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Abstract. Understanding the relation between the structure of brain networks

and its functions is a fundamental open question. Simple models of neural activity

based on real anatomical networks have proven effective in describing features of

whole-brain spontaneous activity when tuned at their critical point. In this work,

we show that indeed structural networks are a crucial ingredient in the emergence

of synchronized oscillations in a whole-brain stochastic model at criticality. We

study such model in the mean-field limit, providing an analytical understanding of

the associated first-order phase transition, arising from the presence of a bistable

region in the parameters space. Then, we derive the power spectrum in the

linear noise approximation and we show that, in the mean-field limit, no global

oscillations emerge. Finally, by adding back an underlying brain network structure

with homeostatic normalization, we numerically show how the bi-stability region

is disrupted and concomitantly a synchronized phase with maximal dynamic range

is observed. Hence, both the structure of brain networks and criticality are

fundamental in driving the collective coordinated responses and maximal sensitivity

of whole-brain stochastic models.

Keywords: brain criticality, synchronized neural oscillations, brain networks,

stochastic model, mean field
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1. Introduction

The human brain constitutes an impressively complex system, spanning several

spatial scales of organizations from microcircuits to whole-brain networks. The

comprehensive map of neural connections is referred as “connectome” [1]. However, it

is typically unfeasible to reconstruct connectomes at the neuronal scale, and often one

relies on an anatomical connectivity at coarser spatial scales. In humans, such brain

structural networks are typically assessed with diffusion tensor/spectrum imaging

techniques, which quantify the white matter pathways between mesoscopic brain

regions [2, 3].

These complex interconnections act as a backbone on top of which the

neurophysiological dynamics occurs. One way to measure such neural activity is

through functional magnetic resonance imaging (fMRI). Correlations in the fMRI

signals of spontaneous activity during rest have been repeatedly observed [4], yielding

detailed maps of complex emergent patterns of coherent brain activities, called

resting state (functional) networks (RSN) [5]. Such patterns, that are consistent

among healthy individuals [6], are specifically associated with neuronal systems

responsible for sensory, cognitive, and behavioral functions [7, 8].

An hypothesis that is increasingly being considered in light of growing

experimental [9, 10] and theoretical [11, 12, 13] results, is that collective emergent

patters are signatures of brain self-organization to a critical point [14, 15], i.e., the

brain dynamics may be poised at the edge of a phase transition [16]. The main

evidences for this hypothesis are the presence of scale-free neural avalanches [17, 18]

and cluster size distributions [19, 20], long-range temporal [21] and spatial [22, 23]

correlations during spontaneous brain activity - exemplary properties of a system

near its critical point. Some works have also suggested that such phenomenology

is compatible with systems between an asynchronous phase and a synchronous one,

with emerging oscillations [10, 24, 25]. In all these studies the role of the network

structure in driving such emerging patterns - e.g., syncronized oscillations or optimal

information processing - is often missing.

In fact, the emerging collective dynamics in the brain is shaped both by the

underlying connectome and by the neural population activities [26, 27, 28]. Despite

a direct correspondence between structural and functional networks, to what extent

structure does determine the neural dynamics and its critical signatures has still to

be clarified [29, 30]. Computational models may be the key to bridging this gap [31].

To this end, biophysically inspired models of neural dynamics are typically built on

top of empirically derived structural networks, with the aim of reconciling functional

behavior.

In particular, a stochastic version of the Greenberg & Hastings cellular
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automaton [32] - which is one of the simplest model to describe the neural dynamics

- running over a human connectome of N = 998 cortical regions [33] was shown

to match some features of whole-brain activity when tuned to the critical point

[19, 22]. Indeed, the model undergoes a critical transition as a function of an external

parameter, that governs the level of induced excitatory activation by neighboring

neurons.

Recent numerical studies highlighted how the topological details of the

underlying network are crucial in shaping the type of the transition. Indeed, for

densely connected networks the system exhibits a first order discontinuous transition

[34, 35], with the activity of the network jumping discontinuously between a quiescent

and an overactive phase, while for sparse networks the transition disappears [34, 36],

suggesting that brain dynamics in individuals affected by stroke will not be critical

[37]. Nevertheless, an analytical understanding of such critical transition, and thus

the disentangling of the role of the connectome structure, criticality and emergent

properties is still missing.

