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Abstract

In macromolecular crystallography radiation damage limits the amount of data that

can be collected from a single crystal. It is often necessary to merge data sets from

multiple crystals, for example small-wedge data collections on micro-crystals, in situ

room-temperature data collections, and collection from membrane proteins in lipidic

mesophase. Whilst indexing and integration of individual data sets may be relatively

straightforward with existing software, merging multiple data sets from small wedges

presents new challenges. Identification of a consensus symmetry can be problematic,

particularly in the presence of a potential indexing ambiguity. Furthermore, the pres-

ence of non-isomorphous or poor-quality data sets may reduce the overall quality of

the final merged data set.
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To facilitate and help optimise the scaling and merging of multiple data sets, we

developed a new program, xia2.multiplex, which takes data sets individually inte-

grated with DIALS and performs symmetry analysis, scaling and merging of multi-

crystal data sets. xia2.multiplex also performs analysis of various pathologies that

typically affect multi-crystal data sets, including non-isomorphism, radiation damage

and preferential orientation. After describing a number of use cases, we demonstrate

the benefit of xia2.multiplex within a wider autoprocessing framework in facilitat-

ing a multi-crystal experiment collected as part of in situ room-temperature fragment

screening experiments on the SARS-CoV-2 main protease.

1. Introduction

Macromolecular structure determination routinely uses data sets obtained under cryo-

genic conditions from a single crystal. However, radiation damage limits the amount

of data that can be collected from a single crystal. Cryocooling vastly increases the

dose that can be tolerated by a single crystal, leading to the dominance of cryo-

crystallography in macromolecular structure determination (Garman, 1999; Garman

& Owen, 2007). However, it is often still necessary to merge multiple data sets from

one or more crystals when dealing with radiation sensitive samples and high brilliance

X-rays from third generation light sources.

Multi-crystal data collection dates back to the early days of macromolecular crys-

tallography (Kendrew et al., 1960; Clemons Jr et al., 2001), but has seen a resurgence

in recent years (Yamamoto et al., 2017) as many scientifically important targets, such

as membrane proteins and viruses frequently yield small, weakly diffracting micro-

crystals. The development of crystallisation in lipidic mesophases (Caffrey, 2003; Caf-

frey, 2015) and the availability of microfocus beamlines (Evans et al., 2011; Smith

et al., 2012) have facilitated data collection and structure solution of these difficult
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targets. Data collection strategies for small weakly diffraction crystals rely on collect-

ing many small wedges of data, typically 5-10°per crystal, at cryogenic temperatures.

For samples in lipidic mesophase this is often preceded by X-ray raster scanning to

identify the location of crystals (Cherezov et al., 2007; Rasmussen et al., 2011; Rosen-

baum et al., 2011; Cherezov et al., 2009; Warren et al., 2013). Such experiments are

becoming increasingly automated thanks to developments such as MeshAndCollect

(Zander et al., 2015) and ZOO (Hirata et al., 2019).

Multi-crystal data collections have also been applied to experimental phasing, where

combining data from multiple crystals enhances weak anomalous signals using high-

multiplicity data of sufficient quality to enable structure solution by single-wavelength

anomalous dispersion (SAD) (Liu et al., 2011; Liu & Hendrickson, 2015) and sulfur

SAD (S-SAD) (Akey et al., 2014; Liu et al., 2014; Huang et al., 2015; Huang et al.,

2016; Olieric et al., 2016).

Although cryogenic structures have provided the gold standard for structural anal-

ysis of macromolecules for decades, it has been shown that cryocooling can hide

biologically-significant structural features (Fraser et al., 2009; Fraser et al., 2011; Fis-

cher et al., 2015). Certain classes of macromolecular crystals, such as viruses, can

also suffer when cryo-cooled. However, room-temperature data collection presents its

own challenges, namely that radiation damage occurs at an absorbed dose one to two

orders of magnitude lower than at cryogenic temperatures (Helliwell, 1988; Nave &

Garman, 2005). In contrast to cryogenic data collections, an inverse dose-rate effect

on crystal lifetime has been observed in room-temperature data (Southworth-Davies

et al., 2007). As a result, obtaining a complete room-temperature data set from a

single crystal is difficult without combining data from multiple crystals.

As demand for room-temperature methods has increased, beamline developments

have enabled routine room-temperature data collection on crystals directly from crys-
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tallisation plates (in situ). This has the added benefit of eliminating the need for

crystal harvesting (Axford et al., 2012; Aller et al., 2015; Axford et al., 2015), and

there now exists a beamline, VMXi at Diamond Light Source, dedicated to in situ

data collection (Sanchez-Weatherby et al., 2019). Advances in beamline and detector

technology have enabled the collection of room-temperature data at a higher dose

rate (Owen et al., 2012; Owen et al., 2014; Schubert et al., 2016), increasing the gen-

eral applicability of room-temperature data collection (Aller et al., 2015; Broecker

et al., 2018).

Merging multiple data sets from small wedges presents a number of challenges.

For novel structures with unknown space group and unit cell parameters, identifying

a consensus symmetry can be problematic, particularly in the presence of indexing

ambiguities (Brehm & Diederichs, 2014; Kabsch, 2014; Gildea & Winter, 2018). The

presence of non-isomorphous or poor-quality data sets may also degrade the overall

quality of the merged data set. Various methods have been developed to identify

individual non-isomorphous data sets based on comparison of unit cell parameters

(Foadi et al., 2013; Zeldin et al., 2015) or intensities (Giordano et al., 2012; Santoni

et al., 2017; Diederichs, 2017) to combat this. Rogue data sets, or even individual

bad images, can be identified by algorithms such as the ∆CC 1
2

method described

by Assmann et al. (2016) and implemented within dials.scale (Beilsten-Edmands

et al., 2020).

Microcrystal and room-temperature data collection strategies are a compromise

between maximising useful signal, and minimising the effects of radiation damage. By

analysing radiation damage we can provide rapid feedback to guide an ongoing exper-

iment and truncate the number of images used to produce the best final composite

data set. The Rcp statistic introduced by Winter et al. (2019) can also be applied to

multi-crystal data, under the assumption that the dose per-image is approximately
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constant for all data sets. This may be appropriate for multi-crystal data collections

where approximately uniformly-sized crystals are bathed in the X-ray beam.

Preferential orientation of crystals can be a concern for some multi-crystal data

collections, depending on crystal symmetry and morphology, such as plate-like crystals

in situ within a flat-bottomed crystallization well. Preferential orientation can lead

to under-sampled regions of reciprocal space with systematically low multiplicity or

missing reflections, which may have adverse consequences on downstream phasing or

refinement. Providing feedback on preferential orientation provides the opportunity

for a user to make modifications to their experiment to minimise any resulting issues.

