
TITLE

Isolating perceptual biases caused by trial history during auditory categorization

AUTHOR NAMES AND AFFILIATIONS

Daniel Duque1 and Jaime de la Rocha1

1 IDIBAPS, Rosselló 149-153, Barcelona, 08036, Spain

CORRESPONDING AUTHORS

Daniel Duque; duque@clinic.cat

Jaime de la Rocha; jrochav@clinic.cat

ADDITIONAL INFORMATION

Number of figures: 7; Number of supplementary figures: 6;

Abstract: 237 words; Methods: 2490 words;

Main body (Introduction + Results + Discussion): 1012 + 2811 + 2665 = 6488 words;

● Figure 1: 206 words;

○ Figure 1 - figure supplement 1

○ Figure 1 - figure supplement 2

○ Figure 1 - figure supplement 3

● Figure 2: 153 words;

○ Figure 2 - figure supplement 1

● Figure 3: 309 words;

○ Figure 3 - figure supplement 1

○ Figure 3 - figure supplement 2

● Figure 4: 257 words;

● Figure 5: 297 words;

○ Figure 5 - figure supplement 1

○ Figure 5 - figure supplement 2

○ Figure 5 - figure supplement 3

● Figure 6: 104 words;

● Figure 7: 246 words;

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2022. ; https://doi.org/10.1101/2022.01.17.476581doi: bioRxiv preprint 

mailto:duque@clinic.cat
mailto:jrochav@clinic.cat
https://doi.org/10.1101/2022.01.17.476581
http://creativecommons.org/licenses/by-nc-nd/4.0/


ABSTRACT

Just as most experiences have their origin in our perceptions, our perceptions can also be

fundamentally shaped by our experiences. However, isolating which events in the recent past can impact

perceptual judgments remains a difficult question, partly because post-perceptual processes can also

introduce strong history dependencies. Two mechanisms have been hypothesized to specifically modulate

perception: 1) the repulsive influence caused by previous stimuli and generally labeled as aftereffects, and

2) the modulation caused by stimulus predictions based on learned temporal regularities of the sensory

environment, a key assumption in the predictive coding framework. Here, we ask whether these two

mechanisms do indeed bias perception by training rats in an auditory task featuring serial correlations

along the sequence of stimuli. We develop a detailed behavioral model that isolates the repulsive

aftereffect generated by previous stimuli and shows that this repulsion cannot be explained from an

interaction between past and current stimuli, and that it is still present in catch trials lacking the current

stimulus. Moreover, the model describes that the bias caused by the animals' expectation, as they leverage

the predictability of the stimulus sequence, is present in a foraging task without the sensory component

but with the same serial correlations in the sequence of rewards. These results indicate that the

aftereffect and the prediction biases observed during an auditory task can all be revealed in the absence

of a sensory stimulus, putting into question their perceptual nature.
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INTRODUCTION

The question of how previous decisions and outcomes affect future choices has been extensively

investigated using dynamic foraging tasks (Sugrue et al., 2004; Samejima et al., 2005; Daw et al., 2006; Lau

and Glimcher, 2008; Tai et al., 2012; Donahue et al., 2013; Kim et al., 2013; Groman et al., 2019; Moin

Afshar et al., 2020). These are non-perceptual free-choice tasks where subjects have to choose between

several options and where the probability of being rewarded after choosing each option varies with time.

Despite the various versions of this type of task, in general subjects track the value of the different

options using the history of previous choices and their outcomes and decide in each trial for one option

based on these choice values. Thus, if presented with only two options (two-alternative forced choice

task; 2AFC), subjects predominantly choose option A while being the most profitable, then they start

opting for option B when the choice values cross (Zentall, 2020). The tracking of choice values may reflect

the dynamics of ongoing Reinforcement Learning and may, for this reason, be an inevitable process at play

during any type of reward-based decision-making task.

The neural bases of perceptual decisions, on the other hand, have been studied in psychophysics

using 2AFC discrimination tasks in which the value of the two options is generaly constant and balanced

(Newsome et al., 1989; Romo et al., 1998; Uchida and Mainen, 2003; Znamenskiy and Zador, 2013).

Nevertheless, animals still develop sub-optimal trial history biases, the most common of which is a

tendency to repeat previous choices, present even in the absence of trial feedback (Akaishi et al., 2014;

Urai et al., 2017; Braun et al., 2018). In the presence of trial feedback, this repeating bias can depend on

the trial outcome, usually becoming an attraction towards previous rewarded choices but a repulsion

away from unrewarded ones (Fründ et al., 2014; Abrahamyan et al., 2016; Fan et al., 2018; Tsunada et al.,

2019), a win-stay/lose-switch strategy similar to the one found in the foraging tasks. On top of these

seemingly unavoidable previous choice/outcome biases, the magnitude of the previous stimuli, which is

strongly correlated with previous choices, can also exert either repulsive (Addams, 1834; Holland and

Lockhead, 1968; Cross, 1973; Bliss et al., 2017; Fritsche et al., 2017; Stein et al., 2020) or attractive biases

(Fischer and Whitney, 2014; Papadimitriou et al., 2015; Bliss et al., 2017; Akrami et al., 2018; Barbosa et

al., 2020; Stein et al., 2020). The attraction biases caused by previous stimuli are thought to be

post-perceptual and supposedly arise from the maintenance of stimulus information in working memory

(Bliss et al., 2017; Fritsche et al., 2017; Stein et al., 2020). Repulsive aftereffects on the other hand have

been historically grounded in sensory adaptation (e.g., visual aftereffects: Thompson and Burr, 2009;

auditory masking: Oxenham and Plack, 1998). According to this large body of work, the presentation of a

particular stimulus causes neural adaptation or fatigue that transiently reduces the responsiveness to

subsequent presentations of the same stimulus (Malone et al., 2002; Ulanovsky et al., 2003; Duque et al.,

2016). This response reduction is what ultimately biases choices away from the choice associated with the
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adapted stimulus (Barlow and Hill, 1963; Kashino and Nishida, 1998; Dahmen et al., 2010). Despite the

extensive evidence supporting this view, it is unclear if all repulsive biases are truly caused by sensory

adaptation and in particular whether those observed in trial-based auditory 2AFCs fall into this category.

Another aspect that can modulate perception and bias perceptual judgments are the expectations

about the incoming stimuli the brain can generate using an internal statistical model of the environment

(Helmholtz, 1866; Rao and Ballard, 1999; Friston, 2005; Clark, 2013). In the framework of predictive

processing, sensory circuits combine bottom-up stimulus inputs with top-down predictive signals

elaborated in areas higher in the processing hierarchy (de Lange et al., 2018; Keller and Mrsic-Flogel,

2018). Expectations modulate the stimulus evoked responses along the sensory pathways (Kok et al.,

2014; Carbajal and Malmierca, 2018) and bias perceptual judgments both in health and disease (Barrett

and Simmons, 2015). Several studies have recently used a variation of a 2AFC task that, by including

across-trial correlations in the sequence of stimuli, promotes the development of a predictive bias named

transition bias: a tendency to repeat or alternate the previous response based on an internal estimate of

the repeating probability of the sequence (Goldfarb et al., 2012; Jones et al., 2013; Meyniel et al., 2016;

Kim et al., 2017; Braun et al., 2018; Hermoso-Mendizabal et al., 2020). Because the stimulus sequence is

identical to the sequence of rewarded options, it is unclear whether the transition bias reflects a

prediction about the stimulus or about the rewarded response. Based on human psychophysics, it has

proposed that the transition bias is related to the processing of the stimulus and hence it should be

classified as a perceptual bias (Wilder et al., 2009; Jones et al., 2013). We have recently shown that rats

also display the Transition bias during an auditory 2AFC task with the same type of serial correlations

(Hermoso-Mendizabal et al., 2020). However, direct evidence addressing whether it affects perception is

still lacking.

Here, we investigate if the repulsive aftereffect and the predictive transition bias observed in an

auditory 2AFC task are indeed affecting the perception of the current stimulus. We fit a behavioral model

to the rats’ choices and show that there is no interaction between the previous and the current stimuli,

indicating that the repulsive aftereffect does not have a perceptual impact. We confirm this by showing

that this repulsive bias exists even in catch trials without sensory input. Furthermore, we show that rats

develop a qualitatively similar predictive transition bias in both the Auditory task and in a Foraging task

with no sensory stimuli, questioning its perceptual nature. Together, our results suggest that the repulsive

aftereffect observed in our task may be caused by adaptation of post-perceptual circuits and that the

transition bias reflects the prediction of the rewarded response rather than an expectation of future

stimuli.
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RESULTS

Previous stimuli caused a repulsive bias which did not interfere with the current stimulus

To characterize the impact of previous stimuli on the animals' perceptual judgments, we

investigated the behavior of rats (Group #1, n = 29) trained in an auditory two-alternative forced-choice

task (2AFC) previously developed to explore expectation-based biases (Hermoso-Mendizabal et al.,

2020). The task required rats to discriminate the interaural level difference (ILD), defined as the

difference in intensity between two sounds presented in the Right and the Left speakers, to identify the

side with the loudest sound, and seek reward in the associated port (Auditory task: Pardo-Vazquez et al.,

2019; Hermoso-Mendizabal et al., 2020). To quantify the various factors influencing animals’ behavior, we

fitted a generalized linear model to the sequence of choices of each rat (Net evidence GLM; Fig. 1A, see

Methods). This GLM linearly combined (1) the samples of ILD from the current stimulus; (2) the ILD from

each of the previous stimuli presented over the last ten trials, and (3) previous rewarded and unrewarded

responses, i.e., positive and negative reinforcers (r+ and r-). Including all these different history regressors

aimed to isolate the impact of Previous stimuli from that of previous correct and incorrect responses,

history events which are generally very correlated (see below).