In this work, we develop a stochastic continuous time formulation of the

Greenberg & Hastings model via a master equation approach. We show analytically

how in the mean-field limit two stable equilibria emerge, together with a bistable

region of the parameter space where these two equilibria coexist, allowing a deeper

understanding of the nature of the model critical transition. Then, we derive

the power spectrum of the oscillations and we show that it does not display any

characteristic peak, i.e., we do not observe synchronized neural activity. However,

when we go beyond the mean-field by adding a network connecting the different brain

regions, we find that synchronized sustained oscillations emerge and that the bistable

region shrinks and eventually disappears. Moreover, we show that the dynamic range

[38] is maximal at the critical point of the model, hinting at the optimal information

processing that typically emerges at criticality.

Overall, our results shed light on the role of the underlying network structure

in the emergent collective patterns observed in the brain, as well as explaining the

mechanisms behind the phase diagram of the Greenberg & Hastings model reported

in previous works [19, 22, 34, 35, 36, 37].

2. Methods

2.1. Whole-brain stochastic continuous time model

Here, we develop a continuous time formulation of the whole brain stochastic model

introduced by Haimovici et al. [22] to describe the dynamics of the human brain at

a mesoscopic scale. Such a model is a variation of the Greenberg & Hastings cellular

automaton [32] - GH from now on -, originally designed to study excitable media.
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Briefly, each node in the system belongs to one of three states: quiescient Q, excited

E, or refractory R. The original dynamics of the GH automaton is modified in such

a way that the states undergo the following stochastic transitions:
Q −→ E if

∑
jWijsj(t) > T or with prob. r1

E −→ R with prob. 1

R −→ Q with prob. r2

(1)

where sj(t) ∈ {0, 1} is the state of node j at a certain time step t - set to 1 if the node

is in the E state, and 0 otherwise -, Wij is the weighted connectivity matrix of the

underlying network, r1 is the probability of self-activation and r2 is the probability

of recovery from the refractory state. In particular, T is a threshold which governs

the induced activation due to interaction with neighboring nodes, which acts as a

control parameter of the model.

Hence, in this model a neuron may either be activated if the weighted combined

activity of neighboring neurons exceeds a threshold T , or it may self-activate with

a probability r1 that encodes, e.g., external stimuli or unobserved pathways. After

activation, neurons switch to a refractory state with unitary probability and cannot

activate again. Finally, the escape from the refractory state happens with probability

r2. In this formulation, the state of the system evolves in discrete time steps and is

updated synchronously.

By varying T , the model undergoes a phase transition [22]. In particular, the

order parameters used to characterize the transition were the mean network activity,

i.e., the fraction of active nodes, and the size of the clusters, i.e., sets of nodes

structurally connected to each other and simultaneously active. For small values of T ,

the activity spread easily between neighboring nodes, even along weak connections.

This leads to a regime of high and sustained activation, characterized by fast and

temporally uncorrelated fluctuations and large clusters. We refer to this phase as

“super-critical”. On the other hand, for high values of T, the activity is sustained

only by few strong connections, resulting in a suppressed or “sub-critical” phase

with regular, short propagating activity in which nodes fail to give rise to relevant

clusters. At intermediate values of T, a continuous transition connects the two

regimes, resembling a second-order phase transition.

Notably, we include homeostatic plasticity in the model, implemented as a

normalization of the incoming node’s excitatory input. This addition minimizes

both the variability of the critical points and, at the same time, it improves the

correspondence between simulated neural patterns and experimental brain functional

data [19].

We now develop a continuous time formulation of the model in order to study

analytically its mean-field behavior in the large N limit, together with its power
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spectrum in the stochastic linearized regime. Given a network of N units, we denote

by σi(t) ∈ {E,R,Q}, i = 1, . . . , N , the state of the site i at time t. The dynamics

in (1) can be translated into the following continuous time evolution: for h > 0

and each node i, the probability of having σi(t + h) = E given that σi(t) = Q is

ract(i)h+ o(h) where ract(i) is the rate of activation, defined as

ract(i) = r1 + (1− r1)Θ
[∑

j

Wijsj − T
]

