on the number of metabolites In a first step, we tracked SD and rSD of

normalization methods for different numbers of metabolites (nmetabolites) to inves-

tigate how the methods behave with different amounts of available information. An

overview of their goodness of normalization measures as a function of nmetabolites on

sampled kinetic data and completely random data is given in the Supplementary

Figures S6 and S7 respectively. Most importantly, their performance of sampled

subsets of real data is given in Figure 4.
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Models that fit a kinetic function through all possible metabolites (PKMfull,

MIXfull, ℓ = 4) perform well (low SD, low rSD) when the C data originates

from a kinetic function (simulation v1). However, when the underlying data does

not originate from kinetic time series their performance is reduced drastically. For

PKMfull this is resembled in an increase of SD (from 0.19±0.08µL to 0.29±0.13µL
for nmetabolites = 60) as well as of rSD (from 0.08 ± 0.02 to 0.11 ± 0.05 for

nmetabolites = 60). Conversely, the rSD from MIXfull performs similarly well as

the best methods on the completely random data (0.05±0.01 for nmetabolites = 60).

This property can be explained by the PQN term incorporated in the objective

function of MIXfull which biases the results to better rSD values.

Another observation is the behaviour of PQN. Its rSD approaches a value close to 0

with increasing nmetabolites, indifferently on how the underlying data was generated

(compare Figures 4, S6, S7). Conversely, no SD values can be calculated for PQN.

The reason for this is that with PQN no absolute Vsweat values can be estimated.

Interestingly, the results from simulation v3 lie between the results from simulation

v1 and v2. This gets especially evident when comparing the performance of MIXfull

and PKMfull between Figure 4 and Supplementary Figures S6, S7. Such a result

suggests that not all of the untargeted metabolites measured are completely random,

but some can be described with the modified Bateman function. This leads to the

hypothesis that after sweat volume normalization, the real finger sweat data (from

which values for v3 were sampled) has high potential for the discovery of unknown

kinetics.

Exact numbers for SD and rSD for all normalization methods and nmetabolites are

given in Supplementary Tables 3 and 4 respectively. Moreover, pairwise comparisons

of SD and rSD of normalization methods relative to the results from PKMminimal

are plotted in Supplementary Figures S10 and S11.

Statistical Testing As at nmetabolites = 60 the goodness of normalization measures

start to flatten out we further investigated this condition for statistical significance.

We used the non-parameteric Wilcoxon signed-rank test to compare pairwise dif-

ferences in mean of SD and rSD between the tested models. p-values for all combi-

nations are given in Supplementary Tables 5 and 6.

As Figure 4 already indicated, the overall best performance in SD as well as rSD is

observed for the MIXminimal model. For nmetabolites = 60 it significantly outperforms

every other method’s SD (Figure 5). There is only one exception; in simulation v1,

between MIXminimal and MIXfull no significant difference was found (Supplementary

Figure S8). Moreover, MIXminimal’s performance in rSD is at least equal to or better

than all other tested methods (Supplementary Table 6). Compared to the previously

used PKMminimal [23], the SD of MIXminimal improves by −59 ± 24%, the rSD by

−56± 23% (Supplementary Figures S10, S11).

We, therefore, conclude that normalizing the sweat volume by the MIXminimal

method reduces the error for the estimated Vsweat compared to other tested methods.

Compared to PKM, MIXminimal has the advantage that its performance does not

vary if metabolites’ concentration time series can be described with a modified Bate-

man function (i.e. simulations v1, v2 v3 have little influence on its performance).

Therefore, it is especially advantageous if this property cannot be guaranteed.
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Figure 5 SD measures of simulation v3 with nmetabolites = 60. The significance between the
methods was calculated on 100 paired replicates with the Wilcoxon signed-rank test.

4.2 Computational Performance

Analysis of metabolomics data sets is usually a computationally exhaustive process.

There are several steps in (pre-)processing that need to be executed, many of them

lasting for hours. Therefore, computational time can quickly stack to large numbers.