Structural biologists have become accustomed to highly automated data analysis

provided by synchrotron beamlines around the world (Holton & Alber, 2004; Winter,

2010; Vonrhein et al., 2011; Winter & McAuley, 2011; Winter et al., 2013; Monaco

et al., 2013), typically obtaining automated data processing results within minutes

of the end of data collection for routine experiments. Multi-crystal experiments can

generate large volumes of data in minutes, which brings new challenges in terms of

bookkeeping and data analysis.

There are two primary aspects in which automated data analysis can support multi-

crystal experiments. First, rapid feedback from data analysis during beamtime can

help guide ongoing experiments, enabling more efficient use of beamtime and allowing

a user to more selectively screen sample conditions. Relevant feedback may include

suitable metrics on merged data quality, i.e. completeness, multiplicity and resolution,

and feedback on experimental pathologies such as non-isomorphism, radiation damage

and preferential orientation, that may hinder the experimental goals.

Secondly, after the completion of beamtime, the user may be prepared to invest

more time and effort in interactively optimising the best overall data set for any given

sample group. Automation is still highly relevant in this context, as the user may have
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collected data on many sample groups which they wish to process in a similar manner.

Standard autoprocessing pipelines such as xia2 (Winter, 2010) can handle multi-

crystal data sets to some extent, however, they are optimised to process a small number

of relatively complete data sets, rather than the many tens to hundreds of severely

incomplete data sets that comprise a multi-crystal experiment.

A new program, xia2.multiplex, has been developed to facilitate the scaling and

merging of multiple data sets. It takes as input data sets individually integrated with

DIALS and performs symmetry analysis, scaling and merging, and analyses various

pathologies that typically affect multi-crystal data sets, including non-isomorphism,

radiation damage and preferential orientation.

xia2.multiplex has been deployed as part of the autoprocessing pipeline at Dia-

mond Light Source, including integration with downstream phasing pipelines such as

DIMPLE (http://ccp4.github.io/dimple/) and Big EP (Sikharulidze et al., 2016).

Using data sets collected as part of in situ room-temperature fragment screening

experiments on the SARS-CoV-2 main protease, we demonstrate the use of xia2.multiplex

within a wider autoprocessing framework to give rapid feedback during a multi-crystal

experiment, and how the program can be used to further improve the quality of final

merged data set.

2. Methods

Prior to using xia2.multiplex, each data set should be processed individually with

DIALS (Winter et al., 2018). Data may be processed either in the primitive, P1,

setting, or alternatively Bravais symmetry may be determined prior to integration,

using dials.refine bravais settings. It is not necessary to individually scale the

data at this point.

Preliminary filtering of data sets is performed using hierarchical unit cell clustering
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methods (Zeldin et al., 2015). Histograms and scatterplots of the unit cell distribution

are generated for visual analysis, after which symmetry analysis and indexing ambi-

guity resolution are performed with dials.cosym. Finally the data are scaled with

dials.scale, followed by radiation damage and isomorphism analysis.

2.1. Symmetry analysis

Initial analysis of the Patterson symmetry of the data is performed using dials.cosym

(Gildea & Winter, 2018). This is an extension of the methods of Brehm & Diederichs

(2014) for resolving indexing ambiguities in partial data sets, for completeness reviewed

here.

The maximum possible lattice symmetry compatible with the averaged unit cell is

used to compile a list of all potential symmetry operations. The matrix of pairwise

correlation coefficients is constructed, of size (n×m)2, where n is the number of data

sets and m is the number of symmetry operations in the lattice group. The Pearson’s

correlation coefficient between data sets i and j, after application of the kth and lth

symmetry operators respectively, is defined according to

rik,jl =

∑
h

[
Iik(h)− Iik

] [
Ijl(h)− Ijl

]{∑
h

[
Iik(h)− Iik

]2∑
h

[
Ijl(h)− Ijl

]2}1/2
. (1)

Each data set is represented as n×m coordinates in an m-dimensional space. Use of

an m-dimensional space allows the presence of up to m orthogonal xi clusters, where

the orthogonality between clusters corresponds to a correlation coefficient rik,jl close

to zero. A modification of algorithm 2 of Brehm & Diederichs (2014), accounting for

the additional symmetry-related copies of each data set, is used to iteratively minimise

the function

Φ =
n×m∑
i=1

n×m∑
j=1

(rik,jl − xi · xj)
2 (2)

using the L-BFGS minimisation algorithm (Liu & Nocedal, 1989), with randomly-
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assigned starting coordinates x in the range 0–1.

2.1.1. Determination of number of dimensions It is necessary to use a sufficient num-

ber of dimensions to represent any systematic variation present between data sets.

Using m-dimensional space, where m is equal to the number of symmetry opera-

tions in the maximum possible lattice symmetry, should be sufficient to represent any

systematic variation present due to pseudosymmetry. However, choosing the optimal

number of dimensions is a balance between underfitting and overfitting. Using more

dimensions than is strictly necessary may reduce the stability of the minimisation,

particularly in the case of sparse data, where there is minimal overlap between data

sets. As a result, we devised the following procedure to automatically determine the

necessary number of dimensions.

1. For each dimension in the range 2–m minimise Equation 2 and record the final

value of the function.

2. Plot the resulting values as a function of the number of dimensions.

3. Determine the ’elbow’ point of the plot, in a similar manner to that used by

Zhang et al. (2006), to give the optimal number of dimensions.

Alternatively, the user may specify the number of dimensions to be used for the

analysis.

2.1.2. Identification of symmetry A modified form of the algorithms from the pro-

gram POINTLESS (Evans, 2006; Evans, 2011) are used in the determination of the

Patterson group symmetry from the results of the initial cosym procedure.
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Evans (2011) estimates the likelihood of a symmetry element Sk being present, given

the correlation coefficient CCk, as

p(Sk;CCk) =
p(CCk;Sk)

p(CCk;Sk) + p(CCk; !Sk)
. (3)

The probability of observing the correlation coefficient CCk if the symmetry is

present, p(CCk;Sk), is modelled as a truncated Lorentzian centred on the expected

value of CC if the symmetry is present, E(CC;S), with a width parameter γ =

σ(CCk).

The distribution of CCk if the symmetry is not present is modelled as

p(CCk; !Sk) =

∫ 1
0 p(CC;u)p(u) du∫ 1

0 p(u) du
(4)

p(u) = (1− u2)
1
2 (5)

Diederichs (2017) makes clear the relationship between the results of the clustering

procedure outlined above, and the correlation coefficient rij between two data sets i

and j:

rij = CC∗
i × CC∗

j × cos[∠(xi,xj)]. (6)

The length of the vectors |xi| are inversely related to the amount of random error,

i.e. they provide an estimate of CC∗. The maximum possible correlation coefficient

between two data sets is given by the product of their CC∗ values. The angles between

two vectors represent genuine systematic differences. For points related by genuine

symmetry operations we expect cos[∠(xi,xj)] ≈ 1, whereas for points related by

symmetry operations that are not present we expect cos[∠(xi,xj)] = 0.