(2)

with Θ[ · ] the Heaviside step function. Notice that 0 ≤ r1 ≤ 1 by construction. In a

similar manner the probability of jumping from state E at time t to state R at time

t+ h will be h+ o(h) and from R to Q will be r2h+ o(h) ‡.
The mean-field approximation of the model consists in assuming that the

underlying graph is fully-connected with constant weights, i.e., Wij = c, ∀i, j.
In this way, considering also the homeostatic normalization [19], the weights of the

structural matrix are simply W̃ij = Wij/
∑

jWij = 1/N. Thus the activation of a

node due to the neighboring nodes is simply given by the density of active nodes in

the network, i.e., the argument inside Θ[ · ] in (2) becomes∑
j

W̃ijsj − T =
nE
N
− T (3)

and it is independent of the particular node i, i.e., ract(i) = ract.

These transition rules induce a Markovian dynamics on nE, nR, nQ = N −
nE − nQ, respectively the number of active, refractory and inactive nodes, with the

following rates:

(nE, nR, nQ)
nQract−→ (nE + 1, nR, nQ − 1)

(nE, nR, nQ)
nE−→ (nE − 1, nR + 1, nQ)

(nE, nR, nQ)
nRr2−→ (nE, nR − 1, nQ + 1)

. (4)

Then, from the reactions in (4), we can write

Ṗ (nE, nR) = P (nE − 1, nR) [N − nE − nR + 1]ract

+ P (nE + 1, nR − 1) [nE + 1]

+ P (nE, nR + 1) [nR + 1]r2

− P (nE, nR) [(N − nE − nR)ract + nE + nRr2]

(5)

which is the master equation of our continuous time model.

‡ We highlight that the parameters r1 and r2 that in the time discrete model were probabilities

are now rates
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2.2. Equlibria and power spectrum

In order to study analytically the dynamics given by the master equation (5), we

perform its Kramers-Moyal expansion truncated at second order. In this way, we

can derive the associated Fokker-Planck and Langevin equations [39]. The latter

describes the stochastic evolution of the density of active x = nE/N and refractory

y = nR/N nodes, which obeys[
ẋ

ẏ

]
=

[
A1(x, y)

A2(x, y)

]
+

1√
N

[
B11(x, y) B12(x, y)

B21(x, y) B22(x, y)

]1/2 [
ξ1
ξ2

]
(6)

where ξ = [ξ1, ξ2] is an uncorrelated 2d white Gaussian noise, i.e., such that

ξi ∼ N(0, 1) and 〈ξi(t)ξj(t′)〉 = δijδ(t−t′), A(x, y) is the deterministic drift term, and

B(x, y) encloses the stochastic diffusive part (see Appendix A for the full derivation).

To analytically investigate the oscillatory dynamics of our model, from (6) we

perform a Van Kampen expansion [39] by defining the local coordinates (ζ1, ζ2) as{
x(t) = x∗ + ζx(t)√

N

y(t) = y∗ + ζy(t)√
N

⇒

{
ζx(t) =

√
N(x(t)− x∗)

ζy(t) =
√
N(y(t)− y∗)

. (7)

Then (see Appendix C for details) the power spectrum of the oscillations around a

given equilibrium is given by

Si(ω) = 〈ζ̃i(ω)ζ̃∗i (ω)〉 = 〈ζ̃i(ω)ζ̃i(−ω)〉 (8)

for i = x, y.

3. Results

3.1. Existence of a bistable region

In the limit of a large number of interacting units in the system, the effect of random

fluctuations become negligible. In fact, in the thermodynamic limit N → ∞ the

time evolution of the densities described by (6) converge, over a finite time interval,

to the solutions of the following system of differential equations{
ẋ = (1− x− y)[r1 + (1− r1)Θ(x− T )]− x
ẏ = x− r2y

(9)

which deterministically describes the dynamics of the concentrations of active and

refractory units. Although we cannot obtain the full analytical solution of (9), we

can study the system’s equilibria and their stability. Indeed, by varying the threshold
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Figure 1: Diagram of equilibria in the model. Top panel: region of existence of super-

and sub-critical equilibria. As the control parameter T changes, we can identify three

different regions: for low T, only the supercritical equilibrium exists (blue region);

for high T, only the subcritical equilibrium exists (green region); for intermediate

T, there is the coexistence of the two equilibria (orange region). Bottom panel:

examples of trajectories in the three regions. Model simulated with a fully-connected

network of size N = 5 · 104 and with parameters dt = 0.001, r1 = 0.1, r2 = 0.1. If

not specified, these parameters are used throughout the work. Each plot shows 30

trajectories from a random initial configuration.