Normalization models are no exception to this general rule. As nmetabolites in a phar-

macokinetic model increases, the time for optimization of pharmacokinetic models

may become limiting. Therefore, we investigated the average time for one time series

normalization for different methods and different numbers of metabolites.

The computational time spent for one optimization step as a function of

nmetabolites is given in Figure 6 for simulation v3. It increased for some normaliza-

tion models, however not for all of them and not equally. Within the investigated

range, PQN stays well under 1 second per normalization, whereas with PKMfull the

normalization time increases drastically from 2± 1 s for a model with 4 metabolites

to 72± 48 s for 60 metabolites. Similar, although even longer, normalization times

were observed for MIXfull maxing out at 170 ± 22 s for nmetabolites = 60. In stark

contrast to the exponential increase in computational power needed for full models

are the minimal models. Their time to optimize stays nearly constant within the

investigated metabolite range (Supplementary Table 7).

Here we demonstrate that MIXminimal is not only superior to other tested models

in terms of its normalization performance, but also in terms of computational feasi-

bility. We hypothesize that even data sets with thousands of untargeted metabolites

will have a minor impact on its speed.
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Figure 6 Time in seconds for optimization of one normalization model in simulation v3. The
error bars represent the standard deviation of normalization times between 100 replicates.

4.3 Application on a Caffeine Network

In the original study, the authors identified and quantified four metabolites (caffeine,

paraxanthine, theobromine, and theophylline) in a time series after the ingestion of

a single dose of caffeine [23]. To investigate the performance of normalization models

on a real finger sweat data set, we split all 3446 measured M̃ time series into three

parts that contained two targeted metabolites each, only one shared by all, namely

caffeine. Subsequently we fitted a PKMminimal and MIXminimal model (ℓ = 2) with

specialized kinetics (for details see 3.2) through the three sub data sets. Due to the

nature of the metabolite subnetworks (Supplementary Figure S4) it is possible to

calculate two kinetic constants describing the absorption and elimination of caffeine

(kcafa and kcafe ) in all three cases. As the data for all three subnetworks was measured

in the same experiment we can assume that the underlying ground truth of these

constants has to be the same. Therefore, by comparing the variance of kcafa and kcafe

it is possible to infer the performance of normalization methods.

In Figure 7 the precisions of the PKMminimal (top panel) and MIXminimal (bottom

panel) normalization methods are illustrated. It is evident that using MIXminimal

improves the precision of estimated kcafa as well as kcafe . The standard deviation over

all data points decreases from 32% to 8% for kcafa and from 42% to 19% for kcafe

when switching to MIXminimal normalization.

In contrast to Figure 7 where the standard deviation was calculated over all 37

measured time series, in Figure 8 the standard deviation within one measured M̃

time series is illustrated. In the top panel of Figure 8 the standard deviations of the
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Figure 7 Cumulative relative error (CRE) of PKMminimal (top panel) and MIXminimal (bottom

panel) on a real data set. Per measured M̃ time series the mean value of kcafa = k′1 and

kcafe = k′2 + k′3 for the three subnetworks were assumed as ground truth. Relative errors of kinetic
constants were calculated between subnetwork fits and assumed ground truth for all 37 measured
time series. Therefore, the number of points per panel corresponds to the number of
concentrations time series present in the data set times three. On the X-axis the relative error of
kcafa = k′1 and on the Y-axis the relative error kcafe = k′2 + k′3 are plotted.

absorption constant of caffeine, kcafa , are shown for different normalization models.

Their mean measured mass time series for PKMminimal is significantly larger than

for both versions of the MIXminimal model (p = 2.8 × 10−5 and p = 2.2 × 10−5 for

equal and metabolite-depending weighting respectively). The difference between

two MIXminimal versions is due to the loss term weighting and discussed in the

following section. On the bottom panel of Figure 8, the standard deviation of the

elimination constant of caffeine is shown. There again, a significant decrease of

the mean standard deviation for MIXminimal models was found (p = 4.5 10−7 and

p = 4.2 × 10−7 equal and metabolite-depending weighting respectively) compared

to the previously used PKMminimal model.