We can therefore use cos[∠(xi,xj)] in place of CCk, with E(CC;S) = 1. The

estimated error σ(CCk) used by Evans (2011) has a lower bound of 0.1, which is

intended to avoid very small values of σ when large numbers of reflections contribute
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to the calculation of CCk. Since many reflections are contributing indirectly to the

angles between any one pair of vectors, we can assume a value of γ = 0.1. The average

of all observations of cos[∠(xi,xj)] corresponding to a given symmetry operator Sk,

are used as an estimate of CCk.

Once a score has been assigned to each potential symmetry operator, all possible

point groups compatible with the lattice group are scored as in Evans (2011) A2:

1. Find the highest lattice symmetry compatible with unit cell dimensions

2. Score each potential rotation operation using all reflections related by that oper-

ation

3. Score possible subgroups (Patterson groups) according to combinations of sym-

metry elements

Once the most likely Patterson group has been identified by the above procedure,

it is then relatively straightforward to assign a suitable reindexing operation to each

data set to ensure that all data sets are consistently indexed. First, a high density

point is chosen as a seed for the cluster. Then, for each data set, identify the nearest

symmetry copy of that data set to the seed. The symmetry operation corresponding

to this symmetry copy is then the reindexing operation for this data set.

2.2. Unit cell refinement

After symmetry determination, an overall best estimate of the unit cell is obtained

by refinement of the unit cell parameters against the observed 2θ angles, using the

program dials.two theta refine (Winter et al., 2021). This program minimises the

unit cell constants against the difference between observed and calculated 2θ values,

which are determined from background-subtracted integrated centroids. This provides

an overall best estimate of the unit cell that is a suitable representative average for
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use in subsequent downstream phasing and refinement.

2.3. Scaling

Data are then scaled using the physical scaling model in dials.scale (Beilsten-

Edmands et al., 2020). xia2.multiplex uses the automatic scaling model selection

within dials.scale to enable a suitable model parameterisation for both the cases

of small-wedge data sets and large-wedge data sets. For small-wedge data sets, each

data set is corrected by an overall scale factor and relative B-factor that are smoothly-

varying as a function of rotation angle, whereas the absorption correction of the phys-

ical scaling model is not used as this correction requires the sampling of a diverse set

of scattering paths through the sample. For large-wedge data sets, the absorption cor-

rection of the physical scaling model is used in addition to the smoothly-varying scale

and B-factor corrections. The strength of the absorption correction can optionally be

set to low (the default), medium or high. This option adjusts the absorption model

parameterisation and restraints to enable a correction that more closely matches the

expected relative absorption, which can be high at long wavelengths or for crystals

containing heavy atoms.

Several rounds of outlier rejection are performed during scaling, to remove indi-

vidual reflections that have poor agreement with their symmetry-equivalents. The

uncertainties of the intensities are also adjusted during scaling, by optimising a single

error model across all data sets, in order to account for the effects of systematic errors

which tend to increase the variability of intensities within each symmetry-equivalent

group. Optionally, for anomalous data, Friedel pairs can be treated separately in scal-

ing, which can increase the strength of the anomalous signal.
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2.3.1. Estimation of resolution cutoff After the data have been successfully scaled,

the program dials.estimate resolution is used to estimate a suitable resolution

cutoff for the data. By default, this is determined from a fit of a hyperbolic tangent to

CC 1
2

calculated in resolution bins, similar to that used by AIMLESS (Evans & Mur-

shudov, 2013). The resolution cutoff is chosen as the resolution where the fit curve

reaches CC 1
2

= 0.3 (this cutoff value can be controlled by the user). A second round of

scaling with dials.scale is then performed after application of the resolution cutoff.

The default cutoff value of CC 1
2

= 0.3 is chosen as one that works well in the context

of autoprocessing in order to provide a consistent set of merging statistics for judg-

ing data quality during and ongoing experiment. Suitable cutoff values may depend

on the downstream data processing requirements, but the current gold standard for

publication is to use ”paired refinement” to determine the resolution at which includ-

ing higher resolution data in refinement no longer improves the model (Karplus &

Diederichs, 2012).

2.3.2. Space group identification After the data have been scaled in the Patterson

group identified by dials.cosym (§2.1.2), analysis of potential systematic absences is

performed by dials.symmetry in order to assign a final space group. In this analysis,

the existence of each potential screw axis allowed by the Patterson group is tested, by

calculating the z-score based on the deviation from zero of the merged < I/σ(I) >

for the expected absent reflections. From the individual z-scores, a likelihood for the

presence of each screw axis is determined, which are combined to score and select the

most likely non-enantiogenic space group.
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2.4. Radiation damage analysis

xia2.multiplex performs a number of analyses that can be useful in assessing

the extent of any radiation damage which may be present. Plots of scale factor and

Rmerge vs. image number are generated to look for any trends associated with radia-

tion damage. The Rcp statistic introduced by Winter et al. (2019) can also be applied

to multi-crystal data. This statistic accumulates the pairwise measured intensity dif-

ferences as a function of dose (or image number). In the absence of accurate dose

information for each data set it is necessary to make the assumption the dose per-

image is approximately constant for all data sets. In order to assess how many images

per crystal are necessary to achieve a complete data set, a plot of completeness vs.

dose is also generated.

2.5. Isomorphism analysis

Unit cell clustering, as implemented in the program BLEND (Foadi et al., 2013) and

elsewhere (Zeldin et al., 2015), is used by xia2.multiplex as a preliminary filtering

step to reject any highly non-isomorphous data sets.

xia2.multiplex implements two alternative intensity-based clustering methods

that are suitable for identification and analysis of non-isomorphism, once symmetry-

determination, resolution of indexing ambiguities, and scaling have been carried out as

described above. Clustering on correlation coefficients (Giordano et al., 2012; Santoni

et al., 2017) begins by calculating a matrix of pairwise correlation coefficients:

ri,j =

∑
h

[
Ii(h)− Ii

] [
Ij(h)− Ij

]{∑
h

[
Ii(h)− Ii

]2∑
h

[
Ij(h)− Ij

]2}1/2
. (7)

A distance matrix defined as di,j = 1 − ri,j is provided as input to the SciPy hier-

archical clustering routine using the average linkage method. Clusters are sorted by

distance, and the completeness and multiplicity of each cluster is reported. Optionally,
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xia2.multiplex can scale and merge the data sets defined by each cluster that meets

user-defined criteria for minimum completeness or multiplicity.

