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Abstract:  33 

Although aging is an increasingly severe healthy, economic, and social global problem, 34 

it is far from well-modeling aging due to the aging process’s complexity. To promote 35 

the aging modeling, here we did the quantitative measurement based on aging blood 36 

transcriptome. Specifically, the aging blood transcriptome landscape was constructed 37 

through ensemble modeling in a cohort of 505 people, and 1138 age-related genes were 38 

identified. To assess the aging rate in the linear dimension of aging, we constructed a 39 

simplified linear aging clock, which distinguished fast-aging and slow-aging 40 

populations and showed the differences in the composition of immune cells. Meanwhile, 41 

the non-linear dimension of aging revealed the transcriptome fluctuations with a crest 42 

around the age of 40 and showed that this crest came earlier and was more vigorous in 43 

the fast-aging population. Moreover, the aging clock was applied to evaluate the 44 

rejuvenation effect of molecules in vitro, such as Nicotinamide Mononucleotide (NMN) 45 

and Metformin. In sum, this study developed a de novo aging clock to evaluate age-46 

dependent precise medicine by revealing its fluctuation nature based on 47 

comprehensively mining the aging blood transcriptome, promoting the development of 48 

personal aging monitoring and anti-aging therapies.  49 
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 61 

 62 

Introduction: 63 

    Life expectancy has increased dramatically in the past 150 years. It is expected 64 

that the 1.5 billion people aged 65 years or over worldwide will outnumber adolescents 65 

and youth aged 15 to 24 years (1.3 billion) in 20501. People aged 65 years and older are 66 

experiencing the aging process, characterized by progressive impairment and loss of 67 

physiological integrity and function, leading to an increased vulnerability to death2. 68 

Therefore, the world is facing an aging challenge.  69 

    Aging, a complex biological process, is far from well modeled though significant 70 

efforts have been put into understanding the aging process and revealing patterns in 71 

immune-aging3 and inflammatory-aging4 perspectives. Until now, ‘Omics’ technologies 72 

(e.g., genomics, metabolomics, metagenomics, proteomics, and transcriptomics) have 73 

been widely applied to investigate and model the aging process5. Among these Omics, 74 

transcriptomics by RNA sequencing is a mature and relatively low-cost omics 75 

technology and has already been in clinical use. In addition, transcriptome-based aging 76 

clocks, including the analyses of peripheral blood mononuclear cells (PBMCs)6, 77 

muscle7, and dermal fibroblast8, are high in interpretability without compromising 78 

accuracy9 compared with other aging clocks. However, most studies modeled aging as 79 

a static linear process6–8, failure to model it as a dynamic process10. Given that recent 80 

studies have shown the diversified early aging signs or pace11 at middle age and the 81 

fluctuation in plasma protein level10, examining the transcriptome changes of blood 82 

samples in midlife can help investigate and model the aging process. 83 

   In the search for anti-aging intervention and drugs, a quantitative measurement of 84 

sample biological age before and after intervention cannot be achieved without accurate 85 

modeling. However, the lack of accuracy prevented their scientific and clinical usage 86 

of the aging clocks. Of note, the application of transcriptome-based aging clock in drug 87 

anti-aging effect assessment is still absent, leaving a gap between model construction 88 

and application. Therefore, an accurate and applicable transcriptome-based aging clock 89 

is required. This study aims to construct the aging trajectories using blood 90 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 20, 2022. ; https://doi.org/10.1101/2022.01.17.476558doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.17.476558


 4 

transcriptomics and successfully developed a new aging clock capable of reflexing the 91 

linear and dynamic changes with high accuracy using ensemble modeling. Moreover, 92 

we investigated the possibility of using the new aging clock to screen rejuvenation 93 

treatments. 94 

 95 

Results: 96 

1. Trajectories of Aging Gene Expression Form Functional Modules. 97 

To dissect the transcriptome landscape of the aging process, we did the HiseqX 98 

sequencing on blood samples from a cohort of 505 volunteers, including 208 male and 99 

297 female participants with the age range from 18 to 68, with a median of 36 (Fig. S1-100 