The decisions of the animals were positively and strongly modulated by the Current stimulus (Fig.

1B; for a full report of the GLM see Fig. 1 - Supplement 1). Previous stimuli on the other hand, had a

negative and long lasting impact on choices (previous stimulus repulsive bias; Fig. 1C). This dependence

implies that, when in previous trials there was a strong sound intensity difference favoring one side, the

upcoming choices were biased towards the opposite side. Importantly, this repulsive bias had the opposite

effect of previous correct r+ and incorrect choices r-, which induced the common win-stay-lose-switch bias

(Fig. 1D-E). Re-parametrizing previous responses r+ and r- as Previous responses (r+ - r-) and Previous

reward side (r+ + r-) illustrated more clearly that the repulsive effect of the magnitude of the Previous

stimuli was the opposite to the stronger but attractive effect of Previous reward side (Fig. 1 - Supplement

2; see Methods). Teasing apart these opposite effects was possible due to the task design and the GLM

parameterization: there were four mean ILDs within each Previous rewarded side, and each mean ILD

stimulus was composed of a variable number of samples randomly drawn from a given distribution. This

provided a large ILD variability within each Previous rewarded side for their impact to be separately

assessed from that of the magnitude of the Previous stimuli. Moreover, we powered the fitting of the

model using a total of 686,613 trials (an average of 27,119 trials per animal; range 6,433 - 55,792),

allowing for a fine quantification of the impact of these different history events. Together, these opposite

effects imply that e.g. after a Leftward correct choice there is a tendency in the next trials to choose Left,

but that this attraction bias is weaker the stronger the previous stimulus is, as the attraction is partly

compensated by the previous stimulus repulsion. This repulsive bias caused by the past presentation of
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sounds, independently of the response of the animal, is reminiscent of the aftereffect bias caused by

sensory adaptation, a hypothesis we tested next.

If the mechanism underlying the repulsion was for instance sensory adaptation, then the

presentation of a loud sound on one side would decrease the sensory response of the following stimuli

presented on that same side. This would in turn imply that the history of previous stimuli can cause an

imbalance in the impact of the current Left and Right stimuli on the current choice (Fig. 1 - Supplement 3).

To investigate this possibility, we extended our GLM to include an interaction between previous and

current stimuli (Interaction GLM, Fig. 1A). To explicitly capture the interaction, we modified the GLM in

three ways (see Methods): first, we simplified the Current stimulus regressor, previously defined for each

sample (Fig. 1B), to a single regressor given by a weighted sum of the samples listened (Fig. 1E). The

Previous stimuli regressor (Fig. 1C) was similarly recapitulated into a single regressor given by a weighted

sum over previous trials (Fig. 1F). Second, we separated the contributions of the net evidence of the

Current and Previous stimuli into two components each, one for the Right speaker (CurrentStimR and

PrevStimR) and one for the Left speaker (CurrentStimL and PrevStimL). Third, we added interaction terms

for each side that could capture the negative interaction predicted by the repulsive bias (CurrentStimR x

PrevStimR and CurrentStimL x PrevStimL; Fig. 1A). The fit of the Interaction GLM showed that, as before,

Current and Previous stimuli contributed positively and negatively to the choice, respectively (Fig. 1E-F).

However, we found that there was not a significant interaction between the Current and Previous stimuli

(Fig. 1G). This result suggests that the repulsive bias observed in this task does not arise from an

interference between previous stimuli and the current stimulus.
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FIGURE 1. GLM analysis in a perceptual 2AFC Auditory task in rats . A) Exemple series of recent trials used to
model rat responses in the current trial t. Rats’ responses were a function of the Current stimulus ILD, the ILDs from
Previous stimuli, the side-specific interaction of previous stimuli with the current stimulus (Interaction term), previous
rewarded (r+) and non-rewarded (r-) responses, and by previous Transitions (Repetitions, +1 and Alternations, -1). All
these variables are weighted by different βs and linearly combined to generate the probability of a Rightwards
response. B-E) Weights from the Net evidence GLM fitted without the interaction term for the Current stimulus (B;
one point per stimulus sample), previous stimuli (C; one point per trial lag), and previous rewarded r+ and
unrewarded r- responses (D and E, respectively). Points show average weights for n = 29 rats (Group #1) and error
bars show s.e.m. F-H) Weights from the Interaction GLM for the Current stimuli βX

Stim (F; ttest: all p < .0001, Cohen d
> 2.5), Previous stimuli βX

prevStim(G; all p < .0001, Cohen d > 1.5), and the interaction terms βX
Stim x prevStim (H; βL

Stim x prevStim:
p = .0714, Cohen d = 0.3; βR

Stim x prevStim: p = .2946, Cohen d = 0.2).
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Stimulus repulsive bias is observed in Silent catch trials

Our previous model-based analysis suggests that the repulsive bias was not produced by a linear

interference of previous stimuli on the perceptual impact of the current stimulus. But there could be more

complex non-linear interactions between previous and current stimuli that our model did not capture. To

have a more direct and conclusive test, we trained animals in Group #2 (n = 8 rats) in the same task but in a

random 5-10% of catch trials, animals did not receive any acoustic sensory information (Fig. 2A, Silent

trials). In the rest of the trials (Sound trials) stimulus evidence varied randomly from trial to trial as before

(see Methods), and animals responded in Silent trials with a speed comparable to Sound trials

(Hernández-Navarro et al., 2021). If the repulsive bias was truly not carried by the current stimulus, then

it should be present in Silent trials. We fitted the Net evidence GLM separately for Silent and Sounds trials

and found no significant difference in the Previous stimuli kernel (Fig. 2B), implying that the repulsive bias

was equally present in both conditions. Furthermore, we confirmed that this was also the case when

comparing Sound trials with accidental silent trials in a separate group of animals (Group #6, n = 18 rats;

i.e. trials in which the reaction time was so short that the set-up did not have time to produce any sound:

Fig. 2 - Supplement 1). Altogether, these results indicate that the repulsive bias caused by previous stimuli

is instantiated independently of the value or the existence of the current stimulus, suggesting it is not the

consequence of a perceptual aftereffect caused by sensory adaptation.

FIGURE 2. Previous stimuli cause a repulsive bias in Silent catch trials. A) Scheme of the 2AFC task with Silent
catch trials. After fixating for 300 ms in the central port, in 90-95% of the trials, a stimulus is presented from two
speakers and rats have to discriminate the side with the loudest sound. In the remaining 5-10% of trials, no stimulus
is presented to guide the choice of the rat. B) GLM weights for Previous stimuli are not different between Sound and
Silent trials (3-way ANOVA evaluating the weight of the Previous Stimuli kernel with ‘trial type’ as categorical-, ‘lag’
as continuous- and ‘animal’ as a random variable; ‘trial type’ main effect: F1,85 = 0.17, p = .6845; ‘trial type’ x ‘lag’
interaction: F1,85 = 0.65, p = .4215) . C) Weights for the Current Stimulus. Points show average weights for n = 8 rats
(Group #2) and error bars show s.e.m.

Silent trials show more repeating bias than Sound trials in a 2AFC Auditory task

Having shown that the repulsive bias originates in previous stimuli but does not necessitate the

current stimulus to impact choices, we next investigated the impact of expectations on the perception of
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the stimuli. To promote and control the use of subjects’ expectations, we had made the sequence of

stimulus categories (right/left) partially predictable by introducing un-cued blocks of 80 trials with a

tendency to repeat the previous stimulus category (Rep block; prob. to repeat PREP = 0.8) or to alternate

between the two stimulus categories (Alt block, PREP = 0.2; Fig. 3A-B; Hermoso-Mendizabal et al 2020). As

reported in a previous work (Hermoso-Mendizabal et al 2020), we found that animals capitalized on the

predictability of the sequence and biased their perceptual choices accordingly: responses showed a

tendency to repeat their previous choice in Rep blocks and to alternate it in Alt blocks (Fig. 3C). To

investigate how this prediction bias affected the stimulus processing, we used again Silent catch trials in

which the rewarded side followed the same Repetition or Alternation pattern but the associated sound

was not presented. Accuracy was larger for Silent trials than for Sound trials with zero stimulus strength

(ambiguous Sound trials; S=0): a 3-way ANOVA for 'accuracy' with variables 'block' (Rep/Alt), 'Stim.

condition' (Sound/Silent) and 'animal' as a random factor yielded a significant main factor 'block' (F1,28 =

10.71, p = .0028) and 'Stim. condition' (F1,28 = 12.31, p = .0015), but no interaction (F1,21 = 0.02, p = .89).

Next, we defined the repeating probability as the probability that animals repeated their previous choice

and compared it in Silent trials versus S=0 Sound trials. We found that, after correct choices, the repeating

probability in both blocks was more markedly different from 0.5 in Silent trials compared with Sound trials

(0.72±0.08 vs. 0.66±0.10 in Rep block and 0.37±0.06 versus 0.41±0.06 in Alt block). After error choices,

the repeating probability reset to 0.5 for both conditions and both blocks (Hermoso-Mendizabal et al.,

2020), except for Silent trials in the Rep block which was slightly below (Fig. 3D).