A second intensity-based clustering method follows that described by Diederichs

(2017) who demonstrated that the methods of Brehm & Diederichs (2014) could be

generalised to search for any systematic differences between data sets, not just those

caused by an indexing ambiguity. In addition to its use for identifying the Patterson

symmetry (§2.1.2), dials.cosym can also be used for analysis of non-isomorphism.

In this mode, rather than searching for the presence of potential additional sym-

metry operators, the matrix of pairwise correlation coefficients of size n2 reduces to

Equation 7. The function defined by Equation 2 is minimised as before to obtain a

representation of the similarity between data sets in a reduced dimensional space.

As made clear by Diederichs (2017), the length of a vector, xi is inversely pro-

portional to the random error in data set Xi. The angle between vectors xi and xj

corresponds to the level of systematic error between data sets Xi and Xj , and can

thus be used to estimate the degree of non-isomorphism between those data sets.

Analysis of the angular separation of vectors, x, can be used to identify groups of

systematically different data sets. Hierarchical clustering on the cosines of the angles

between vectors is performed to identify possible groupings of data sets for further

investigation. Optionally xia2.multiplex can re-scale multiple subsets of data, which

can be controlled by specifying a maximum number of clusters to merge and/or the

minimum required completeness or multiplicity for a cluster.

The final approach to isomorphism analysis implemented within xia2.multiplex

is the ∆CC 1
2

method described by Assmann et al. (2016), and implemented within

dials.scale (Beilsten-Edmands et al., 2020). If ∆CC 1
2

filtering is selected, then

xia2.multiplex will perform additional scaling with dials.scale, reject any data

sets that are identified as significant outliers according to ∆CC 1
2

analysis. Whilst this
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approach may not be suitable if there are two or more significant non-isomorphous

populations, it may give useful results if there are a small number of data sets that

are systematically different from the majority.

2.6. Preferential orientation

The report generated by xia2.multiplex includes stereographic projections of

crystal orientation relative to the laboratory frame, generated with the program

dials.stereographic projection. A random distribution of points (each point cor-

responds to a crystal, or its symmetry equivalent) in a stereographic projection sug-

gests a random distribution of crystal orientation, whereas a systematic non-random

distribution may be indicative of preferential crystal orientation. xia2.multiplex

also generates a number of plots that can aid in the analysis of the distribution of

multiplicities.

A new command, dials.missing reflections, has been developed to identify

connected regions of missing reflections in reciprocal space. This is achieved by first

generating the complete set of possible miller indices, then performing connected com-

ponents analysis on a graph of nearest neighbours in the list of missing reflections,

taking into account any symmetry operations that may be present. Prior to performing

the analysis, it is necessary to map centred unit cells to the primitive setting, in order

to avoid systematically absent reflections complicating the analysis. The complete

set of possible miller indices are generated, and expanded to cover the full sphere of

reciprocal space by application of symmetry operators belonging to the known space

group. This allows the identification of connected regions that cross the boundary

of the asymmetric unit. Nearest neighbour analysis is used to construct a graph of

connected regions which is then used to perform connected components analysis to

identify each connected region of missing reflections. Miller indices for missing reflec-
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tions are then mapped back to the asymmetric unit in order to identify the set of

unique miller indices belonging to each region. A sorted list of connected regions is

reported to the user, detailing the resolution range spanned by each region, and the

number and proportion of total reflections comprising each each region.

3. Deployment of xia2.multiplex at Diamond Light Source

xia2.multiplex as described above has been deployed as part of the autoprocess-

ing pipeline at Diamond Light Source (Figure 1). A series of partial data sets are

collected from a set of related crystals, for example from multiple crystals within

one or more drops in a crystallisation plate (Sanchez-Weatherby et al., 2019), sam-

ple loop, or sample mesh. After the end of each data collection, the partial data

set is processed individually with DIALS via xia2 . On the successful completion of

xia2 , a xia2.multiplex processing job is triggered using as input all successful xia2

results from this and prior data collections. xia2.multiplex results, including merg-

ing statistics, are recorded in ISPyB (Delagenière et al., 2011) for presentation to the

user via SynchWeb (Fisher et al., 2015), where results are typically available within

minutes of the end of the data collection. Prior to data collection, users may define

groups of related samples for combining with xia2.multiplex, either via SynchWeb

or via a configuration file in a pre-defined location. In the absence of this information,

xia2.multiplex will only combine data collected on the same sample, i.e. loop, mesh

or well within a crystallisation plate.

If a PDB file has been associated with the data collection, then automated structure

refinement is performed with the program DIMPLE (http://ccp4.github.io/dimple/)

using the merged reflections output by xia2.multiplex.
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4. Examples

4.1. Room-temperature in situ experimental phasing

Using data from (Lawrence et al., 2020), we showcase the use of xia2.multiplex

applied to multi-crystal room-temperature in situ data sets from heavy-atom soaks of

Lysozyme crystals, demonstrating successful experimental phasing using the result-

ing xia2.multiplex output. Data from Lysozyme crystals soaked with six different

heavy atom solutions were processed individually with DIALS via xia2 followed by

symmetry determination, scaling and merging with xia2.multiplex. Partial data sets

identified as outliers according to ∆CC 1
2

were rejected in an automated iterative pro-

cess with xia2.multiplex. Data processing statistics for each heavy atom soak, with

and without ∆CC 1
2

filtering of outlier data sets, are shown in Tables 1 and 2. Phasing

was performed with fast ep using SHELXC/D/E (Sheldrick, 2010). Structure refine-

ment was performed by REFMAC (Murshudov et al., 2011) via DIMPLE , using the

reference structure 6QQF (Gotthard et al., 2019). Anomalous difference maps were

calculated by ANODE (Thorn & Sheldrick, 2011) via the --anode option in DIMPLE .

Significant anomalous signal was observed, as indicated by the SHELXC plot of

< d”/sigI > vs. resolution (Figure 2a). Substructure searches with SHELXD were suc-

cessful (Figure 2b), and traceable electron-density maps were obtained by SHELXE .

Anomalous difference maps calculated by ANODE (Thorn & Sheldrick, 2011) via

DIMPLE indicated the presence of significant anomalous difference peaks (Figures 2c

and d).