A). First, we grouped genes with similar trajectories by unsupervised hierarchical 101 

clustering to identify the changing pattern of age-related genes. Eight modules were 102 

identified, of which five (Clusters 1-5) showed an upward trend, and Clusters 6-8 had 103 

downward patterns (Fig. 1-A, B). As visualized in trajectory bundles (Fig. 1-B), some 104 

patterns were generally linear, but others were non-linear. In some of the modules 105 

(Clusters 5-8), gene expressions changed steadily, while other trajectories indicated 106 

dramatic changes in a specific age range. Gene Ontology (GO) Enrichment analysis 107 

was then conducted to infer its related biological function. The dot plot showed top 108 

enriched GO terms in each module (Fig. 1-C, Supplement table 1). The first module 109 

expression was enhanced at the age of 25-35, and its genes are related to ubiquitin 110 

activity and immune cell proliferation. The second module was wave-like, and the 111 

related genes in this module regulate transcription factor complex and interleukin-8 112 

secretion. The age of 45 is the boosting point for the third module expression, of whose 113 

genes were associated with mitochondria activity. The expression of the fourth and fifth 114 

modules, including the genes enriched in neutrophil immune activity, was increased at 115 

the age of 35-45. The other three modules (Clusters 6-8) with downward trends were 116 

mainly involved in translation, including that the top terms were protein targeting to 117 

membrane, RNA helicase activity, and viral translation, respectively. These biological 118 

processes, enriched in these modules, correspond to previous studies of ubiquitin12, 119 

immune cell13, mitochondria14, ribosome15 in aging. In sum, we mapped the trajectories 120 
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of the expression pattern of aging-related gene expression. 121 

 122 

2. Identification of Linear Age-Related Genes (ARGs). 123 

    Linear fitting was first applied to identify Linear ARGs. As females have a longer 124 

lifespan than man16, we applied the linear fitting for each gene with age and gender as 125 

variables. 1,138 genes significantly affected by age were identified as Linear ARGs (t-126 

test for age effect: p-value < 0.05). Five hundred thirty genes were downregulated, and 127 

608 were upregulated considering the age effect (Supplement table 2). FMNL1 and 128 

NELL2 belong to the top five Linear ARGs (Fig. 2-A). Consistent with the previous 129 

findings, FMNL1 was reported increased in arterial endothelial aging17, and NELL2 was 130 

found to be downregulated in the elderly13. 1,221 (81.5%) of all previously summarized 131 

ARGs in a meta-analysis6 were identified here, including 184 (15.1%) Linear ARGs. 132 

94% of these Linear ARGs were associated with chronological age in the same 133 

direction (Figure S2-A).    134 

Moreover, Metascape18 enrichment analyses were performed on Linear ARGs of 135 

both directions, respectively. The top enriched terms for upregulated Linear ARGs were 136 

platelet activation, signaling and aggregation, regulated exocytosis, and apoptotic 137 

signaling pathway. Those downregulated Linear ARGs were Eukaryotic translation 138 

elongation, TNF-alpha/NF-kappa B signaling complex, and positive regulation of the 139 

catabolic process (Fig. 2-B, Supplement table 3). Of note, the downregulated Linear 140 

ARGs, including ribosome genes (e.g., 25 RPS-genes and 37 RPL-genes (pseudogene 141 

included)), are highly related to the biological processes in translation, similar to the 142 

previous results6. Among the top Linear ARGs, RPL5, RPL11, and RPL23A were 143 

reported as participants of ribosome biogenesis stress followed by the p53 activation19.  144 

Furthermore, the percentage of variance explained by sex and age for each gene 145 

was computed (Figure S2-B, C). It showed that the age-related genes were also 146 

significantly related to sex, such as RPS4Y1, encoding a thioredoxin-binding protein, 147 

apart from genes encoded by the Y chromosome. Taken together, we identified ARGs 148 

by applying linear fitting and Metascape enrichment analyses.  149 

 150 
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3. Ensemble Model as Aging Clock Was Constructed by Auto Machine 151 