T the dynamics switches between two different regimes based on the value of Θ[·],
as we see in figure 1. These two phases are characterized by high and low level of

activity respectively. We call them super- and sub-critical phase.

In the super-critical phase x > T and at stationarity, (9) leads toy+ =
1

2r2 + 1

x+ = r2 y+

(10)

so that in this regime the average activity x+ is independent from the rate of self-

activation r1. This means that the spreading of the activity is completely driven

by the interaction between active neighbors. For the equilibrium defined in (10) to
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exists, we need

T <
r2

2r2 + 1
=: T+ (11)

so that the inequality x > T is satisfied.

Likewise, in the sub-critical phase x ≤ T and at stationary, (9) leads toy− =
r1

r2 + (r2 + 1)r1
x− = r2 y−

(12)

with the inequality x ≤ T leading to

T ≥ r1r2
r2 + (r2 + 1)r1

=: T−. (13)

As expected, from (10) and (12) we notice that ∀r1, r2 the fraction of active nodes x+
in the supercritical phase is larger than the subcritical equilibrium x−, since r1 ≤ 1.

Moreover, in the range of T given by equations (11) and (13) for which such solutions

exist, they are both stable equilibria, each one with its own basin of attraction (see

Appendix B for the extensive analysis).

Crucially, and ∀r1, r2, (11) and (13) imply that T− < T+, thus three regions

emerge in the parameter space spanned by T , as shown in Figure 1. For T ≤ T−, the

sub-critical equilibrium does not exist, hence we can only observe the super-critical

equilibrium, whereas for T > T+ only the sub-critical equilibrium exists. In between

these values, for T− < T ≤ T+, the two equilibria coexist and we find a region of

bistability.

3.2. Power spectrum

Neural activity typically exhibits a certain level of stochastic fluctuations, even when

the brain is at rest [40]. In fact, a growing amount of evidence suggests that neural

noise might enhance the signal processing capabilities of neurons [41, 42, 43]. To

this end, we explore analytically the presence of oscillations in the model through

the stochastic linearization given by a system size expansion [39], from which we

obtain the temporal evolution of the fluctuations around the equilibria (see Appendix

C). Indeed, this approach has proven to be effective in other neuronal models

[28, 44, 45, 46], and leads to the power spectra

S+
x (ω) =

2r2[1 + r2 + r22 + ω2]

(1 + 2r2)[(1 + 2r2)2 + (2 + r22)ω
2 + ω4]

(14)

in the super-critical regime and

S−x (ω) =
2r1r2[r

2
1 + r1r2 + r22 + ω2]

(r1 + r2 + r1r2)[(r1 + r2 + r1r2)2 + (1 + r21 + r22)ω
2 + ω4]

(15)
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Figure 2: Theoretical expectation of the power spectrum are well-matched by

simulated data from a fully-connected network at stationarity. The gray lines

represent the power-spectrum obtained by simulating the continuous-time model

for 105 steps at stationarity in a network of N = 5 · 104 nodes and after an initial

transient of 5 · 104 steps. In the bistable region, depending on which equilibria the

dynamics settles, we can find both power spectra.

in the sub-critical regime. The power spectra obtained from the simulation of the

model are perfectly matched by these theoretical expression (figure 2).

Equations (14) and (15) show that for low frequencies the power spectrum is flat

in both regimes. On the other hand, in the large frequencies limit we find S(ω) ≈ ω−2,

i.e., Brownian noise. Such scale-free behavior of the frequencies spectrum is found,

for instance, in Local Field Potentials (LFPs), i.e., the electrical activity of the brain

measured with single microelectrodes [47].

Notably, in the super-critical regime (15) does not display any peak, while a

extremely small peak at

ωmax− = [(1 + r1r2)(r1r2)
1/2 − r21 − r22 − r1r2]1/2 (16)

emerges in the sub-critical phase. These results suggests that the mean-field limit of

the model does not display any collective oscillations.