To understand this difference in prediction bias between Silent and S=0 Sound trials we leveraged

on the design of the task in which the stimulus duration was determined in each trial by the reaction time

(RT) of the animal (see Methods). We examined how accuracy changed with RT by plotting the

tachometric curve (Fig. 3E; Stanford et al., 2010). Because of the repeating bias, accuracy started at the

same above-chance level at RT=0 for both types of trial. However, accuracy remained constant as a

function of RT for Silent trials as there was no sensory input to be integrated (Fig. 3E; orange line). In

Sound trials, in contrast, it increased with RT for all stimulus strengths except for S=0, for which the

accuracy decreased (Fig. 3E; green lines). This suggests that the combination of evidence coming from

previous trials and from the stimulus occurred serially: the repeating bias set the baseline of a putative

decision variable at stimulus onset, resulting in an above-chance accuracy at near zero RTs. As RT

increases, stimulus evidence is integrated for S>0 yielding a higher accuracy. For S=0 Sound trials, because

stimulus fluctuations are dissociated from the reward side, the integration of the stimulus mimics

accumulation of noise, thus reducing the accuracy as RT increases.
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FIGURE 3. Repeating bias in Sound vs Silent catch trials. A-B) The sequence of stimulus categories Left/Right was
generated using a two-state Markov chain parametrized with the probability to repeat the previous category PREP.
which varied in blocks of trials generating repetitive (Rep) and alternating (Alt) blocks. Filled dots show Sound trials,
while empty dots denote Silent trials. C-D) Mean psychometric curves showing the proportion of repeated responses
vs. repeating stimulus evidence computed in trials following a correct (C) or an error response (D), sorted by blocks
(blue: Rep; red: Alt; n=8 rats in Group #2). After correct choices, the repeating probability in Silent trials (horizontal
lines) was larger than S=0 Sound trials in Rep blocks (paired t-test, p = .0069) and lower in Alt blocks (p = .0072).
After errors, the repeating probability was not different between Silent trials and S=0 trials in the Rep block (p =
.4383), but it was in the Alt block (p = .0293). E) Tachometric curves showing the average accuracy versus reaction
time (RT) conditioned on different stimulus strengths S (see S-values next to each curve) and for Silent trials (orange)
for after-correct trials (RT bins were 5 ms below 200 ms; 50 ms between 200 and 350 ms; and 150 ms afterwards).
Accuracy remained constant across RTs for Silent trials while it progressively decreased for zero evidence Sound
trials (ANCOVA for 'accuracy' with 'Stim. condition' (S=0/Silent) as categorical- and 'RT' as a continuous variable;
'Stimulus' x ‘RT’ interaction F1,35692 = 6.08, p = .0137). F) Average transition weights were significantly larger for Silent
trials than for Sound trials (3-way ANOVA for transition kernel with ‘Stim. condition’ as categorical-, ‘lag’ as
continuous- and ‘animal’ as a random variable; main effect of 'Stim. condition': F1,85 = 6.79, p = .0108; 'Stim. condition'
x ‘lag’ interaction: F1,85 = 3.75, p = .056).
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To quantify the impact of the expectation built from the history of previous trials on choice we

included regressors in the Net evidence GLM representing the previous correct Transitions, defined as

pairs of consecutive rewarded responses in which the animal either made a Repetition (+1) or an

Alternation (-1) between the two possible choices (Fig. 1A). Including previous Transitions in the model

can capture the animals’ tendency to repeat or alternate the previous response leveraging the repeating

and alternating statistics introduced in each block. We fitted the Net Evidence GLM separately in Sound

and Silent trials following correct choices and found that the Transition kernel was significantly larger for

Silent trials than for Sound trials (Fig. 3F). This difference is consistent with transitions explaining a lower

fraction of the behavioral variance in Sound trials. Moreover, the after-error reset of the Transition kernel

occurred in both Sound and Silent trials (Fig. 3 - Supplement 1: after-error). We finally found that the

building of the expectation bias did not depend on the presence of the stimulus in past trials meaning that

previous transitions containing Silent trials provided as much evidence to generate a certain expectation

as the transitions containing only Sound trials (Fig. 3 - Supplement 2). In total, these results show that the

accumulation of previous transitions, the after-error reset as well as the impact on choice of the transition

evidence, are all mechanisms which occur independently of the presence of sensory inputs. In other

words, animals seemed to use previously rewarded transitions, independently of the sensory evidence

guiding those transitions, to predict future rewarded transitions but not to predict the upcoming stimuli.

Animals develop a expectation bias in a 2AFC Foraging task

If the expectation bias can be both effective in Silent trials and built up from previous transitions

containing Silent trials, could it be observed in the complete absence of stimuli? To answer this, we trained

animals in Group #3 (n = 7 rats) in a novel 2AFC Foraging task which contained no sensory information to

guide their choices (Foraging task). In this task, animals self-initiated each trial by poking in a central port,

waited for 300 ms (fixation time) and then they guessed if the reward was in the left or the right port (Fig.

4A). Critically, as in our previous tasks, the sequence of rewarded sides was structured in repetitive and

alternating blocks (Fig. 4B-C). Rats’ accuracy in both blocks was significantly above chance (Fig. 4D;

mean±SD of 0.63±0.02 in the Rep block; 0.58±0.05 in the Alt block) indicating that animals were able to

leverage the serial correlations and adapt their history bias in each block to improve their task

performance. After correct choices, the repeating probability was significantly larger than 0.5 in Rep

blocks (0.83±0.07; Fig. 4E), while it was significantly smaller than 0.5 in Alt blocks (0.31±0.15; Fig. 4F).

After-error trials however, it was not different from 0.5 (Rep: 0.48±0.07; Alt: 0.55±0.08) showing that the

reset of the repeating probability persisted in this non-perceptual Foraging task (Fig. 4E-F). This implies

that the reset strategy cannot be interpreted as if the rats were ignoring the transition evidence

accumulated across trials to focus on listening to the sound after an error choice, but instead it suggests

the existence of a more general mechanism independent of the presence of a stimulus (Molano-Mazón et

al., 2021). The repeating probability was mainly driven by previous Transitions (Fig. 4G) while the

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2022. ; https://doi.org/10.1101/2022.01.17.476581doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.17.476581
http://creativecommons.org/licenses/by-nc-nd/4.0/


contribution of the previous correct (r+) and incorrect responses (r-) was much smaller (Fig. 4H-I). Thus,

animals in the Foraging task were able to develop the same predictive transition bias as in the Auditory

task, but just based on previous rewarded transitions, demonstrating that this type of expectation bias is

independent of the processing of the stimulus.

FIGURE 4. Transition bias in a 2AFC Foraging task. A) Scheme of the 2AFC Foraging task. Details of the task are
identical to the Auditory task. At the end of the fixation period, the LED in the central port turned off indicating
animals could seek reward in either the left or right port. B) The probability of repeating the previous stimulus was
adjusted, C) generating Rep and Alt blocks. Empty dots denote Silent trials. D) Mean proportion of correct responses
(n = 7) for Rep and Alt blocks. The accuracy is above chance (50%) in both blocks (Rep block, paired t-test p < .0001;
Alt block, p = .0052; Rep vs. Alt was p = .09). E-F) Repeating probability in Rep (E) or Alt blocks (F), and sorted by
performance in the previous trial (after correct/after error). The repeating probability in a Rep block is larger than
0.5 (t-test, p < .0001), while in the Alt block is smaller than 0.5 (p = .0135), demonstrating rats can extract both
sequential correlations. The repeating probability in after-error trials was not different from 0.5 (Rep: p = .55; Alt: p
= .18). In both blocks, the repeating probability was different in after-correct versus after-error trials (paired t-test;
Rep: p < .0001, Alt: p = .0059). G) Influence of past events on current choice after a correct (yellow) or error trial
(black). Details as in Figure 3. Predictive transition bias guides the behavior of the animals. After-error choices,
transition bias goes to zero. The impact of previous correct (r+) and incorrect responses (r-) is much smaller.
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Transition bias is larger in the Foraging task than in Silent catch trials

To make a quantitative comparison between the two tasks we next compared Silent catch trials in

the Auditory task with the trials in the Foraging task (Fig. 5; see also Fig. 5 - Supplement 1). To compare the

response repeating probabilities across blocks and tasks, we defined the Excess of Repeating Probability

(ERP, see Methods) as the difference between 0.5 and either the repeating probability (in the Rep block)

or the alternating probability (in the Alt block). While after-correct trials the ERP was significantly larger

for the Foraging task than for Silent catch trials (Fig. 5B, left) there was no difference in after error trials

(Fig. 5B, right). This difference was caused because rats gave a larger weight to previous transitions in the

Foraging task than in Silent trials (Fig. 5D). No differences were observed between tasks in the previous

correct r+ and incorrect r- response kernels (Fig. 5E). Altogether, this data suggests that in absence of

sensory information, rats modulate the probability to repeat their previous choice by means of the

predictive transition bias. Intriguingly, such an increase in Transition bias is not observed when we

modified other variables, such as the magnitude of the sequential correlations (Fig. 5 - Supplement 3).