Learning Framework. 152 

To predict the biological age, we constructed an aging clock based on Linear 153 

ARGs. The auto machine-learning technique was AutoGluon20 by applying 154 

hyperparameter search, model selection, and ensemble model construction (See 155 

Method). The cohort was first divided as train set and test set with a ratio of 3:1. Then, 156 

the train set was further divided, 80% of which was used for model construction and 157 

20% for validation. Finally, the top models were trained and tested in mean absolute 158 

error (MAE) (Fig. 2-C, D), and the weighted ensemble model showed the best accuracy 159 

in the separated test set (Fig. 2-C, D and Supplement table 4). An ensemble is a 160 

collection of models whose predictions are combined by the weighted averaging or 161 

voting21. In our case, it is constructed from 11 selected models (Fig. 2-E). The feature 162 

importance of the weighted ensemble model was measured by permutation 163 

(Supplement table 5). NT5E (also referred to as CD73), which is among the top ranked 164 

features, was reported related to NAD metabolism and calcification of joints and 165 

arteries22, and CRYGS-decreased in the age-related nuclear cataracts23.    166 

 167 

4. Linear Aging Clock Predicts Quick- and Slow-aging Population, Respectively. 168 

A simpler model can provide a better interpretation and a lower expected risk in 169 

the application. The Linear Model_2 showed second-best accuracy (Fig. 2-D) while its 170 

structure was much simpler than the ensembled model (Fig. 2-E). Thus, we applied 171 

more tactile parameter searches by elastic-net for a linear model as a substitute for the 172 

ensemble model (See Method and FigS3-A & Supplement table 6) and yielded the best 173 

model with an MAE of 5.02 and 0.54 in the separated test set (Fig. 3-A, B). The model 174 

remained accurate upon the down-sampling of genes. Sampling and the broken-stick 175 

test were applied to find a reduced model with fewer genes, which estimated a turning 176 

point of 219 genes. A reduced model could achieve an MAE of 5.37 with 200 genes 177 

(FigS3-C). This model outperformed the previous blood transcriptome-based aging 178 

clock constructed in ribo-minus PBMC24 (MAE=5.68) and multiple cohort model 179 

constructed in whole-blood gene expression array data6 (MAE=7.8), as well as other 180 
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transcriptome-based aging clocks constructed in muscle gene expression7 (MAE=6.24).  181 

Prediction of the aging clock was used to define the aging rate. As commonly 182 

suggested by previous studies, the difference between the model predicted age and 183 

chronological age was used to evaluate the personal status of aging9. The prediction 184 

error distribution was adjusted for age and data set differences (Fig S3-B, D). The 185 

population was classified into average, quick-aging, and slow-aging groups (Fig. 3-C). 186 

Then we asked if the blood test result and immune cell composition differed in quick-187 

aging and slow-aging populations. As blood test results showed, the slow-aging group 188 

showed a significantly higher lymphocyte count (p-value = 0.0049, Wilcoxon test) and 189 

significantly lower granulocyte count (p-value = 0.014, Wilcoxon test) (Fig. 3-D, E), 190 

indicating a younger blood cell count phenotype25. Then we applied Cibersortx26, an 191 

approach for digital cytometry, and its built-in blood immune cell signature LM2227 to 192 

deconvolute the immune cell composition. The quick-aging population had much more 193 

neutrophils (p-value = 9.8e-06, Wilcoxon test), less CD8 T cells (p-value = 0.041, 194 

Wilcoxon test), and less resting memory CD4 T cells (p-value = 0.017, Wilcoxon test). 195 

The decreased numbers of CD8 T cells and resting memory CD4 T cells with age were 196 

consistent with the previous studies25,28. Altogether, the linear-based aging clock could 197 

effectively estimate an aging rate through general model searching, capture the 198 

systematic aging change pattern to a degree, and be applied to distinguish quick- and 199 

slow-aging populations for future use.   200 

 201 

5. Aging Transcriptome Undergoes a Fluctuation with a Crest around 40 202 

From the general trajectory above (Fig. 1-B), the non-linear dimension of aging 203 

was shown yet often went unnoticed in researches with a two-group design. A recent 204 

study in human plasma proteome revealed waves of changes in the fourth, seventh, and 205 

eighth decades10. We wondered if there was a similar pattern at the transcriptional level. 206 