To assess the impact of ∆CC 1
2

filtering on the resulting anomalous signal, we per-

formed experimental phasing, structure refinement (via DIMPLE ) and calculated

anomalous difference maps using data both with and without ∆CC 1
2

filtering of out-

liers. Substructure solution and autotracing were successful in both cases. ∆CC 1
2

filtering also resulted in improved merging statistics, typically in CC 1
2
, CCanom, <
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d”/sigI >, < I/σ(I) > and Rpim vs. resolution (Tables 1 and 2). For the NaBr

and Sm soaks there is a particularly significant improvement in Rwork and Rfree after

∆CC 1
2

filtering. These two soaks also correspond to the data sets that showed the

largest improvement in anomalous difference peak height after removal of outlier data

sets (Figure 2d).

We note that merging statistics such as correlation coefficients and R-factors, which

are calculated only on the unmerged intensity values without taking into account

their errors, can be affected by regions of lower data quality that are suitably down-

weighted with larger errors during scaling. The presence of these regions however does

not adversely affect the resulting merged intensities, which are appropriately weighted.

This disparity is most likely to be evident for high multiplicity data with regions of

significant radiation damage, in which case merged data quality indicators are most

representative of the data quality.

As outlined in §2.5, there are several different methods available in xia2.multiplex

for identifying outlier data sets. Above, we used ∆CC 1
2

filtering to identify and exclude

outlier partial data sets. Visualisation of the distribution and hierarchical clustering

on unit cell parameters (Figure 3e and f) identify data set 11 as an outlier, which

was also the first data set to be excluded by ∆CC 1
2

filtering. Similarly, hierarchical

clustering on pairwise correlation coefficients (Figure 4a) and on the cosines of the

angles between vectors, x, (Figure 4b) both identify data set 11 as an outlier. Whilst

in this case, all available methods for isomorphism analysis identified data set 11 as

the least compatible data set, it is beneficial to have an array of different methods

available, as the best method for a particular system may depend on the nature of

any isomorphism involved.
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4.2. TehA

Previously published in situ data for Haemophilus influenzae TehA (Axford et al.,

2015) were used to further demonstrate the applicability of xia2.multiplex and the

tools contained therein. 73 partial data sets were processed individually with DIALS

via xia2 , providing no prior space group or unit cell information. 71 successfully-

integrated data sets were provided as input to xia2.multiplex, where data were

combined and scaled using dials.cosym and dials.scale. Two data sets were iden-

tified as having inconsistent unit cells by preliminary filtering and removed, leaving

69 data sets for subsequent symmetry analysis and scaling. Structure refinement was

performed by REFMAC (Murshudov et al., 2011) via DIMPLE . Data processing and

refinement statistics using all data, and only those remaining after filtering by ∆CC 1
2
,

are shown in Table 3.

The maximum possible lattice symmetry was determined to be R − 3m:H, with

a maximum of six symmetry operations. Analysis of the value of Equation 2 as a

function of the number of dimensions identified that two dimensions were sufficient to

explain the variation between data sets. Further symmetry analysis with dials.cosym

correctly identified the Patterson group as R− 3:H, resolving the indexing ambiguity

present in this space group (Figure 5b).

The best overall unit cell was determined by dials.two theta refine as a = b =

98.76Å, c = 136.77Å, and data were scaled together with dials.scale. Resolution

analysis with dials.estimate resolution identified 2.14Å as the resolution where

the fit of a hyperbolic tangent to CC 1
2
≈ 0.3.

Six cycles of scaling and filtering were performed by dials.scale, where exclusion

was performed on whole data sets. A single outlier data set (with a cutoff of 3σ) was

removed at each of the first five cycles, removing a total of 6.2% of reflections. No

significant outliers were identified in the sixth cycle, therefore no further iterations
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were attempted.

Structure refinement was performed by REFMAC (Murshudov et al., 2011) via

DIMPLE , using the model from PDB entry 4ycr (Axford et al., 2015), using all scale

data, and after filtering of outliers using the ∆CC 1
2

method. Filtering of outlier data

sets leads to a slight improvement in merging statistics, particularly in < I/σ(I) > and

Rpim. There is also a slight reduction in the Rwork and Rfree reported by REFMAC.

Stereographic projections of crystal orientation with dials.stereographic projection

shows that preferential crystal orientatation may be an issue for this experiment (Fig-

ures 5c and d). Figures 5e and f show the consequences this has on the distribution

of multiplicities in the resulting data set. Analysis with dials.missing reflections

identifies a single region of missing reflections, comprising 1390 reflections (5.2%) cov-

ering the range 53.41− 2.14Å.

5. Applications

5.1. in situ ligand screening studies of SARS-CoV-2 main protease

With the emergence of the novel coronavirus SARS-CoV-2 and the associated coron-

avirus disease 2019 (COVID-19), the SARS-CoV-2 main protease has quickly emerged

as one of the primary targets for antiviral drug development (Jin et al., 2020; Jin

et al., 2021; Walsh et al., 2021). Fragment screening experiments using the XChem

platform at Diamond Light Source (Cox et al., 2016; Collins et al., 2017; Krojer

et al., 2017) screened over 1250 unique chemical fragments, yielding 74 fragment hits

(Douangamath et al., 2020).

Fragment screening experiments such as these are typically carried out using con-

ventional cryogenic conditions to minimise the effects of radiation damage, with each

structure obtained from a single crystal. Room-temperature data, however, can use-

fully identify or rule out structural artefacts induced by pushing the temperature far
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from the biologically relevant level (Durdagi et al., 2021; Guven et al., 2021).

Over the course of several beamline visits, room-temperature in situ data were

collected for 30 ligand soaks. Here we highlight room-temperature data collections for

five ligand soaks with previously-published cryogenic structures: Z1367324110 (PDB:

5R81) and Z31792168 (PDB: 5R84) (Douangamath et al., 2020), Z4439011520 (PDB:

5RH5), Z4439011584 (PDB: 5RH7), and ABT-957 (PDB: 7AEH) (Redhead et al.,

2021).

Data were collected on beamline I24 at Diamond Light Source, using a DECTRIS

PILATUS 3 6M detector, using a 30 × 30 µm beam with a flux of approximately

7× 1012 photons s−1. 20◦ of data were collected per crystal with an oscillation range

of 0.1◦ and exposure time of 0.02 s per image.

As described in §3, data sets were automatically processed individually with DIALS

via xia2 , followed by combined scaling and merging after each data collection with

xia2.multiplex. Automatic structure refinement and difference map calculations

were performed using DIMPLE .

Figures 6a and b show the improvement in the merging statistics for the autopro-

cessed data with the addition of each new data set. There is a visible improvement in

the quality of the DIMPLE electron density map with the number of crystals (Fig-

ures 6e-g).

Analysis of the distribution of unit cell parameters and clustering on unit cell

parameters indicated the presence of potential outlier data sets (Figures 7a and b).