FIGURE 5. Repeating bias comparison between the Foraging and Silent catch trials. A) Accuracy for Silent trials in
the Auditory task and all trials in the Foraging task sorted by Rep (PREP=0.8) and Alt blocks (PREP=0.2) showed no
significant difference (2-way ANOVA for ‘accuracy' with ‘block’ and ‘task’ as variables; ‘block’ x ‘task’ interaction F1,22

= 0.57, p = .4585; ‘task’ F1,22 = 0.02, p = .8986). The accuracy for Rep and Alt blocks was also similar (‘block’ F1,22 =
3.28, p = .0838). B-C) Excess of repeating probability (ERP; i.e. repeating probability normalized to positive values) in
after-correct (B) or after-error trials (C) sorted by type of trial (Silent/Foraging) and block (Rep/Alt). In after-correct
trials (B), the ERP is significantly larger in the Foraging task than for Silent trials, and in Rep compared with Alt blocks
(2-way ANOVA; ‘task’ F1,22 = 8.18, p = .0091; ‘block’ F1,22 = 4.36, p = .0486; ‘block’ x ‘task’ interaction F1,22 = 0.64, p =
.4306). C) No difference in ERP was observed after-error trials (‘task’ F1,22 = 1.64, p = .2142; ‘block’ F1,22 = 1.07, p =
.3126; ‘block’ x ‘task’ interaction F1,22 = 0.29, p = .5928). D-E) Average GLM transition kernels for Silent trials (orange)
were smaller than for the Foraging task (yellow; 'task' F1,92 = 21.73, p < .0001; 'task' x 'lag' interaction F1,92 = 11.26, p
= .0012). E) Weights for previous correct responses show no difference between Foraging task and Silent trials
('task' x 'lag' interaction F1,76 = 0.32, p = .571; 'task' F1,76 = 1.47, p = .2292). Weights for previous incorrect responses
also show no difference (not shown: 'task' x 'lag' interaction F1,76 = 0.52, p = .4729; 'task' F1,76 = 1.79, p = .1851).

Stimuli can accelerate the updating dynamics of the transition bias

Although animals implemented the predictive transition bias based on previous transitions

independently of the sensory information, the stimuli had a great impact on accelerating the trial-by-trial

updating of the transition evidence. To show this, we compared the transient dynamics of the accuracy
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and repeating probability during a block switch in the Auditory and the Foraging tasks (Fig. 6). In the

Auditory task, baseline accuracy was relatively high and the stimuli helped animals maintain their

accuracy almost unaffected during the block switch. For that reason, animals could experience a high rate

of correct transitions, i.e. transitions made of two consecutive reward choices, which allowed them to

update their repeating bias rapidly (Fig. 6C). In contrast, in the Foraging task, baseline accuracy was lower

and it dropped markedly and abruptly in the first trial of the block as animals had no way to guess the

block switch. Accuracy then remained low for many trials, dragging the updating of the repeating

probability which in turn slowed the recovery of the accuracy. As a result, both quantities took more trials

to reach the block’s baseline in the Foraging task compared with the Auditory task (Fig. 6B,D). Altogether,

this reflects that, even though animals developed the same transition bias independently of the task, the

presence or absence of stimuli can catalyze or slow the accumulation of repeating evidence which,

because it is based only on correct transitions, is very dependent on the overall animals’ accuracy.

FIGURE 6. Updating dynamics at the block changepoint in the Auditory and Foraging tasks. A-B) Average accuracy
in a change of block from a Rep to an Alt block (blue) and from an Alt to a Rep block (red) in the Auditory task (A) and
the Foraging task (B). C-D) Repeating probability in a block change in the Auditory (C) and the Foraging task (D). The
number of trials needed to recover the baseline repeating probability was greater in the Foraging task compared
with the Auditory task. Horizontal lines in C-D show trials with a repeating probability different from baseline (ttest,
p>0.05).
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DISCUSSION

In this study we investigated whether perception can be impacted by previous stimuli or by

stimulus expectations built from the temporal regularities of the stimulus sequence. First, we found that

the repulsive bias caused by previous stimuli does not modulate the impact of the subsequent stimuli, and

it is present even in catch trials with no stimulus. Second, we found that animals performing a

non-perceptual 2AFC foraging task with the same sequential correlations still develop the predictive

transition bias, suggesting that this type of bias is predicting the rewarded transitions rather than the

stimuli associated with it.

Repulsive aftereffects during a perceptual 2AFC task

Repulsive sensory aftereffects were first described in the visual system almost two hundred years

ago in the well known motion aftereffect (Addams, 1834). The most prevalent explanation for such

aftereffect bias has been sensory adaptation (Barlow and Hill, 1963): repeated stimulation of sensory

neurons with a specific stimulus input reduces the neuronal response to subsequent similar inputs. In the

auditory system, repulsive stimulus aftereffects are observed for a plethora of acoustic properties such as

intensity (Holland and Lockhead, 1968; Cross, 1973), direction of frequency modulation (Kay and

Matthews, 1972), sound localization (Kashino and Nishida, 1998), azimuth motion (Grantham, 1998) or

the ventriloquism aftereffect (Recanzone, 1998). In the intensity domain in particular, the reduction of

perceived loudness is maximum when the preceding sound is louder than the subsequent sounds (Scharf

et al., 1983; Marks, 1994), while when the sounds have similar intensities the reduction is smaller

(Mapes-Riordan and Yost, 1999). Putative neuronal correlates of the aftereffect bias have been identified

in the auditory system, and are also linked to sensory adaptation (Ulanovsky et al., 2003; Duque et al.,

2016). Recent work has shown that sensory adaptation has indeed a perceptual impact on animals

performing a frequency discrimination 2AFC task (Gronskaya and von der Behrens, 2019). However, in

this study the repulsive effect was caused by an “adaptor stimulus” presented in the same trial right

before the stimulus, as opposed to the across-trial sequential analysis that we performed. Addressing

after-effects caused by previous stimuli in the sequence is challenging because one must isolate their

effect from that of previous responses and outcomes. Sequential effects have been previously described

in humans performing subjective reports of perceived acoustic intensity (for a review see DeCarlo and

Cross, 1990), where a common pattern found was attraction to the previous response and repulsion to

the previous stimulus. Here, we report a similar effect in rats performing a categorical 2AFC task except

that we circumscribe the attraction to only correct responses and statistically resolve the time scale of the

effects many trials back. In these previous reports, the repulsive intensity aftereffect was assumed to be

caused by a negative interaction of previous stimuli on the perception of future sounds (Cross, 1973;

Ward, 1973). However, none of these studies tested for the existence of that interaction. Our results show
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for the first time that the repulsion caused by previous stimulus does not interact with the impact of

current stimuli (Fig. 1H) as well as it is also present in Silent catch trials (Fig. 2B), suggesting that this effect

is not produced by loud sounds masking the perception of forthcoming sounds.

FIGURE 7. Theoretical models for the mechanism underlying the repulsive bias observed during Silent catch trials.
A) Schematic of a Silent catch trial in which there is a history of previous Left loud sounds that creates a Left
repulsion bias (i.e. a bias towards the Right), by reducing either the Left sensory responses (B-D) or the Left-choice
population responsiveness at the Decision network (E). B-C) Rate-level functions showing response firing rate of Left
and Right sensory neurons as a function of sound intensity. Because of previous Left loud sounds (A), Left-sensory
neurons show a reduced response (compare adapted in solid with unadaptated as dotted). Such adaptation may be
Subtractive (B) or Divisive (C). However, only subtractive adaptation would generate the Aftereffect bias in Silent
trials (white box at 0 dB). D-E) Schematic of a network consisting of a sensory circuit with stimulus selective
populations sending topographically organized inputs to a decision circuit with choice-selective populations. An
action initiation circuit promotes choice formation by setting the competition between choice-selective populations
via sensory-independent inputs. If the Sensory circuit shows subtractive adaptation, the Left input to the Decision
circuit in a Silent trial would still be weaker compared to the Right input biasing the choice towards the Right (D). If
the Decision circuit shows adaptation, in a Silent trial the sensory input will not play any role, and it would be a
competition set by the action initiation circuit that would result in a Right biased decision (E).

What kind of mechanism could explain this repulsive bias which, caused by previous stimuli, can be

manifested in the absence of sensory input? (Fig. 7A). The most parsimonious mechanism underlying any

repulsive bias is the response adaptation of neurons whose firing is modulated by the intensity of each of

the two sounds. Neuronal adaptation, an ubiquitous feature along the auditory pathway (auditory nerve:

Nomoto et al., 1964; inferior colliculi: Malmierca et al., 2009; auditory thalamus: Anderson et al., 2009;

auditory cortex: Ulanovsky et al., 2003), is typically described as a decrease in the gain of the rate-level

function, defined as the stimulus evoked firing rate versus stimulus intensity (Fig. 7B). This divisive

adaptation would however predict an interaction between previous and current stimuli that we did not

observe, as the impact of the current stimulus is determined by the gain of the rate-level function which is

affected by previous stimuli (Fig. 7B). Moreover, the firing of these sensory neurons in Silent catch trials

would be independent of the level of adaptation and hence could not explain the presence of the repulsion

we found in these trials (Fig. 2D). An alternative possibility would be that adaptation is not divisive but

subtractive. Subtractive adaptation implies a constant decrease in responsiveness along the rate-level
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function, and hence requires a sufficient baseline firing rate for the effect to be purely subtractive (Fig.

7C). If auditory sensory neurons were adapted by previous stimuli in an subtractive way, this would

produce no interaction between previous and current stimuli, because the gain of the rate-level functions

would remain the same, but would require baseline firing rates to be modulated by previous sounds to

explain the repulsion found in Silent catch trials (Fig. 2D). To the best of our knowledge, pure subtractive

adaptation has not been observed in auditory neurons, posing into question this mechanistic explanation.