Genes with significant changes in a window period of 20 were identified by Differential 207 

Expression-Sliding Window Analysis (DE-SWAN)10. The algorithm takes gene 208 

expression within a window of 20 years. It compares two groups in parcels of 10 years 209 

(e.g., 30-40 years old compared to 40-50 years old) by routine differential expression 210 
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analysis while sliding from young to old at a step size of 1 year. Gene expression 211 

changes at middle age were captured by the sliding window successively. The age 212 

distribution (Supplement Fig. 1-A) showed that the center age was restricted in the 30-213 

60 range when analyzed from 20 to 60. The significantly changed genes around the 214 

center age with different p-value cutoffs were summarized (Fig. 4-A). Intriguingly, 215 

there was a crest at the age of 40, corresponding to the finding at the protein level. The 216 

crest remained robust at the different window sizes (Fig. S4-B, E). The genes with 217 

significant changes (p <0.05) at the age of 40 were named Wave ARGs (Supplement 218 

table 7), whose definition is different from Linear ARGs. Notably, 22 upregulated 219 

Linear ARGs were downregulated at the age of 40, and 23 genes vice versa. Apart from 220 

the biological processes Linear-ARGs involving in, enrichment analysis showed that 221 

(Supplement table 8) the Wave ARGs down-associated with age took part in respiratory 222 

electron transport. At the same time, the Wave ARGs up-associated with age were 223 

enriched in actin filament-based process and Rho-GTPase signaling (Fig. 4-C). Among 224 

the top Wave ARGs, MXD1, encoding a member of the MYC/MAX/MAD network of 225 

leucine zipper transcription factors29, was involved in the regulation of telomerase30. 226 

However, MXD1 was not identified by linear analysis though it showed a significant 227 

upward trend around the age of 40 (adjusted p-value = 0.01, ANOVA test with sex as 228 

covariance, Benjamini-Hochberg method). Therefore, the aging transcriptome showed 229 

fluctuation with a crest around 40. 230 

 231 

6. Aging Transcriptome Fluctuation Differed in the Quick- and Slow-aging 232 

Populations 233 

We then asked if the crest were different between a quick-aging population and a 234 

slow one. The same sliding window analysis was conducted on the quick-aging and 235 

slow-aging populations, respectively. In the quick-aging group, more dysregulated 236 

genes were identified at age 39, indicating that the crest came earlier and was more 237 

vigorous. However, less changed genes were found in the slow-aging group with the 238 

crest at age 41 (Fig. 4-D). The pattern remained robust with the different window sizes 239 

( Fig S4-A, C, D, F).  240 
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Furthermore, the changed magnitude between the quick-aging and the slow-aging 241 

group differed, such as the changed center shifting to the younger in the quick-aging 242 

group (Fig. 4-E). The crest in the quick-aging group was dramatic, so we conducted the 243 

enrichment analysis on these genes. The downregulated genes were involved in 244 

oxidative phosphorylation, regulation of intrinsic apoptotic pathway by p53, and the 245 

response of EIF2AK4 to amino acid deficiency. On the other hand, the upregulated 246 

genes were enriched in leukocyte activation, and RHO GTPases activate PAKs and 247 

G2/M transition of the mitotic cell cycle (Fig. 4-F, Supplement table 9). Altogether, 248 

these results showed that the aging transcriptome fluctuation at age 40 differed between 249 

the quick-aging and the slow-aging populations. 250 

 251 

7. Model-based Assessment for Geroprotective Molecules 252 

Numerous researches have been conducted in a quest for anti-aging intervention31. 253 

Epigenomic clocks, not the transcriptome-based ones, have been applied in the 254 

quantitative assessment of the rejuvenation effect32. Therefore, we applied the aging 255 

clock to assess the individual responses to star geroprotective molecules. Blood samples 256 

were collected from 8 volunteers, the same as the Method the extensive cohort above 257 