Reprocessing with a lower unit cell clustering threshold resulted in improved merging

statistics for some data sets (Figures 7e and f). Alternatively, ∆CC 1
2

analysis may be

useful in identifying outlier data sets. For ligand soak Z4439011520, ∆CC 1
2

analysis by

dials.scale identified two outlier data sets over two rounds of scaling and filtering

(Figures 7c and d). ∆CC 1
2
-filtering removed data sets 0 and 18, which were also the
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two least compatible data sets identified by unit cell clustering.

Using the data improved by rejection of outlier data sets as above, initial structure

solution was performed using MOLREP (Vagin & Teplyakov, 2010) with 7AEH as the

search model. Structures were refined for 200 cycles in REFMAC5 (Murshudov et al.,

2011) using rigid body refinement, followed by iterative rounds of restrained refine-

ment with automatic TLS and assisted model building in COOT (Emsley et al., 2010).

Final data processing and refinement statistics for five ligand soaks, Z1367324110,

Z31792168, Z4439011520, Z4439011584 and ABT-957, are reported in Table 4. Final

coordinates and structure factors have been deposited in the Protein Data Bank (PDB

entries 7QT6, 7QT5, 7QT7, 7QT9 and 7QT8 respectively) and raw data uploaded to

Zenodo (https://doi.org/10.5281/zenodo.5837942, https://doi.org/10.5281/zenodo.5837946,

https://doi.org/10.5281/zenodo.5837903, https://doi.org/10.5281/zenodo.5836055 and

https://doi.org/10.5281/zenodo.5837958).

Ligand soak ABT-957 is of particular interest, as this unexpectedly crystallised

in space group P21, in contrast to the space group C2 typical of this protein, and

indeed observed for the cryo-structure of this ligand (Redhead et al., 2021). Auto-

processing (including both xia2 and xia2.multiplex) was performed both using the

user-specified target space group, C2, and with automatic space group determina-

tion. Out of 42 data sets collected, 18 data sets were successfully autoprocessed with

DIALS via xia2 in the target space group C2, and combined with xia2.multiplex.

In contrast, all 42 data sets individually processed successfully with automatic space

group determination, in a mixture of space groups P1, P2, P21 and C2. 33 data

sets remained after filtering for inconsistent unit cells. Analysis of symmetry with

dials.cosym identified the Patterson group P2/m, which features an indexing ambi-

guity due to the approximate pseudo-symmetry of the supergroup C2 (Tables 5 and

6).
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Of the ligand soaked structures collected all showed a near identical binding con-

formation between cryogenic and room temperature structures. A minor difference

was observed in the conformation of ABT-957 with the C9-N-C1(R) amide bond in

the room temperature structure being flipped compared to the cryogenic structure

(Figure 8). This amide flip had a knock on effect on the rotomer of the gamma-lactam

ring and the benzylic side chain which stems from N1 of the gamma lactam.

6. Conclusions

xia2.multiplex has been developed to perform symmetry analysis, scaling and merg-

ing of multiple data sets. xia2.multiplex is distributed with DIALS and hence

CCP4 , and is available as part of the autoprocessing pipelines across MX beamlines

at Diamond Light Source, including integration with downstream phasing pipelines

such as DIMPLE and Big EP. It is capable of providing near real-time feedback on

data quality and completeness during ongoing multi-crystal data collections, and can

be used as part of an iterative workflow to obtain the best possible final data set after

an experiment.

We have demonstrated its applicability using two previously-published room-temperature

in situ multi-crystal data sets, including an example of experimental phasing. Using

data sets collected as part of in situ room-temperature fragment screening experiments

on the SARS-CoV-2 main protease, we have shown the ability of xia2.multiplex to

provide rapid feedback during multi-crystal experiments, including the identification

of an unexpected change in space group with ligand addition.

Remaining challenges include automatic identification of the best subset(s) of data

to use for downstream analyses, and providing a user interface via applications such

as SynchWeb or CCP4 to view results and facilitate an interactive workflow using

xia2.multiplex.
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Heavy atom Au KBr KI NaBr NaI Sm
Data Collection
Exposure time (s) 0.01 0.01 0.01 0.01 0.01 0.01
Ω width (◦) 0.1 0.1 0.1 0.1 0.1 0.1
Wavelength (Å) 0.90279 0.91933 1.82331 0.91933 1.82331 1.69471
Number of images 200 200 200 200 200 200
Number of data sets 26 60 73 77 49 24
Crystal parameters
Space group P 41 21 2 P 41 21 2 P 41 21 2 P 41 21 2 P 41 21 2 P 41 21 2
Unit-cell parameters (Å) a = b = 78.58 a = b = 79.09 a = b = 79.16 a = b = 79.10 a = b = 79.16 a = b = 79.11

c = 38.27 c = 37.98 c = 38.01 c = 38.03 c = 38.01 c = 37.91
Data statistics
Resolution range (Å) 78.73-1.28 79.23-1.37 79.23-1.98 79.23-1.38 79.22-1.98 79.19-1.82

(1.33-1.28) (1.42-1.37) (2.06-1.98) (1.43-1.38) (2.06-1.98) (1.89-1.82)
No. of unique reflections 59067 (5906) 48155 (4545) 15387 (967) 47418 (4671) 15152 (763) 18825 (684)
Multiplicity 16.9 (7.0) 30.9 (4.0) 38.0 (2.1) 39.9 (5.8) 25.7 (1.8) 13.2 (1.4)
Rmerge 0.398 (-8.055) 0.118 (1.322) 0.161 (0.370) 0.232 (15.279) 0.160 (0.421) 0.473 (-5.938)
Rmeas 0.409 (-8.728) 0.119 (1.513) 0.163 (0.456) 0.234 (17.102) 0.162 (0.540) 0.490 (-7.623)
Rpim 0.094 (-3.287) 0.018 (0.710) 0.023 (0.261) 0.033 (7.304) 0.028 (0.331) 0.127 (-4.735)
Completeness (%) 100.0 (100.0) 99.5 (94.4) 96.3 (60.9) 100.0 (98.8) 94.7 (47.8) 91.7 (33.3)
< I/σ(I) > 6.8 (0.2) 19.2 (0.7) 19.7 (1.0) 21.8 (0.9) 16.5 (0.9) 26.2 (3.4)
CC 1

2
0.991 (0.016) 0.999 (0.280) 0.998 (0.756) 0.992 (0.005) 0.997 (0.568) 0.954 (0.040)

CCanom -0.031 (-0.011) 0.415 (0.055) 0.421 (0.203) -0.017 (0.022) 0.107 (0.008) -0.178 (-0.174)
Phasing
Substructure solution Yes Yes Yes Yes Yes Yes
Residues autotraced 127 120 79 120 77 91
Rwork 0.2682 0.2120 0.2353 0.3127 0.2396 0.2476
Rfree 0.2834 0.2346 0.2705 0.2509 0.2771 0.2737
Anom. peak height (σ) 45.45 45.40 23.22 45.67 21.47 44.04