3.3. Finite size effects

In order to assess the effects of finite sizes on the region of bistability, we track

the average activity x as an order parameter following the same approach used in

[35]. The simulation starts at T0 from a random initial configuration and after a

given number of steps we increase the control parameter T by a small ∆T , without

resetting the system states. Such procedure is repeated up to a final value TF . Then,

the same procedure is repeated by starting from TF and decreasing T up to T0.
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(a) (b)

Figure 3: Trend of the average activity x as a function of the control parameter T for

different topologies. Starting from T0 = 0.03, T was slowly increased by ∆T = 0.002

every 105 steps up to TF = 0.10, then it is decreased back to T0 in the same way.

(a) Results obtained with fully-connected topologies of different sizes N . (b) Results

obtained with Erdős–Rényi random networks (N = 104) of different probabilities p

of having an edge between nodes.

In figure 3(a) we plot the behavior of x at different steps of this procedure for

fully-connected topologies with different sizes. In the super- and sub-critical region

x is in accordance with the theoretical predictions (10) and (12). We recover the

discontinuous transition and the hysteresis cycle previously shown as well [34, 35].

Perhaps unsurprisingly, for small network sizes the transitions do not precisely match

the expected values of T+ and T− given in (11) and (13) - indeed, the bistable region

shrinks as the size of the network is reduced.

3.4. Effects of the network topology

Until now, we have focused on the mean-field limit, which corresponds to a fully-

connected topology, and under the assumption of constant weights. However, the

brain architecture is characterized by a sparse connectivity and brain networks

display a non-trivial topology with small-world properties and community structures,

both at micro and macro scale [33, 48]. Moreover, the strength of the interaction

between different brain regions is highly heterogeneous, and typically follows a scale-

free distribution [33, 48]. Hence, the hypothesis of constant weights is also not

fulfilled, although eased by the homeostatic normalization [19]. In this section, we

relax both these assumptions at the price of analytical tractability, showing how

the network structure and criticality are both fundamental in shaping non-trivial

behaviors that are not present in the mean-field limit.

As we have already mentioned, the effects of the underlying topology in shaping
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T > T+

P +
th

Pth

Figure 4: Dynamics of the model over an empirical connectome shows emergent

collective oscillations. Simulation performed as in figure 2 with the connectome from

[33].

the transition was extensively studied in the discrete time model [19, 34, 35, 36, 37].

To check if the same relation holds with our continuous time formulation as well, we

simulate the dynamics over Erdős–Rényi networks [49].

We repeat the procedure described in section 3.3 at fixed network size but for

different wiring probabilities. We find that, as we lower the connectivity, the bistable

regions shrinks until it disappears, giving rise to a continuous transition (figure 3(b)).

This behavior, which is deeply different from the one expected in the mean-field

approximation, is consistent with what was found in the discrete time case.

Finally, we consider an empirical connectome of the human cerebral cortex with

N = 998 regions [33]. Numerical simulations show that our analytical results are

still predictive in the limit of small and large values of T , whereas for intermediate

values of the control parameter the average activity is no longer bounded to the two

equilibria, but it rather jumps continuously from one to the other. This phenomenon

gives rise to synchronized collective oscillations. Indeed, in the bistable region the

power spectrum now displays a significant peak, see figure 4, which is not present in

the mean-field limit.

3.5. Dynamic range is maximized at criticality

The rate of self-activation can be seen as an external stimulus that triggers the

activation of the neurons. Indeed, the larger the stimulus, the higher the overall

activity of the network. However, the shape of the response strictly depends on the

threshold level. In particular, the control parameter affects the range of external

stimuli that the system encodes in perceptible variations of the response. Such
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property is quantified in the dynamic range [50]

∆ = 10 log

(
rhigh1

rlow1

)
(17)

that is the ratio between the largest rhigh1 and the smallest rlow1 stimuli that results

in relevant variations of the response of the system [38].

The range [rlow1 , rhigh1 ] is found from the corresponding response interval

[xlow, xhigh], where

xk = xmin + k(xmax − xmin) (18)

Notice that the choice of [xlow, xhigh] is arbitrary. Typically, it is chosen in order

to discard stimuli that are too weak or too close to saturation. Following [38], we

define the range that produce respectively 10% and 90% of the total response curve.