A final possibility would be that adaptation takes place in decision making circuits up in the hierarchy from

sensory neurons (Fig. 7E). Current models of decision making postulate that circuits in parietal and frontal

cortices receive inputs from sensory areas and, operating in a winner-take-all regime, establish a

competition between Left- and Right-choice neurons which ultimately determines the current decision

(Wang, 2002; Fusi et al., 2007; Roxin and Ledberg, 2008; Wimmer et al., 2015; Prat-Ortega et al., 2021).

The classic ramping-to-bound spiking activity observed in these areas during decision formation (Kim and

Shadlen, 1999; Roitman and Shadlen, 2002; Thura and Cisek, 2014; Hanks et al., 2015) could in principle

activate long-lasting adaptive currents in “winning neurons” which could unbalance the competition in

future decisions (Fig. 7E). For this to be plausible three conditions should hold: first, the stimulus intensity

should modulate the total number of spikes fired by these neurons above and beyond the obvious

dependence caused by the generated choice, i.e. beyond the categorical modulation caused by the

ramping up versus ramping down. In other words, the ramping of e.g. Left-decision neurons in Left-choice

trials should exhibit a dependence on the stimulus intensity. Using behavioral modeling, we have recently

shown that in this task, there is evidence accumulation but that reaction times are mostly determined by

an internal stimulus-independent timing signal (Hernández-Navarro et al., 2021). This implies that in

Left-choice trials, Left-decision neurons may show larger slopes when the Left stimulus is strong without

change in the duration of the integration (i.e. reaction time). This would cause larger firing the stronger the

stimulus within any given choice. Second, an independent mechanism should reinforce rewarded

decisions and weaken unrewarded ones in order to generate the win-stay-lose-switch behavior (see e.g.

(Fusi et al., 2007). Third, the neural circuits that implement choice selection should be the same in Sound

and Silent trials. That way, the adaptation caused by previous stimuli can leave a trace that unbalances the

competition in trials with no stimuli. Although we have no evidence of that the ramping activity observed

in these circuits during stimulus categorization persists in Silent trials, there is indirect evidence showing

that most of the ramping observed is not caused by the integration of the stimulus but by internal urgency

signals which could be at play in both Sound and Silent trials (Churchland et al., 2008; Thura et al., 2012;

Park et al., 2014). In that scenario, the driving input into the decision circuit would be coming from a

non-sensory action initiation circuit (Fig. 7E) as postulated by behavioral modeling (Hernández-Navarro et

al., 2021). If adaptation of decision neurons underlies the aftereffect, it would be a phenomenon with a

sensory origin causing a non-perceptual decisional effect (Bosch et al., 2020). Electrophysiological
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experiments assessing whether the previous stimuli aftereffect can be observed in the activity of auditory

sensory neurons or in decision-related brain areas will help elucidate whether any of the proposed

mechanisms is at play (Macke and Nienborg, 2019).

Silent catch trials in a perceptual 2AFC task

Early psychophysics studies included Silent catch trials in order to measure the influence of choice

biases, but such practice was lost with time (White and Wixted, 2010). Here, we have shown that the

accuracy of rats' responses is better for Silent catch trials than for ambiguous S=0 Sound trials.

Interestingly, the accuracy for S=0 Sound trials inversely correlated with reaction time; so the longer the

reaction time the lower the accuracy. This was not the case for Silent catch trials, where the accuracy was

constant irrespective of the reaction time (Fig. 3E). Experiments in monkeys and rats using a motion

discrimination 2AFC task have shown that accuracy does not decrease with time for S=0 trials (Gold and

Shadlen, 2003; Reinagel, 2013; Shevinsky and Reinagel, 2019). That difference can be explained by the

fact that, as those classical tasks do not present serial correlations, the baseline accuracy at short reaction

times is already at chance level. For the same reason, a 2AFC odor discrimination task also showed

accuracy does not decrease with time for S=0 trials (Rinberg et al., 2006). However, as we observed for

sound sampling, beyond a relatively short minimum, longer odor sampling times tended to decrease

accuracy at increased reaction times (Uchida and Mainen, 2003). As such decrease does not occur for

Silent catch trials, our data implies that the combination of the predictive transition bias with the sensory

information occurred in a serial order: the transition bias sets a predetermined decision, then the stimulus

is integrated guiding the final decision. In a drift diffusion model, that would represent that the transition

bias sets the initial offset of the decision variable resulting in an above-chance accuracy at near zero RTs

for both Sound and Silent catch trials. As RT increases, stimulus evidence is integrated for S>0 yielding a

higher accuracy. For S=0 Sound trials however, the integration of the stimulus mimics accumulation of

noise and hence reduces the accuracy as stimulus duration increases. For Silent catch trials, as no sensory

input is ever integrated, the decision variable remains approximately constant (no sign of integration leak)

and the accuracy does not decrease with RT. In the mechanistic model outlined above, the transition bias

could be implemented by a transient prediction signal that is input into the decision circuit before the

stimulus and is independent of the action initiation sustained urgency signal (Fig. 7).

Animals do not predict stimuli but reward

In the framework of predictive processing, sensory circuits combine bottom-up stimulus

information with top-down predictive signals (de Lange et al., 2018; Keller and Mrsic-Flogel, 2018). In a

perceptual 2AFC task it is often assumed that the system predicts the forthcoming stimuli. However, the

brain could be predicting 1) the stimulus category (louder on Left or Right speaker), which will evoke a

sensory prediction error signal (Näätänen et al., 1978; Ulanovsky et al., 2003; Parras et al., 2017); 2) the
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reward side (Right or Left), which will evoke a reward prediction error signal (Daw et al., 2006; Tai et al.,

2012; Lak et al., 2020a, 2020b); or 3) more complex reward patterns such as repetitions or alternations,

which will evoke a state prediction error signal (Gläscher et al., 2010, Meyniel et al., 2016;

Hermoso-Mendizabal et al., 2020). Thus, if the absence of the guiding sensory stimuli does not alter the

impact of the prediction on choice, where does this prediction signal come from?

Predictive history choice biases can be first-order (e.g., ‘last trial I went to the left’), second-order

(e.g., ‘last time I repeated my action’) or higher-order (e.g., ‘there is a hidden sequence left-left-right which is

particularly rewarding’). First-order sequential biases, described extensively in both non-perceptual

foraging tasks (Sugrue et al., 2003; Samejima et al., 2005; Daw et al., 2006; Lau and Glimcher 2008; Tai et

al., 2012; Groman et al., 2019; Moin Afshar et al., 2020) and in 2AFC perceptual discrimination tasks

(Busse et al., 2011; Abrahamyan et al., 2016; Urai et al., 2017; Fan et al., 2018; Tsunada et al., 2019),

reflect the estimation of the base rate of either stimulus or reward values (Wilder et al., 2009; Meyniel et

al., 2016). In second-order effects, the occurrence probability of the stimulus or reward values are

irrelevant and what biases behavior is the estimate of the transition probabilities, e.g. the probability that

after a Left stimulus there is another Left stimulus (Cho et al., 2002; Yu and Cohen, 2008; Goldfarb et al.,

2012; Meyniel et al., 2016; Hermoso-Mendizabal et al., 2020). Previous reports suggest that rats can

develop third-order history choice biases in a non-perceptual foraging task (Tervo et al., 2014), but their

characterisation is far less studied than first and second order biases.

Previous research has proposed that first-order history choice biases were associated with the

response processing and affect the execution of the action, while second-order history choice biases arise

from the processing of previous stimuli and ultimately affect the perception of the current stimulus

(Maloney et al., 2005; Wilder et al., 2009). This classification is based on the analysis of the onset latency

of the lateralized readiness potential (LPR), a hemispheric asymmetry of activation in the motor cortex,

that can be obtained by alignment to the stimulus or to the response onset thus reflecting each of the two

processing stages (Coles, 1989). Wilder and colleagues (2009) showed that the response and the stimulus

LPR latencies varied with the trial history consistently with first and second-order biases, respectively.

Moreover, when reanalysing data from a task which removes the response in some trials (Maloney et al.,

2005), they observed that the first-order sequential effects were essentially absent. Finally, Jones and

colleagues (2013) also re-analyzed a previous experiment in which the stimulus was eliminated in some

trials and found that reaction times variability could be described by first-order but not by second-order

effects (Wilder et al., 2013). At odds with this proposal, we have shown that second-order history choice

biases appear even in the absence of sensory cues, suggesting it’s main effect is not altering the

perception of the current stimulus. The differences in methodology and species makes a direct

comparison between experiments difficult. Future electrophysiological recordings in the auditory cortex
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of animals performing the task will help elucidate the extent to which auditory responses are modulated

by the transition bias as well as whether activity in Silent trials show traces of this internal prediction .

Reset after error does not prioritize integration of sensory information

Finally, we observed that animals performing a non-perceptual foraging task still present a reset of

the Transition bias after error trials. The reset after error, i.e. the ability in which animals temporarily

ignore the recent transition history and respond randomly after an error choice, was described in an

auditory categorization task (Hermoso-Mendizabal et al., 2020). Other experiments have shown similar

results where, following an error choice, subjects selected their next move less influenced by the context

(Braun et al., 2018; Kikumoto and Mayr, 2019), although they did not dissociate between transition and

win-stay/lose-switch biases. One possible explanation for the Transition bias reset after error trials is that,

when the prediction about the recent history of rewarded repetitions and alternations fails, animals

downplay the weight of the prior and prioritize the sensory information by paying more attention to the

sound after error choices. Our current set of experiments in the Silent task suggest otherwise, as the

behavior of the animals still shows this reset after error even in the absence of guiding sensory stimuli.