(Supplementary Fig. 5-A). Four of the collected blood samples were treated with LPS 258 

and then examined the mRNA expression of TNF compared with controls by the qPCR 259 

analysis (Supplementary Fig. 5-B). As expected, the TNF expression is significantly 260 

induced after the LPS treatment (T-paired test, p=0.005), showing that the blood 261 

samples were still responsive to external stimulations. Then, five geroprotective 262 

molecules were chosen to treat blood samples for 24 hours, including Metformin33, 263 

NMN26, Resveratrol34, Aspirin35, and Curcumin36, followed by the sequencing and 264 

evaluation by the aging clock after QC and pre-processing (See Method) to compare 265 

the predicted ages between treated ones and paired controls (Fig 5-A). The Metformin-266 

treated and NMN-treated ones were predicted to be significantly younger (Metformin: 267 

3 paired sample, t paired test: p=0.031; NMN: 6 paired sample, paired t-test: p=0.033, 268 

Fig 5-B).  269 

In contrast, no significant reductions in the treated groups, using Resveratrol, 270 
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Aspirin, or Curcumin, were observed (Fig. 5-B, C). The individual responses to 271 

different geroprotective molecules also differed in the predicted age-reduction scale. 272 

For example, the blood sample (#P44) responded best to Metformin while the #P30 one 273 

showed the best response to NMN while P14 and P29 ones responded poorly to all 274 

treated molecules (Fig. 5-D). KEGG37 pathway enrichment scores were calculated for 275 

each sample, and the drifts between control and treated samples were observed. The 276 

drifts were further compared among individuals to evaluate the anti-aging effect. The 277 

Metformin-treated samples generally had a higher enrichment in Lysine degradation 278 

(KDAC) pathway and lower enrichments in nuclear factor-kB (NF-kB), forkhead box 279 

transcription factors (FOXO), and tumor necrosis factor (TNF) pathways, in agreement 280 

with its molecular mechanism in aging38. The Nicotinate and nicotinamide metabolism 281 

pathways were generally augmented in NMN-treated samples, accompanied by 282 

decreased enrichment of NF-kB and TNF pathways. The Resveratrol-treated samples 283 

with the effective responses had an attenuated enrichment in FOXO, NF-kB, TNF, p53, 284 

and protein-processing in endoplasmic reticulum pathways39, while the ineffective ones 285 

showed an opposite drift (Fig. 5-B). The enriched 5-monophosphate-activated protein 286 

kinase (AMPK) and oxidative phosphorylation pathways were identified in Aspirin-287 

treated samples of the affected group. The curcumin-treated samples showed decreased 288 

enrichment in mammalian target of rapamycin (mTOR), FOXO, transforming growth 289 

factor β (TGF-β), NF-kB, and TNF pathways, while samples in the ineffective group 290 

did not (Supplementary Fig 5-C). These results provided a molecular view for the 291 

different individual responses, and the aging clock predicted a younger age after the 292 

Metformin- and NMN-treated samples.  293 

 294 

 295 

Discussion: 296 

    The study deeply mined the aging blood transcriptome, revealed the underlying 297 

midlife change in gene expression, and constructed an ensemble aging clock and a more 298 

straightforward linear aging clock, which shows the promising application in predicting 299 

personalized drug rejuvenation effect.  300 
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    This study identified a pool of age-related genes. It should be noted that these 301 

Linear ARGs presented in this study depend on this cohort, which is the genetic 302 

background of the Eastern Chinese population. A meta-analysis demonstrated that the 303 

aging transcriptome signature displayed low overlap in different genetic backgrounds, 304 

such as native, Hispanic, and African American6. Although a universal aging pattern is 305 

desirable, aging biomarkers specific to a particular genetic background population 306 

should be studied. Therefore, the Linear ARGs, together with gender, were used as 307 

features for the aging clock. A study showed that the aging biomarkers were population-308 

specific for South Korean, Canadian, and Eastern European so that aging clocks for 309 

each population were built up40. Although the ethnic background should be considered 310 

when constructing aging clocks, part of the aging pattern and the general methodology 311 

should be consistent. 312 

    An ensemble LDA model was built in a recent study8 and showed better 313 

performance in an age bin approach, indicating the ensemble model is a promising 314 

structure. For a complex process with linear and non-linear changes, such as aging, a 315 

general ensemble model combing linear and non-linear models is a suitable structure. 316 