This specific choice is standard in the literature and does not affect qualitatively our

results.

As we can see in figure 5, the dynamic range is maximized at the critical point

of the model, that we identified in the peak of the average size of the second largest

cluster as done in the original work [22]. Indeed, for low values of T the dynamics is

mostly governed by the interaction among neighbors, so even a weak stimulus leads

to a high activity - meaning a suppressed dynamic range. The dynamic range is

small even for high values of T , because activity in the network is triggered only

with very high stimulus rates. Thus we have a picture where in the super-critical

regime the dynamic range increases monotonically, while in the sub-critical phase it

decreases.

4. Discussion

Models of large-scale neuronal dynamics are fundamental in explaining and

predicting neuronal activity at the macroscopic scale [31]. Such models, that describe

the collective behavior of populations of neurons, are inspired from biophysics

and replicate observed phenomena of brain dynamics, e.g., scale-free avalanches

[10, 17, 18], long-range correlations [21, 22, 23], synchronized oscillations [26, 27, 28].

However, the collective dynamics is crucially determined by both the dynamical

rules chosen to model the inter-neuronal activations and by the geometry of their

connections [35]. Disentangling the contributions of these two aspects is necessary

to obtain a more clear and explicit understanding of the fundamental mechanisms

behind the emergent patterns observed in the brain.

Driven by these considerations, in our work we have developed a continuous

time version of a whole-brain stochastic model [22] and we have studied the nature

of the associated critical transition. Even though in the last years several works has
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(a) (b)

Figure 5: Dynamic range is maximal at criticality. (a) Response of the model, i.e.

average activity x, as a function of the rate of external stimuli r1 for some values of

the control parameter T. Each curve corresponds to the average over 100 trajectories.

(b) Dynamic range is maximized at the critical value of T, identified in the peak of

second cluster size S2 (starred points).

discussed the effect of the topology in shaping the transition by means of in-silico

[34, 35, 36] and empirical connectomes [19, 37], to our current knowledge this is the

first attempt to investigate the nature of the critical transition in this model from

an analytical perspective.

Yet, the bistable region found in the mean-field limit lacks any sign of

synchronized oscillations. It is only by introducing an empirical connectome that

this bistability is disrupted, leading to the critical transition firstly shown in [22],

and synchronized oscillations emerge at criticality. Therefore, both criticality and

connectome structure play a fundamental role in driving the collective behavior of

neurons and achieving optimal sensitivity when tuned at the critical point. Our

findings are a further contribution into the still puzzling “critical brain hypothesis”

[51].

The small size of the empirical connectome considered here may be a limitation

to these investigations, since finite size corrections may be hiding criticality or rare

region effects [52]. Notably, in [53] a similar modification of the discrete time

Greenberg & Hastings model run on a very large-scale connectome of almost 106

nodes displays semicritical behaviors consistent with a Griffith phase in a certain

range of the control parameter. The use of synthetic connectomes overcomes the finite

size issue, at the cost of relying on some subjective assumptions on the generated

topologies.

Another biological model of neuronal dynamics that shows an optimal dynamic

range at criticality was proposed in the seminal work by Kinouchi and Copelli [38].

The authors claimed it was the “first clear example of signal processing optimization

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2022. ; https://doi.org/10.1101/2022.01.17.476567doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.17.476567
http://creativecommons.org/licenses/by-nc-nd/4.0/


Brain network structure, criticality and the emergence of synchronized oscillations14

at a phase transition, making use of a standard and easily measurable performance

index”, and further works was carried out with non-trivial topologies, such as random

and scale-free graphs [54, 55]. The fact that we observe a similar phenomenology of

the dynamical range in our model is far from trivial. In fact, the model proposed by

Kinouchi & Copelli does not display the same phenomenological richness, since the

transition is always continuous independently of the network topology [35].