We emphasize that the original study introducing pharmacokinetic normalization

was especially focused on the absorption, conversion and degradation of caffeine

[23]. Therefore, the kinetic network resembled specific kinetics of that metabolic
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Figure 8 Performance of PKMminimal and MIXminimal on a real data set. On the top panel the
standard deviation of kcafa = k′1 fitted with three different subnetworks is plotted. On the bottom

panel the standard deviation of kcafe = k′2 + k′3 fitted with three different subnetworks is
plotted.Two different strategies for the weighting of the loss terms were investigated; equal
weighting in the middle panel, metabolite-depending weighting in the bottom panel. The number
of points per method corresponds to the number of concentrations time series present in the real
data set. The Wilcoxon signed-rank test was used to test for significant differences.

pathway. In contrast, PKM and MIX proposed in this study are generalized forms

relying on the same principle, but the modified Bateman equation used here is a lot

less constrained than the kinetic functions used for the description of the original

kinetic network. However in this section, we demonstrate that the fundamental

improvement found by switching from PKM to a MIX model can be also translated

back again to a more specific metabolic network. In order to support this argument,

we show the applicability of the MIXminimal normalization method on a real finger

sweat data set. The results with real data emphasize the validity of the simulations

done on synthetic data sets. They show that especially, when known metabolic

networks are small, the MIXminimal model significantly improves the robustness

of normalization and thus kinetic constants inferred from finger sweat time series

measurements.
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4.4 Weighting MIX of Loss Terms

In the previous evaluations, we weighted the loss terms (defined in Equation 9a) of

the MIX model according to the number of metabolites used for the calculation of

each term (i.e. metabolite-depending weighting). However, in real world experiments

typically the analytical method is optimized for targeted metabolites, which results

in high confidence. Similar level of confidence may not be expected for all other

metabolites. This differences in confidence can be accounted for in the loss weighting

term λ (Equations 9b, 9c). Here we tested two diametric principles to calculate λ;

metabolite-depending and equal weighting.

The results of the test are shown in Figure 8 (compare MIXminimal equal weighting

and MIXminimal metabolite-depending weighting). In determining kcafa metabolite-

dependent weighting outperforms equal weighting (p = 1.7 × 10−2). However, no

significant differences between the weighting strategies are found for kcafe .

The reason for this investigation was that one would expect different confidences

of measured metabolites. As the finger sweat data was analysed with optimizing the

precision of caffeine and its degradation products in mind, it is reasonable to assume

that their measured mass time series are more precise (i.e. have higher confidence)

than ones from untargeted measurements. Another argument for the use of equal

weighting is the fact that untargeted data may be highly correlated. However, it is

a priori not feasible to differentiate between real correlations already present in C

and correlations in M̃ that were introduced by Vsweat [38].

The difference in weighting methods for kcafa has a low significance level. As sev-

eral pairwise comparisons were performed on the results and the p values are given

without correction for multiple testing, we argue that this significance is coinciden-

tal. This is further supported by the fact that no significance was found for kcafe .

Overall we hypothesize the value for λ would lie within the two extremes tested

here, however, if no information about the confidence and correlation of different

features is available, we argue that it is preferable to use equal weighted loss terms

as it emphasises the better controlled targeted measurements (known calibration

curve, easier quality control).

5 Discussion
In this study we present a generalized framework for the PKM normalization

model, first introduced in reference [23]. Moreover, we extend the existing model

to incorporate untargeted metabolite information, dubbed as MIX model. Both

models are implemented in Python and are openly available at GitHub https:

//github.com/Gotsmy/sweat_normalization.

The quality of normalization methods was tested on synthetic data sets. Synthetic

data sets are necessary as it is impossible to obtain validation data without fun-

damentally changing the (finger) sweat sampling method as described above [23].