In this study, the ensemble model showed a slight advantage in accuracy compared to 317 

the elastic net-based model. However, for simplicity in interpretation and application, 318 

the elastic net-based linear model was chosen. This may be due to the relatively small 319 

cohort size (505) and sample distribution. Although the cohort covered an age range of 320 

18 to 68 and the median age of 36, the old samples were insufficient. Therefore, a more 321 

extensive and comprehensive cohort is necessary for future study.  322 

    The division of quick- and slow-aging populations was clinically meaningful for 323 

risk evaluation, treatment, and personalized anti-aging therapy. The immune cell 324 

composition of the quick-aging group shift toward an older phenotype. Neutrophils-325 

Lymphocyte ratio (NLR) is a well-accepted marker for systematic inflammation related 326 

to the prognosis of cancer41, cardiovascular diseases, and all-cause mortality42. The 327 

quick-aging group displayed higher Neutrophils and lower Lymphocyte count, 328 

indicating a higher degree of systematic inflammation. Transcriptome-based aging 329 

clocks have an advantage in interpretability. Thus, it can be used for long-term 330 
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monitoring, such as physical examination, and provide other information along with 331 

the aging clock. 332 

    In the non-linear dimension of aging, the patterns of gene expression undergo 333 

dynamic changes throughout life. The fluctuation should be considered when gene 334 

signatures are for diagnostic purposes, improving the specificity and accuracy. Modules 335 

mapping gene changes (Fig. 1) were associated with the hallmark activities in aging. 336 

The gene expression variances in life suggested the role of environmental factors, 337 

mental health43, and other soft factors apart from the genetic programming (the hard 338 

factor) in aging, especially in the midlife change. The quick-aging group showed an 339 

earlier and more prominent for the aging change. However, our findings showed that 340 

early anti-aging interventions in midlife, more investigations on these age-related Wave 341 

genes of the quick-aging group aid in dissecting the heterogeneous aging process.  342 

The aging clock succeeded in evaluating the rejuvenation effect of molecules such 343 

as NMN and Metformin in vitro. The aging clock was applied to control and paired 344 

drug-treated samples to get the relative age prediction. The method can be applied for 345 

in vitro screening for anti-aging interventions. Most treated blood samples of 346 

responsive individuals showed the enriched signaling pathways involved in the 347 

molecular mechanism related to aging. Consistently, the treated ones with the poorly 348 

responses showed the opposite enrichment, displaying the enriched inflammatory 349 

pathways.  350 

Moreover, these results indicated that each person could respond differently to 351 

each molecule, as their responses to the molecular targets and the related mechanisms 352 

vary. Thus, the aging clock can be used to determining the most suitable drugs. 353 

However,  these observations may need to be further validated considering the limited 354 

samples. Therefore, we aim to develop an aging clock by investigating the 355 

transcriptome landscape of age-related diseases on more samples in the future.  356 

 357 

 358 

 359 

 360 
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 361 

Methods: 362 

Blood Sample Acquisition and RNA-seq 363 

Blood samples were drawn from people coming for physical examination. 364 

Approval for utilizing the samples was obtained from the Ethics Committee of the 365 

Second Affiliated Hospital, School of Medicine, Zhejiang University (Approval 366 

Reference Number: 2019-234). Next, samples were first treated with ACK Lysis Buffer 367 

(Solarbio, China). Samples were processed for RNA-seq, which was modified from a 368 

previous method44. Blood samples were first lysed by Trizol reagent (TAKARA). Then, 369 

reverse transcription was conducted using SuperScript II reverse transcriptase 370 