Recent modeling work using recurrent neural networks has proposed that the after-error reset could be a

general adaptive phenomenon reflecting the intrinsic information asymmetry that more natural

environments may generate between rewarded and non-rewarded actions (Molano-Mazon et al., 2021).

Future experiments using foraging tasks with other types of spatio-temporal correlations across trials will

help establish the generality of this after-error reset.
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METHODS

Animal Subjects. Animals were male Long-Evans rats (Charles River), pair-housed during behavioral

training and kept in stable conditions of temperature (23 °C) and humidity (60%) with a constant

light-dark cycle (12h:12h, experiments conducted during light phase). Rats had ad libitum food, but water

was restricted during behavioral sessions. Animals had ad libitum water on days with no experimental

sessions. All experimental procedures were approved by the ethics committee (Comité d’Experimentació

Animal, Universitat de Barcelona, Spain, Ref 390/14).

Behavioral tasks. Auditory task. Rats in Group #1 (n = 29) performed an intensity level difference (ILD)

categorization 2AFC task. Briefly, at each trial, an LED on the center port indicated that the rat could start

the trial by poking in (Fig. 2A). After a fixation period of 300 ms, the LED switched off and two speakers

positioned at both sides of the box played simultaneously an up to 1 s long AM white noise. Rats had to

discriminate the side with the loudest sound (Right/Left) and seek reward in the associated port. Animals

could respond any time after stimulus onset, but withdrawal from the center port during stimulus

presentation immediately stopped the sound. Withdrawal from the center port before the fixation period

reinitiated the trial (fixation break). After a fixation break, rats were allowed to initiate fixation again, and

as many times as necessary until fixation was complete (indicated by center LED offset). Stimulus strength

varied randomly from trial to trial, and the stimulus sequence was predetermined (see section ‘Stimulus

sequence’) in repetitive (PREP = 0.8) and alternating blocks (PREP = 0.2).

Auditory task with Silent catch trials. Rats in Group #2 (n = 8) and Group #4 (n = 6) performed an ILD

categorization 2AFC Auditory task with a random 5-10% of Silent catch trials. For Sound trials, details of

the task are identical to the Auditory task. If it was a Silent catch trial, no sound was presented, but rats

could still respond any time after the fixation period, as in Sound trials. Fixation breaks were treated as in

the Auditory task. Stimulus sequence was also predetermined in repetitive (Group #2: PREP = 0.8; Group

#4: PREP = 0.95) and alternating blocks (Group #2: PREP = 0.2; Group #4: PREP = 0.05).

Foraging task. Rats in Group #3 (n = 7) and Group #5 (n = 4) performed a non-perceptual 2AFC task. The

beginning of the task was identical to the Auditory task (Fig. 4A). After a fixation period of 300 ms, the

LED switched off and rats had to guess at which of the two lateral ports the reward would appear. Fixation

break dynamics were identical to the Auditory task. Stimulus sequence was predetermined in repetitive

and alternating blocks (Group #3: PREP = 0.8/0.2; Group #5: PREP = 0.95/0.05). Three of the rats in Group #3

were previously trained on the Auditory task (LE23-25), while the remaining four were directly trained in

the Foraging task (LE56-59, and thus naïve to the Auditory task). No statistical differences were observed

in any variable between animals already trained in the task and animals naïve to the task (data not shown).
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Silent accidental trials. Rats in Group #6 (n = 18) performed an ILD categorization 2AFC task (see Auditory

task), but only trials that accidentally did not produce any sound were evaluated.

In all tasks, correct responses were rewarded with a 24 µL drop of water and incorrect responses were

punished with a 2 s time-out. Trials in which the rat did not make a side poke response within 8 s after

leaving the center port were considered invalid and excluded from the analysis (average of 0.4% invalid

trials per animal). Animals were trained one session per day lasting 50-75 min, 6 days per week, during up

to 18 months. All the experiments were conducted in custom-made operant conditioning cages, the

behavioral set-up controlled by an Arduino-powered device (BPod v0.5, Sanworks, LLC, Stony Brook, NY,

USA) and the task was run using the open-source software PyBPod (pybpod.com). Some animals from

Group #1 (LE42-47, LE54-55 and LE76-81) were evaluated for other purposes in (Hernández-Navarro et

al., 2021). Animals from group #2, #3, #4 and #5 were also used in Molano-Mazón et al., 2021.

# rats # sessions
(mean 土std)

# trials
(mean 土 std)

# Silent trials
(mean 土 std)

Group #1 (Sound, 80/20)
LE36-41, LE42-47, LE54-55,
LE76-81, LE84-86, LE101-105

29 47 土 23 27,119 土 14,953 ---

Group #2 (Catch, 80/20)
LE42-47, LE54-55

8 64 土 28 39,299 土 18,263 3,235 土 1,431

Group #3 (Foraging, 80/20)
LE23-25, LE56-59

7 19 土 1.2 14,380 土 3,104 14,380 土 3,104

Group #4 (Catch, 95/5)
LE76-81

6 16 土 0.8 7,666 土 755 762 土 87

Group #5 (Foraging, 95/5)
LE56-59

4 52 土 7 31,190 土 8,703 31,190 土 8,703

Group #6 (Accidental, 80/20)
LE36-41, LE42-47, LE101-105

18 60 土 18 35,904 土 12,071 1,725 土 1,031

Acoustic stimulus. In the intensity level discrimination 2AFC task, the stimulus Sk(t) in the k-th trial was

created by simultaneously playing two amplitude modulated (AM) sounds TR(t) and TL(t):

𝑆
𝑘
(𝑡) =  [1 +  𝑠𝑖𝑛(𝑓

𝐴𝑀
𝑡 +  φ)] [𝑎

𝑘
𝐿(𝑡) 𝑇

𝐿
(𝑡) +  𝑎

𝑘
𝑅(𝑡) 𝑇

𝑅
(𝑡)]

The AM frequency was fAM = 20 Hz and the phase delay φ = 3π/2 made the envelope zero at t = 0. TL(t) and

TR(t) were broadband noise played either from the left or the right speaker, respectively. The amplitudes of

the sounds TL(t) and TR(t) were calibrated at 65 dB SPL using a free-field microphone (Med Associates Inc,

ANL-940-1). Sounds were delivered through generic electromagnetic dynamic speakers (ZT-026 YuXi)
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located on each side of the chamber.

Stimulus Sequence. A two-state Markov chain generated a sequence of stimulus category ck = {-1,1},

which determined whether the reward in each trial was available in the left or right port, respectively (Fig.

3A). The Markov chain was parameterized with a single transition probability, PREP, which quantified the

probability to repeat the previous stimulus category (Fig. 3A). The probability PREP varied in blocks of 80

trials between PREP=0.8 (Rep) and PREP=0.2 (Alt). In Group #4 the probabilities were made PREP=0.95 (Rep)

and PREP=0.05 (Alt). The stimulus category ck set which of the sounds, TL(t) or TR(t), was dominant, which

determined the statistics of the sound amplitudes ak
L(t) and ak

R(t). In each trial, independently of the

stimulus category (ck), the stimulus strength (sk) was also randomly generated. Stimulus strength sk defined

the relative weights of the dominant and non-dominant sounds: i.e. when sk = 1, only the dominant sound

was played (easy trial), whereas when sk = 0 the two sounds had on average the same amplitude (hard

trial). We used four possible values for s = 0, 0.25, 0.5 and 1. The stimulus evidence was defined in each

trial as the combination ek = ck*sk, thus generating seven different stimulus evidence values ek=(0, ±0.25,

±0.5, ±1). The value of ek determined the p.d.f. from which the two sets of instantaneous evidences  𝑆
𝑘,𝑓
𝐿

and were drawn at each 50 ms frame f (Hermoso-Mendizabal et al., 2020). When ek: = ±1 the p.d.f. for𝑆
𝑘,𝑓
𝑅

was 𝑓(𝑥)=𝛿(𝑥∓1) (i.e., a Dirac delta p.d.f.), whereas when ek∈ (−1,1), it was a stretched beta distribution𝑆
𝑘,𝑓
𝑅

with support [−1,1], mean equal to ek and variance equal to 0.06. The p.d.f. Distribution for was the𝑆
𝑘,𝑓
𝑅

mirror image with respect to zero (i.e. a Dirac or beta distribution with mean -ek). Finally, the amplitudes

ak
L(t) and ak

R(t) of the two AM envelopes were obtained using:

and𝑎
𝑘
𝐿(𝑡) =  (1 +  𝑆

𝑘,𝑓
𝐿 ) / 2 𝑎

𝑘
𝑅(𝑡) =  (1 +  𝑆

𝑘,𝑓
𝑅 ) / 2

with f referring to the frame index that corresponds to the time t.

Psychometric curve analysis. In the Auditory task, we computed the repeating psychometric curve for

each animal, by pooling together trials across all sessions separately for each type of block (Rep or Alt) and

using all the seven stimulus evidence values e = 0, ±0.25, ±0.5, ±1. We calculated the proportion of

repeated responses as a function of the repeating stimulus evidence (ê) defined for the t-th trial as êt =

rt-1et, with rt−1 = {−1,1} representing the previous response (i.e. left or right, respectively). Thus, positive

values of ê denote trials in which animals had evidence to repeat their previous choice, while negative

values of ê in which they had evidence to alternate. Psychometric curves were fitted to a 2-parameter

probit function (using Matlab function nlinfit):

𝑃
𝑅𝑒𝑝𝑒𝑎𝑡

(ê) =  1
2 (1 + 𝑒𝑟𝑓( βê + 𝑏

2
))
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The sensitivity β quantified the stimulus discrimination ability, while the parameter b was defined as the

repeating bias which captured the animal preference to repeat (b > 0) or alternate (b < 0) their previous

reponse. Across-subject error bars, corresponded to the 1st and 3rd quartiles.