Crucially, here we are able to show that the network structure seems to

play a fundamental role, that future works should investigate further by going

beyond the simple mean-field approach. Therefore we believe that our work will

serve as a baseline for future analytical efforts in explaining the nature of the

observed transition under more relaxed assumptions, e.g., in presence of non trivial

distribution of weights and different topologies, to further understand the influence

of both in the emergence of critical features in the human brain. Possible approaches

may include the use of heterogeneous mean-field methods as done in the study of

epidemic spreading [56], or annealed network approximations [57].
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Appendix A. System size expansion in the mean-field approximation

The master equation (5) can be reframed in terms of the density of active x and

refractory y neurons. Since ∆x = 1/N , ∆y = 1/N , we can treat them as continuous

variables in the limit of a large system, i.e., N → ∞, thus P (x, y) becomes

differentiable. By taking the continuum limit of the master equation (5) and by

expanding all the terms, i.e., the Kramers-Moyal expansion [39], up to the second

order, we obtain the so-called Fokker-Plank equation for the probability density

p(x, y)

∂

∂t
p(x, y) = − ∂

∂x
[A1(x, y)p(x, y)] +

1

2N

∂2

∂x2
[B11(x, y)p(x, y)]+

− ∂

∂y
[A2(x, y)p(x, y)] +

1

2N

∂2

∂y2
[B22(x, y)p(x, y)]+

+
1

2N

∂2

∂x∂y
[(B12(x, y) +B21(x, y))p(x, y)]

(A.1)

where the coefficients are

A1(x, y) = (1− x− y)[r1 + (1− r1)Θ(x− T )]− x
A2(x, y) = x− r2y
B11(x, y) = (1− x− y)[r1 + (1− r1)Θ(x− T )] + x

B22(x, y) = r2y + x

B12(x, y) = −x
B21(x, y) = −x

(A.2)

and P (x, y) = p(x, y)∆x∆y. The Fokker-Planck equation is a deterministic

differential equation describing how the probability distribution of states p(x, y)

evolves over time. Physically, it describes the evolution of an ensemble of systems: if

we simulate a huge number of populations of neurons, all with the same parameters,

they will have different evolutions due to random fluctuations, but the fraction of

systems that have a density of states in [x, x + dx; y, y + dy] at time t will be

given exactly by p(x, y)dxdy (in the limit of an infinite ensemble). An equivalent

description can be derived by instead following a single population of neurons. In this

case, a change in population density [dx, dy] under the effect of stochastic fluctuations

ξ is given by the associated Langevin equation (6) [39].
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Appendix B. Stability analysis of equilibria

We further investigate the nature of the equilibria through linear stability analysis

techniques [58]. Indeed (9) is a dynamical system of the type:

ż = f(z) (B.1)

with z = (x, y) a 2-dimensional vector. The equilibria z∗ of this system are the ones

that satisfy f(z∗) = 0. If we focus on the dynamics near the fixed points, we can

perform a change of variables x = x∗ + ∆x, y = y∗ + ∆y. In the limit of small

variations |∆z| → 0, meaning that we are considering states infinitesimally near the

fixed points, (B.1) can be Taylor-expanded as

∆̇z = f(z∗) +
∂f

∂z

∣∣∣
z=z∗

∆z + ...

= J(z∗)∆z
(B.2)

Thus the dynamics near the fixed points is governed, at the first order, only by

the Jacobian matrix J . In particular, the (real part of) the eigenvalues λ of J can

tell us information regarding the stability or instability. If max Re(λ) > 0, the

trajectories asymptotically diverge from the equilibria, otherwise for max Re(λ) < 0

the trajectories converge to the fixed point, which is stable in this case.

In the super-critical phase the jacobian evaluated at (x+, y+) is

J+ =

[
−2 −1

1 −r2

]
(B.3)

The eigenvalues of (B.3) are

λ+ = −2 + r2 ±
√
r22 − 4r2

2
(B.4)

The stability condition holds if Re(λ+) < 0. We can distinguish two regimes: if

r2 ≥ 4 the eigenvalues are purely real, otherwise they have an imaginary part. In

both cases the conditions is satisfied, thus the super-critical fixed point (x+, y+) is

respectively a stable knot and stable focus (figure B1).

Instead, in the sub-critical phase the jacobian evaluated at [x−, y−] is

J− =

[
−1− r1 −r1

1 −r2

]
(B.5)

whose eigenvalues are

λ− =
−(1 + r1 + r2)±

√
(1 + r1 + r2)2 − 4(r1 + r2 + r1r2)

2
(B.6)
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Figure B1: Type of fixed point in the parameter space (r1, r2).