However, three different synthetic data generation methods (v1, v2, v3) were em-

ployed to ensure that synthetic data sets are close to real data as possible. We found

that, when nmetabolites ≥ 60, MIXminimal performs equally well or better than all

other tested normalization methods.

Despite true Vsweat values remaining unknown, the real finger sweat data can

be used as validation for relative robustness of normalization methods. There,
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MIXminimal significantly outperforms PKMminimal independently from how λ is cal-

culated. The decreased variance of kinetic constants estimated by MIXminimal likely

originates from the fact that QPQN does not differ much for three subsets as long as

nmetabolites = 60 is exceeded in each subset (which is the case here). On the other

hand, as only few data points are used for PKMminimal optimization, small errors in

one of the two targeted metabolites measured mass have a high potential to change

the normalization result.

To recapitulate, the proposed MIXminimal model has several crucial advantages

over other tested methods.

• MIXminimal significantly outperforms PKMminimal in relative (rSD, −56 ±
23%) and absolute (SD, −59 ± 24%) errors with as little as 60 untargeted

metabolites used as additional information (Figure 5).

• MIXminimal is invariant to whether untargeted metabolites follow an easily

describable kinetic concentration curve (compare Supplementary Figure S6

to Supplementary Figure S7).

• MIXminimal performs equally well as PQN for relative abundances, but ad-

ditionally it estimates absolute values of Vsweat, similar to pharmacokinetic

(PKM) models (Figure 4).

• Moreover, pharmacokinetic (PKM) models need at least two metabolite time

courses with known kinetics to be feasible [23], for MIXminimal, however,

strictly speaking only one metabolite in the PKM part is necessary as the

size effect changes can be accounted for in the PQN part of the model.

• MIXminimal performs well in this proof of principle study, moreover, it is a

basis for further improvements. Firstly, different, more sophisticated statisti-

cal normalization methods (e.g. EigenMS [25]) can be used as input for the

PQN part of the model. Secondly, Bayesian priors describing uncertainties of

different metabolites can be implemented over the λ parameter in a similar

fashion as discussed in reference [39].

• Strikingly, the results showed that for all normalization methods tested the

SD and rSD values flattened once 60 metabolites were present in the original

information. This suggested that the presented normalization models, espe-

cially MIXminimal can be applied even for biomatrices or analytical methods

with as few as 60 compounds measured.

6 Conclusion
In this study we described and define two metabolomics time series normalization

models: PKM and MIX. Subsequently, we elaborated several advantages of the

MIXminimal model over PKM and previously published normalization methods. We

are confident that this will further improve the reliability of metabolomic studies

done on finger sweat and other non-conventional biofluids. However, we acknowl-

edge that a more thorough investigation with data sets of several more quantified

metabolites and determined sweat volumes need to be carried out to assess the full

potential of the proposed method.
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Abbreviations

Symbol Name

asample sampling skin area

b part of modified Bateman function

C,C underlying concentration (vector)

c0 kinetic parameter

d kinetic parameter

F modified Bateman function

V ref
sweat PQN correction factor

i time point index

j metabolite index

k kinetic parameter

ℓ metabolites used for kinetic fitting

ℓ+ metabolites not used for kinetic fitting

L loss

L loss function

lag kinetic parameter

M̃ , M̃ measured mass (vector)

M ref reference mass for PQN

m/z mass over charge ratio

nmetabolites number of metabolites

ntime points number of time points

p p-value

qsweat sweat rate

QC median concentration fold change of two samples

QM median mass fold change of two samples

QPQN normalization quotient calculated by PQN

R2 coefficient of determination

rSD relative measure of goodness of normalization

SD absolute measure of goodness of normalization

t time

Vsweat collected sweat volume

v1, v2, v3 synthetic data sets

ϵ experimental error vector

θ kinetic parameter vector for fitting

λ loss weighting parameter

τ time to collect one sample
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