To quantify the tendency to repeat or alternate in trials with no stimulus (i.e. Silent catch trials or trials in

the Foraging task), as no psychometric curve could be drawn, we used the Repeating Probability simply

defined as the probability to repeat the previous choice. We also calculated separately for each block type

the Excess of Repeating Probability as ERP = ±(Prep - 0.5) with the positive sign used for the Repeating block

and the negative sign for the Alternating block. Hence for example an ERP = 0.2 meant an excess of 0.2

probability points to repeat in the Repeating block and an excess of 0.2 probability points to alternate in

the Alternating block.

Generalized linear model (GLM) analysis. Net evidence GLM. We fitted a GLM to quantify the weight of

different features -such as the current stimulus and previous history events- had on the choices of the

animals (Busse et al. 2011; Frund, Wichmann, and Macke 2014; Abrahamyan et al. 2016; Braun, Urai, and

Donner 2018; Hermoso-Mendizabal et al. 2020). The probability that the response rt in trial t was to the

right was modeled as a linear combination of the features passed through a probit function:

(1)𝑝(𝑟
𝑡

=+ 1|ω, π, β) = π
𝑅

+ (1 − π
𝐿

− π
𝑅

)Φ(𝑦
𝑡
)

In which πR and πL represent the lapse rates for left and right responses, the probit function is theΦ(𝑥)

cumulative of the standard normal function and its argument in trial t reads:

𝑦
𝑡

=
𝑓

𝑁
𝑡

∑ β
𝑆𝑡𝑖𝑚, 𝑓

 𝑆
𝑡,𝑓

+
𝑘=1

6

∑ β
𝑝𝑟𝑒𝑣𝑆𝑡𝑖𝑚, 𝑘

 𝑆
𝑡−𝑘
𝑠𝑢𝑚 +

𝑘=1

6

∑ β
𝑟, 𝑘
+  𝑟

𝑡−𝑘
+ +

𝑘=1

6

∑ β
𝑟, 𝑘
−  𝑟

𝑡−𝑘
− + (

𝑜,𝑞
∑

𝑘=1

6

∑ β
𝑡𝑟𝑎𝑛𝑠, 𝑘
𝑜,𝑞 𝑇

𝑡−𝑘
𝑜,𝑞 )𝑟

𝑡−1
+ β

0

(2)

The current stimulus, given by St,f = - , represents the intensity difference between the Right and the𝑆
𝑘,𝑓
𝑅 𝑆

𝑘,𝑓
𝐿

Left sounds in each frame f, with f = 1,2…Nt and Nt being the number of frames listened in trial t. The

contribution of trial history included the impact of the previous ten trials (t-1, t-2, t-3...; grouping the

impact of trials t−6 to trial t−10 in one term). The previous stimuli, given by , 𝑆
𝑡−𝑘
𝑠𝑢𝑚 =

𝑓

𝑁
𝑡

∑  (𝑆
𝑡−𝑘, 𝑓
𝑅 − 𝑆

𝑡−𝑘, 𝑓
𝐿 )

representing the intensity difference between the Right and the Left sounds summed across the Nt

listened frames. The terms represented the previous correct responses being −1 (correct left), +1𝑟
𝑡−𝑘
+

(correct right), or 0 (error response). Similarly, represented previous incorrect responses. Previous𝑟
𝑡−𝑘
−

transitions , which were separated into four different types {o, q} = {+, +}, {+, −}, {−, +}, and𝑇
𝑡−𝑘
𝑜,𝑞 = 𝑟

𝑡−𝑘−1
𝑜 𝑟

𝑡−𝑘
𝑞

{−, −}, depending on the outcomes of trial t−k (q) and t−k−1 (o) (Hermoso-Mendizabal et al., 2020).

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2022. ; https://doi.org/10.1101/2022.01.17.476581doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.17.476581
http://creativecommons.org/licenses/by-nc-nd/4.0/


Interaction GLM. To evaluate if the presentation of previous stimuli impacts the perception of the current

stimulus, we added an additional interaction term defined as the product of the current and previous

stimuli. To do this, we introduced three variations with respect to the Net evidence GLM. First, we

separated the contributions of the current and previous stimuli, previously defined as the net evidence,

into left and right contributions. Second, in order to reduce the amount of regressors, we grouped𝑆
𝑡
𝐿 𝑆

𝑡
𝑅

the Current stimulus regressors, previously defined for each sample (Eq. 2), into a single regressor defined

as an exponentially weighted sum of each of the listened frames: . The previous𝑆
𝑡
𝑅,𝐿 =

𝑓
∑ 𝑒

−𝑓/τ
𝑠𝑡𝑖𝑚 𝑆

𝑡, 𝑓
𝑅,𝐿

stimuli were also grouped into a single regressor that captured the weighted sum of all previous left or

right stimuli: . The decay time constants τstim and τprev were calculated by𝑆
𝑝𝑟𝑒𝑣𝑆𝑡𝑖𝑚, 𝑡
𝑅,𝐿 =

𝑘

6

∑ 𝑒
−𝑓/τ

𝑝𝑟𝑒 𝑆
𝑡−𝑘, 𝑓
𝑆𝑢𝑚, 𝑅,𝐿

fitting an exponential to the individual weights (across frames) and (across trial lag)β
𝑆𝑡𝑖𝑚, 𝑓

β
𝑝𝑟𝑒𝑣𝑆𝑡𝑖𝑚, 𝑘

obtained from the Net evidence GLM, respectively. The averages of the individual constants were τstim=1,54

frames and τprev = 3,88 trials. Third, we included ipsilateral interaction terms relating previous and current

choices: and . Contralateral interactions were not included for simplicity. We𝑆
𝑡
𝑅 × 𝑆

𝑝𝑟𝑒𝑣𝑆𝑡𝑖𝑚, 𝑡
𝑅 𝑆

𝑡
𝐿 × 𝑆

𝑝𝑟𝑒𝑣𝑆𝑡𝑖𝑚, 𝑡
𝐿

these modifications, the argument of the probit function now reads:

𝑦
𝑡

=
𝑋=𝑅, 𝐿

∑ (β
𝑆𝑡𝑖𝑚
𝑋 𝑆

𝑡
𝑋 + β

𝑝𝑟𝑒𝑣𝑆𝑡𝑖𝑚
𝑋 𝑆

𝑝𝑟𝑒𝑣𝑆𝑡𝑖𝑚, 𝑡
𝑋 + β

𝑝𝑟𝑒𝑣𝑆𝑡𝑖𝑚×𝑆𝑡𝑖𝑚
𝑋 𝑆

𝑡
𝑋 × 𝑆

𝑝𝑟𝑒𝑣𝑆𝑡𝑖𝑚, 𝑡
𝑋 ) +  ...

(4)
𝑜=+,−

∑
𝑘=1

6

∑ β
𝑟, 𝑘
𝑜  𝑟

𝑡−𝑘
𝑜 + (

𝑜,𝑞
∑

𝑘=1

6

∑ β
𝑡𝑟𝑎𝑛𝑠, 𝑘
𝑜,𝑞 𝑇

𝑡−𝑘
𝑜,𝑞 )𝑟

𝑡−1
+ β

0

Repeating bias recovery. We calculated the baseline repeating bias b of each block (Rep or Alt) in both

tasks (Sound and Foraging) by averaging the repeating probability during the last 5 trials of each block.

Then, we compared the repeating bias trial by trial for the first 15 trials of a block to check how many

trials it takes to return to baseline levels.

Reaction times. Reaction time (RT) was defined as the period between stimulus onset and the center port

withdrawal (Fig. 2A and 4A). Fixation breaks (FB) were defined as withdrawals from the center port during

the fixation period (300 ms). Only the first center port withdrawals of each trial, either FB or RT, were

analyzed: after a FB, further FBs and the subsequent valid response were discarded to remove possible

serial effects within a single trial (mean ± standard deviation, 16±5 % of total withdrawals). RTs longer

than 1s after fixation onset were removed from the analysis (0.5±0.6 % of total withdrawals).