Table 1. Data collection, merging and refinement statistics for Lysozyme room-temperature

in situ heavy atom soaks using all data sets. Values in parentheses are for the highest

resolution shell.
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Heavy atom Au KBr KI NaBr NaI Sm
Data Collection
Exposure time (s) 0.01 0.01 0.01 0.01 0.01 0.01
Ω width (◦) 0.1 0.1 0.1 0.1 0.1 0.1
Wavelength (Å) 0.90279 0.91933 1.82331 0.91933 1.82331 1.69471
Number of images 200 200 200 200 200 200
Number of data sets 22 59 72 75 48 22
Crystal parameters
Space group P 41 21 2 P 41 21 2 P 41 21 2 P 41 21 2 P 41 21 2 P 41 21 2
Unit-cell parameters (Å) a = b = 78.58 a = b = 79.09 a = b = 79.17 a = b = 79.10 a = b = 79.16 a = b = 79.11

c = 38.27 c = 37.98 c = 38.01 c = 38.03 c = 38.01 c = 37.91
Data statistics
Resolution range (Å) 39.31-1.27 79.23-1.35 79.23-1.98 79.24-1.33 79.22-1.98 79.19-1.82

(1.32-1.27) (1.40-1.35) (2.06-1.98) (1.38-1.33) (2.06-1.98) (1.89-1.82)
No. of unique reflections 60440 (6006) 49744 (4213) 15363 (945) 51260 (3621) 15096 (726) 18509 (589)
Multiplicity 13.1 (5.1) 29.1 (2.7) 36.1 (2.0) 34.4 (2.2) 24.2 (1.7) 10.7 (1.3)
Rmerge 0.137 (2.345) 0.115 (1.161) 0.163 (0.336) 0.111 (1.106) 0.156 (0.346) 0.074 (0.162)
Rmeas 0.142 (2.620) 0.116 (1.390) 0.165 (0.417) 0.112 (1.361) 0.159 (0.440) 0.077 (0.216)
Rpim 0.036 (1.131) 0.018 (0.741) 0.023 (0.241) 0.015 (0.772) 0.028 (0.266) 0.020 (0.141)
Completeness (%) 100.0 (99.6) 98.4 (83.7) 96.1 (59.5) 96.8 (68.5) 94.4 (45.5) 90.2 (28.6)
< I/σ(I) > 7.2 (0.2) 20.3 (0.8) 20.1 (1.3) 21.9 (0.6) 17.3 (1.4) 25.3 (3.7)
CC 1

2
0.997 (0.187) 0.999 (0.313) 0.997 (0.802) 0.999 (0.315) 0.994 (0.736) 0.996 (0.894)

CCanom 0.313 (0.011) 0.455 (-0.020) 0.565 (-0.100) 0.423 (0.089) 0.485 (0.055) 0.656 (0.024)
Phasing
Substructure solution Yes Yes Yes Yes Yes Yes
Residues autotraced 116 103 85 114 54 119
Rwork 0.2668 0.2116 0.2355 0.2140 0.2420 0.2078
Rfree 0.2820 0.2333 0.2704 0.2332 0.2753 0.2424
Anom. peak height (σ) 46.47 45.43 23.22 47.63 21.85 47.00

Table 2. Data collection, merging and refinement statistics for Lysozyme room-temperature

in situ heavy atom soaks after removal of data sets identified by ∆CC 1
2

analysis. Values in

parentheses are for the highest resolution shell.

All data ∆CC 1
2

-filtered data

Data Collection
Exposure time (s) 0.04 0.04
Ω width (◦) 0.2 0.2
Transmission (%) 12.34 12.34
Number of images 20-50 20-50
Number of data sets 69 64
Crystal parameters
Space group R 3 :H R 3 :H
Unit-cell parameters (Å) a = b = 98.76, c = 136.77 a = b = 98.76, c = 136.77
Data statistics
Resolution range (Å) 72.56-2.13 (2.21-2.13) 72.56-2.14 (2.22-2.14)
No. of unique reflections 26203 (2415) 25851 (2396)
Multiplicity 13.7 (6.8) 13.0 (6.7)
Rmerge 0.315 (-1033.253) 0.162 (2.508)
Rmeas 0.326 (-1113.925) 0.167 (2.703)
Rpim 0.078 (-406.346) 0.040 (0.981)
Completeness (%) 94.1 (86.3) 94.2 (86.8)
< I/σ(I) > 13.1 (1.3) 13.9 (1.5)
CC 1

2
0.988 (0.285) 0.996 (0.360)

CCanom -0.002 (0.004) 0.073 (0.045)
Rwork 0.1515 0.1499
Rfree 0.1726 0.1711

Table 3. Data collection, merging and refinement statistics for TehA. Values in parentheses

are for the highest resolution shell.
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Z1367324110 Z31792168 Z4439011520 Z4439011584 ABT-957
Data Collection
Exposure time (s) 0.02 0.02 0.02 0.02 0.02
Ω width (◦) 0.1 0.1 0.1 0.1 0.1
Wavelength (Å) 0.9999 0.9999 0.9999 0.9999 0.9999
Transmission (%) 2.9 2.9 2.9 2.9 2.9
Number of images 200 200 200 200 200
Number of data sets 27 19 19 16 33
Crystal parameters
Space group C 1 2 1 C 1 2 1 C 1 2 1 C 1 2 1 P 1 21 1
Unit-cell parameters (Å) a = 115.21 a = 114.77 a = 115.69 a = 115.86 a = 45.23

b = 54.78 b = 54.59 b = 54.47 b = 54.48 b = 54.68
c = 45.34 c = 45.31 c = 45.25 c = 45.20 c = 116.54
β = 101.24 β = 101.48 β = 101.70 β = 101.42 β = 100.35

Data statistics
Resolution range (Å) 49.31-2.11 44.42-2.26 44.32-2.25 56.80-2.43 49.37-2.01