Also in this phase the stability condition is Re(λ−) < 0 is satisfied ∀r1, r2 (since

r1 ≥ 0 and r2 ≥ 0). We observe two different regimes by varying the parameters

r1 and r2: if r1 − 2
√
r1 + 1 < r2 and r1 + 2

√
r1 + 1 > r2 the eigenvalues have an

imaginary part, while in the other case they are pure real. So in the first cases the

fixed point is a stable focus, while it is a stable knot in the other case (figure B1).

Appendix C. Power spectrum

To study the effect of fluctuations around the equilibrium we make use of the van

Kampen expansion [39]. First, we define here two local coordinates (ζ1, ζ2){
x(t) = x∗ + ζx(t)√

N

y(t) = y∗ + ζy(t)√
N

⇒

{
ζx(t) =

√
N(x(t)− x∗)

ζy(t) =
√
N(y(t)− y∗)

(C.1)

In the Langevin equation, the stochastic fluctuations go as 1/
√
N , and so here we

multiply by
√
N to remove this size dependence.

Then, we rewrite the original equations in terms of (ζx, ζy), keeping only the linear

terms. For the deterministic part, this leaves only the jacobian evaluated at the

equilibrium J(x∗, y∗) ≡ J . For the diffusion term we need to expand up to 1/
√
N

(so then we get order 1 after multiplying by
√
N). But this means that b must be

expanded to 0-th order, otherwise we would have terms in 1/N , which become 1/
√
N

after multiplication, that are negligible in the thermodynamic limit. After this we
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arrive to: {
ζ̇x = J11ζx + J12ζy + ηx

ζ̇y = J21ζx + J22ζy + ηy
(C.2)

where (
ηx
ηy

)
=

1√
N

(
C1ξx + C2ξy
D1ξx +D2ξy

)
(C.3)

Since ξ is Gaussian, also η is Gaussian. However, since in η we are summing over

different components of ξ, η1 and η2 are not anymore uncorrelated:

〈ηi(t)〉 = 0 〈ηi(t)ηj(t′)〉 = δ(t− t′)Bij (C.4)

where Bij = Bij(x
∗, y∗) is the diffusion matrix evaluated at equilibrium. To proceed,

we move to Fourier space. Since the transformation is linear, it preserves the linearity

of the equations: {
iωζ̃x(ω) = J11ζ̃x + J12ζ̃y + η̃x

iωζ̃y(ω) = J21ζ̃x + J22ζ̃y + η̃y
(C.5)

And the statistics of η remain the same:

〈η̃i(ω)〉 = 0 〈η̃i(ω)η̃j(ω
′)〉 = δ(ω − ω′)Bij (C.6)

The linear system (Eq. (C.5)) leads to:
ζ̃x =

(iω − J22)η̃x + J12η̃y
−ω2 − iω(J11 + J22) + J11J22 − J12J21

ζ̃y =
(iω − J11)η̃y + J21η̃x

−ω2 − iω(J11 + J22) + J11J22 − J12J21

(C.7)

Then we can study the power spectrum

Si(ω) = 〈ζ̃i(ω)ζ̃∗i (ω)〉 = 〈ζ̃i(ω)ζ̃i(−ω)〉 (C.8)

that for the oscillations ζx of the density of active neurons x leads to

Sx(ω) =
α + βω2

[(ω2 − Ω2
0)

2 + Γ2ω2]
(C.9)

where 
α = B11J

2
22 − 2B12J12J22 +B22J

2
12

β = B11

Ω2
0 = J11J22 − J12J21

Γ2 = (J11 + J22)
2

(C.10)
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National Academy of Sciences 115 E1356–E1365

[26] Le Van Quyen M and Bragin A 2007 Trends in Neurosciences 30 365–373 ISSN

0166-2236

[27] Begleiter H and Porjesz B 2006 International Journal of Psychophysiology 60

162–171 ISSN 0167-8760 models and Theories of Brain Function with Special

Emphasis on Cognitive Processing

[28] Apicella I, Busiello D, Scarpetta S and Suweis S 2021 Neurocomputing 461

716–726 ISSN 0925-2312
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