Data code availability

Data and code will be made available on a public repository once the manuscript is published.
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SUPPLEMENTARY FIGURES

Figure 1 - Fig. supplement 1. Full GLM in the Auditory task. We fitted the data separately for after-correct (red) and
after-error trials (black). We assessed the contribution of the predictive transition bias (T++, two consecutive correct
transitions; T-+, a sequence of an incorrect and a correct transition; T+-, a sequence of an correct and an incorrect
transition; T--, two consecutive incorrect transitions) and correct rewarded and unrewarded responses, respectively
(r+, reflecting win-stay behavior; r-, reflecting lose-switch behavior). A correct transition may be either a correct
repetition or alternation. Both biases are then combined with the stimulus evidence of previous trials (Previous
stimuli) and of the current trial (Current stimulus) to generate a choice. Labels described as in Figure 1. For simplicity,
and because the impact of transitions with an incorrect choice is barely noticeable, T+−, T−+, and T−− will not be
analyzed. After-correct choices, the decisions of the animals were positively and strongly modulated by the Current
stimulus and also positively, although less strongly, by the previous correct transitions (T++). Previous correct (r+) and
incorrect responses (r-) also modulate the rats’ decisions, but to a lesser extent than the predictive transition bias.
Previous stimuli had a small but consistent negative impact on choices. The weight of previous correct transitions
(T++) reset after-error.
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Figure 1 - Fig. supplement 2. Past choices and outcomes regressors. There are two ways of representing the past
choices and their outcomes, as (A) correct rewarded and unrewarded responses (r+ and r-) or as (B) previous
responses and previous reward side (Resp, RewSide). A) Previous correct responses are labeled -1 for after correct
Left, 1 for after correct Right and 0 for after errors. Previous incorrect responses are labeled as 0 after correct, -1 for
after incorrect Left and 1 for after incorrect Right. B) However, previous responses r+ and r- can be re-parameterized
as Previous responses after a subtraction (r+ - r-) and as Previous reward side after a sum (r+ + r-). In that case, both
regressors may take just two values ([-1,1]). Such re-parametrization shows that, although correlated, Previous
reward side and Previous stimuli are separable in the model because while Previous reward side is binary ([-1 for left,
1 for right]), Previous stimuli are graded.
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Figure 1 - Fig. supplement 3. Alternative mechanisms underlying the Previous Stimulus repulsive bias and their
characterization using the Interaction GLM. A) Schematic showing the case in which the Previous Stimulus
repulsive bias does not affect the perception of the Current stimulus. In this scenario, the weight of the direct impact
of Previous stimuli coming from the Right is negative (βR

prevStim<0) and has the opposite sign of the weight of the
Current Stimulus coming from the Right (βR

Stim>0). The stimuli coming from the Left (not shown) exhibit the same
opposing behavior but with the reverse sign as they decrease the probability to choose Right, i.e. βL

Stim<0 and
βL

prevStim>0. Because previous stimuli do not modulate the impact of the current stimulus, the interaction weight is
null (i.e. βR

Stim x prevStim=0; same for the Left side). Color bars on the right illustrate the direct impact of Previous (top)
and Current (bottom) stimuli shown in the example. B) Case in which the Repulsive bias arises from the modified
perception of the Current stimulus. In this scenario, Previous stimuli have no direct impact on choice (i.e. βR

prevStim=0)
but cause repulsion by a negative interaction weight (βR

Stim x prevStim<0) which decreases the final weight of the current
Stimulus (notice how the width of the Current Stimulus arrow decreases after the interaction yielding a reduced
“perceived stimulus”) .
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Figure 2 - Fig. supplement 1. GLM for Accidental silent trials. We fitted the data separately for Sound (green) and
Accidental silent trials (red) for after-correct trials. We confirmed that the Aftereffect bias was also present in
Accidental silent trials, i.e., trials in which our set-up failed to produce a sound (Previous stimuli; ‘trial’ x ‘lag’
interaction: F1,195 = 0.9, p = .3427; ‘trial’ main effect: F1,195 = 0.94, p = .3335). The significant larger weights for T++ and
the decrease for both r+ and r- can be explained by the fact that Accidental silent trials normally occurred for trials
with short reaction times, which coincide with trials with high repeating bias b - thus higher weights for the T++ and
smaller for r- regressors.

Figure 3 - Fig. supplement 1. Comparison of the effect of previous correct and incorrect responses, and the reset
after-error in Sound and Silent catch trials. We fitted the data separately for Sound (green) and Silent trials (orange)
for after-correct (three left charts) and after-error trials (right chart). We assessed the contribution of the predictive
transition bias (T++) and previous correct and incorrect responses (r+; r-), as described in Figure 1 - Fig. supplement 1.
After-correct choices, no differences were observed between Sound and Silent trials neither for previous correct (r+;
‘trial’ x ‘lag’ interaction: F1,69 = 0.23, p = .632; ‘trial’ main effect: F1,69 = 0.71, p = .4033) nor incorrect responses (r-;
‘trial’ x ‘lag’ interaction: F1,69 = 0.46, p = .4997; ‘trial’ main effect: F1,69 = 1.68, p = .1988). The weight of previous
correct transitions (T++) reset after-error in both Sound and Silent trials, and the weights are not different between
them (T++ after-error; ‘trial’ x ‘lag’ : F1,69 = 0.07, p = .7896; ‘trial’: F1,69 = 0.06, p = .8124).
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Figure 3 - Fig. supplement 2. History biases do not reset when the previous trial is silent. A) Mean psychometric
curves (n = 8 rats) showing the proportion of repeated responses computed in trials following a correct Sound trial
(left) or a correct Silent trial (right), sorted by blocks (blue: repetitive; red: alternating). B) Repeating bias b After
Silent trials in Rep blocks is enhanced as compared to After Sound trials (0.74±0.09 vs 0.68±0.09; paired t-test, p <
.0001), while there is no difference in Alt blocks (0.46±0.07 vs 0.43±0.05; p = .0609). C) Influence of past events on
current choice After Sound (green) or After Silent trials (yellow). Same convention as in Figure 3. Notice that weights
for the Previous stimuli kernel go to zero at lag -1 in After Silent trials (orange line). No differences between After
Sound and After Silent trials were observed neither in transition bias (T++: ‘trial’ x ‘lag’ interaction: F1,85 = 0.07, p =
.7888; main factor 'trial' F1,85 = 0.09, p = .7674) nor in r- (‘trial’ x ‘lag’ interaction: F1,69 = 0.31, p = .5812; 'trial' F1,69 =
0.83, p = .3647). A small significant difference was found between After Sound and After Silent trials in r+ (‘trial’ x
‘lag’ interaction: F1,69 = 3.99, p=0.0498; 'trial' F1,69 = 3.67, p=0.0596), suggesting animals have a larger trend to repeat
previous successful decisions after the sudden absence of sensory inputs.
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Figure 5 - Fig. supplement 1. Kernels for Current
stimulus in both Foraging and Auditory tasks. The
sensory information in a Sound trial in the Auditory task
(green line) can last between a few ms and up to 1 s, the
maximum duration of a played sound. For simplicity, and
as most of rats' reaction times are shorter than 200 ms,
we only plot 8 sound samples of 50 ms each. For both the
Foraging task trials (yellow line) and the Silent trials in the
Auditory task (orange line), the sound is not played and
the kernels for the current trial are flat. Silent trials in the
Auditory task allow us for a direct comparison of the
history choice biases in the two tasks, as the Current
stimulus kernel in both tasks is zero.

Figure 5 - Fig. supplement 2. Reaction times differences between the Sound and the Foraging task. A) Left panel,
RT distributions for Silent trials in the Auditory task (orange; n = 8 rats) and for the Foraging task (yellow, n = 7 rats).
B) RT cumulative distribution function (pdf) for the trials in the Foraging task and for the Silent trials in the Auditory
task. RTs for the Foraging task (yellow line: mean ± std 53 ± 110 ms) were shorter than RTs for Silent trials in the
Auditory task (orange line: 92 ± 131 ms; Kolmogorov-Smironov test, KS score = 0.23, p < .0001). Rats in the Foraging
task only prioritized responding as fast as possible. The immediate consequence of such a decision is an increase in
the number of fixation breaks (which reinitiate the trial) with 25.91% of the 77,543 trials in the Foraging task as
compared to 10.77% of the 27,236 Silent trials in the Auditory task. The proportion of fixation breaks was
significantly different between Silent catch trials in the Auditory task and the Foraging task trials (X2, 1 d.f. =
2691.47, p < .0001).
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Figure 5 - Fig. supplement 3. Effect of the predictability of the sequential correlations on history biases. We trained
a new batch of animals (Group #3, n = 6 rats) in the same Auditory task shown in Fig. 2 and we retrained 4 animals
from Group #2 in the same Foraging task shown in Fig. 4, but with more estable sequential correlations (Rep, PREP =
0.95; Alt, PREP = 0.05). A) Accuracy for Sounds trials and Silent trials in the Auditory task, and all trials in the Foraging
task sorted by block (Rep/Alt) and environment (Regular: PREP=0.8/0.2; Extreme: PREP=0.95/0.05). Accuracy in the
extreme environment was larger than in the regular environment (3-way ANOVA for ‘accuracy’ with ‘trial’
(Sound/Catch/Silent), ‘block’ (Rep/Alt) and ‘environment’ (8020/9505) as variables; ‘environment’ F1,66 = 240.1, p <
.0001), independently of other factors (triple interaction F2,66 = 0.2, p = .8204; ‘environment’ x ‘trial’ F2,66 = 2.25, p =
.1133; ‘environment’ x ‘block’ F2,66 = 0.76, p = .3856). B) Exces of repeating probability (ERP) is larger for the extreme
environment than for the regular environment (‘environment’ F1,66 = 37.01, p < .0001), and such difference does not
depend on other variables (triple interaction F2,66 = 0.09, p = .9109; ‘environment’ x ‘trial’ F2,66 = 0.01, p = .9873;
‘environment’ x ‘block’ F1,66 = 0.34, p = .5596). C) Comparison of the T++ kernels obtained in the regular (PREP=0.8/0.2)
and the extreme environment (PREP=0.95/0.05) for Sound trials (left), Silent trials (center) and the Foraging task
(right). Transition bias is not enhanced in the extreme environment as compared to the regular environment
(‘environment’ F1,222 = 2.13, p = .1463; ‘environment’ x ‘trial’ interaction F2,222 = 1.39, p = .2522; triple interaction F2,222

= 0.73, p = .4817).
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