(2.19-2.11) (2.34-2.26) (2.33-2.25) (2.52-2.43) (2.08-2.01)
No. of unique reflections 16050 (1586) 12834 (1277) 12607 (1272) 10345 (1038) 37112 (3748)
Multiplicity 9.8 (9.9) 7.0 (7.0) 7.2 (7.3) 5.9 (5.9) 12.1 (12.2)
Rmerge 0.170 (2.429) 0.170 (1.956) 0.162 (1.538) 0.166 (1.241) 0.291 (2.409)
Rmeas 0.179 (2.551) 0.184 (2.110) 0.174 (1.652) 0.183 (1.380) 0.304 (2.511)
Rpim 0.053 (0.755) 0.067 (0.767) 0.061 (0.577) 0.073 (0.578) 0.084 (0.691)
Completeness (%) 99.7 (99.9) 98.6 (99.6) 95.2 (97.2) 97.9 (97.7) 98.8 (99.8)
< I/σ(I) > 7.9 (0.6) 9.9 (1.2) 8.9 (1.1) 10.8 (2.0) 3.6 (0.4)
CC 1

2
0.996 (0.331) 0.994 (0.425) 0.987 (0.311) 0.987 (0.305) 0.992 (0.360)

Refinement
Rwork 0.177 0.168 0.163 0.15 0.204
Rfree 0.222 0.231 0.216 0.2 0.237
R.m.s.d., bond lengths (Å) 0.0133 0.0107 0.107 0.0132 0.0123
R.m.s.d., bond angles (◦) 1.843 1.691 1.81 1.903 1.752

Average protein B factor (Å2) 55.54 52.98 50.45 48.72 36.75

Average water B factor (Å2) 47.13 46.09 46.44 41.28 29.5

Average Ligand B factor (Å2) 90.25 58.13 69.91 63.09 47.13
Ramachandran (%)

Favoured 96.69 69.04 97.35 96.36 97.03
Allowed 2.32 2.97 1.66 2.65 2.31

PDB Code 7QT6 7QT5 7QT7 7QT9 7QT8

Table 4. Data collection, merging and refinement statistics for MPro in situ data sets.

Values in parentheses are for the highest resolution shell.

Likelihood Z-CC CC Symmetry element
0.085 1.833 0.183 2|(1, 0, 2)
0.085 1.833 0.183 2|(1, 0, 0)
0.949 10.000 1.000 *** 2|(0, 1, 0)

Table 5. dials.cosym scores for individual symmetry elements for Mpro ligand soak

ABT-957.

Patterson group Likelihood NetZcc Zcc+ Zcc- delta Reindex operator
-P 2y *** 0.933 8.17 10.00 1.83 0.0 h,k,l
-P 1 0.050 -5.96 0.00 5.96 0.0 h,k,l
-C 2 2 0.008 5.96 5.96 0.00 0.9 -h,h+2*l,k
-C 2y 0.005 -5.36 1.83 7.19 0.9 h+2*l,h,k
-C 2y 0.005 -5.36 1.83 7.19 0.9 -h,h+2*l,k

Table 6. dials.cosym subgroup scores for Mpro ligand soak ABT.
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Fig. 2. Experimental phasing and anomalous signal from multi-crystal room-
temperature in situ experiments using lysozyme crystals soaked with various heavy
atom solutions. (a) SHELXC plot of < d”/sigI >. (b) CCall vs. CCweak after sub-
structure solution with HKL2MAP/SHELXD. (c) Anomalous difference map peaks
identified by ANODE run via DIMPLE . (d) Anomalous difference map peak heights
identified by ANODE run via DIMPLE , with and without filtering of outlier regions
of data sets.
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Fig. 3. dials.cosym plots for data from Lysozyme Sm soaks as described in §4.1.
(a) histogram of (n×m)2 pairwise Rij correlation coefficients and (b) the (n×m)
vectors x determined by the minimisation of Equation 2 during symmetry determi-
nation with dials.cosym. The Rij correlation coefficients are clustered towards 1
and the majority of the vectors x form a single cluster, suggesting the absence of
an indexing ambiguity, i.e. the Patterson group of the data set corresponds to the
maximum lattice symmetry. (c) and (d) as above, but after symmetry determina-
tion and scaling. The distribution of the n2 Rij correlation coefficients is sharpened
towards 1 as scaling improves the internal consistency of the data. There is also
an effect from multiplicity when comparing to (a), as here the n2 Rij values are
calculated in the highest symmetry group for the lattice. All but one of the n vec-
tors x form a tight cluster, with the vector lengths close to 1. Visualisation of the
distribution of unit cell parameters (e) and clustering on unit cell parameters (f)
suggests the presence of an outlier data set.
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(a)

(b)

Fig. 4. Hierarchical clustering on pairwise correlation coefficients (a) and on the
cosines of the angles between vectors in Figure 3d identify the presence of an outlier
data set.
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Fig. 5. (a) A clear bimodal distribution of the histogram of pairwise Rij values is
a strong indicator of the presence of an indexing ambiguity. (b) The vectors x
determined by the minimisation of Equation 2 in dials.cosym. The separation of
the vectors into two clusters indicates the presence of an indexing ambiguity. (c) and
(d) Stereographic projections of crystal orientations for TehA crystals in the hkl =
100 and hkl = 001 directions. A point close to the centre of the circle indicates that
the crystal axis is close to parallel with the beam, whereas a point close to the edge of
the unit circle indicates that the crystal axis is close to perpendicular with the beam.
Preferential orientation can lead to regions with systematically low multiplicity or
missing reflections. (e) shows the reflection multiplicities in the 0kl plane, where
white corresponds to missing reflections. The bivariate distribution of multiplicities
shown in (f) is also indicative of an uneven distribution of multiplicities.
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Fig. 6. Incremental processing with xia2.multiplex and DIMPLE on in situ data
collections of SARS-CoV-2 main protease ligand soak Z4439011520. (a) and (b)
CC1/2 and Rpim data processing statistics for ligand Z4439011520 with the inclusion
of progressively more data sets, in data collection order, top left to bottom right.
(c) and (d) overall data completeness and gemmi (https://gemmi.readthedocs.io)
blob search scores. (e), (f) and (g) the ligand density in the autoprocessed DIMPLE
maps for 2, 9 and 20 crystals respectively.
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Outlier identification and removal for SARS-CoV-2 main protease ligand
soak Z4439011520. Visualisation of the distribution of unit cell parameters (a) and
clustering on unit cell parameters (b) may suggest possible outlier data sets. ∆CC 1

2
-

filtering with dials.scale can also remove data sets that strongly disagree with
the majority of data sets (c) and (d). Removing outlier data sets can improve overall
merging statistics (e) and (f).
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(a) (b)

(c) (d)

Fig. 8. Views of the active site for SARS-CoV-2 main protease in complex with
ABT-957 (a) under cryogenic conditions (Redhead et al., 2021) and (b) at room
temperature. (c) and (d) two views of the active site with the cryogenic (cyan)
and room temperature (green) structures superimposed using PyMOL (Schrödinger
LLC, 2020).

Synopsis

A new program, xia2.multiplex, has been developed to facilitate symmetry analysis, scaling
and merging of multi-crystal data sets.
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