(Invitrogen), and double-strand cDNA was synthesized using NEBNext mRNA second 371 

strand synthesis kit (NEB). Cleaning was done using AMPure XP beads (Beckman 372 

Coulter), and the sequencing library was constructed using the Nextera XT 373 

kit(Illumina). The pooled library was sequenced on the Illumina X-Ten platform. RNA-374 

seq reads data were mapped to the reference genome using STAR45. Expression was 375 

calculated with counts per million (CPM). 376 

 377 

Cell Culture 378 

Whole blood samples from 8 individuals were randomly selected for treatment and 379 

culture. Each sample was divided into six portions (100 μl each, some samples had less 380 

than six due to the limit volume of blood) and were added to the 48-well plate 381 

(Supplementary Fig 5-A). Six replicates of each person were added different reagents 382 

at reported concentrations (100µM Aspirin46(Selleck, S3017), 50µg/ml 383 

Curcumin47(Selleck, S1039), 50µM Resveratrol48(Selleck, S1396), 500µM NMN49 384 

(Qingyuan Shengyi Biological Technology Co., Ltd.), 100µM Metformin50(Selleck, 385 

S1950), 100ng/ml LPS(Sigma, L2880) respectively. Then these samples were 386 

incubated and constantly rotated on a shaker at 6 rpm, 37°C for 24 hours51. Then these 387 

samples were harvested and washed with ACK lysis buffer (Solarbio, China) three 388 

times to remove the erythrocytes before RNA-seq mentioned above. 389 

 390 
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Data Quality Control  391 

Samples with total CPM three times the mean absolute deviation higher or lower 392 

away from the medium were filtered. For the large cohort, samples with age three times 393 

the mean absolute deviation higher or lower away from the medium were filtered. 394 

Moreover, we only kept genes that were expressed in at least 10% of all samples. 395 

Supplementary Fig 1-B, C showed the library size and number of the expressed gene 396 

of the large cohort. 397 

 398 

Enrichment Analysis 399 

To determine the biological meaning of a group of genes, we queried GO and 400 

Reactome terms using Metascape18.  401 

 402 

Clustering of Gene Expression Trajectories 403 

To estimate trajectories of age-related genes (roughly selected by person 404 

correlation score > 0.05) during aging, the expression trajectories of 4318 genes are 405 

fitted by loess. To reduce the complexity in changing patterns, the trajectories were 406 

clustered by unsupervised hierarchical clustering. Genes with similar changing patterns 407 

were poured into the same module. To understand the biological functions of each 408 

cluster, we queried GO databases, using R clusterProfiler package52 and org.Hs.eg.db 409 

package53. 410 

 411 

Linear Fitting and Linear ARGs of the Blood Transcriptome 412 

Linear fitting was done by glm function in the R stats package and gaussian family. 413 

For each gene, the linear model fits as follow: 414 

𝑔! 	~	𝑎𝑔𝑒	 + 	𝑠𝑒𝑥 415 

The square sum of was calculated by the aov function in the R stats package. The 416 

percentages of variance explained by sex and age for each gene were computed in the 417 

form of :  418 

𝑝𝑎𝑟𝑡𝑖𝑎𝑙	𝑒𝑡𝑎2 = 	
𝑆𝑢𝑚	𝑜𝑓	𝑆𝑞𝑢𝑎𝑟𝑒"##"$%

(𝑆𝑢𝑚	𝑜𝑓	𝑆𝑞𝑢𝑎𝑟𝑒"##"$% + 𝑆𝑢𝑚	𝑜𝑓	𝑆𝑞𝑢𝑎𝑟𝑒"&&'&)
 419 
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The age effect for each gene was determined by the two-side p-value of t-test in 420 

summary.lm function in R stats package. Genes with a significant age effect (p-421 

value >0.05) were considered as Linear ARGs. 422 

 423 

Construction of Aging Clock 424 

    AutoGluon20 is an open-source auto-machine learning framework, and the 425 

AutoGluon-Tabular, which was designed for structured data, was applied for model 426 

searching (python 3.8.5, autogluon 0.2.0). The cohort was first divided as train set and 427 

test set with a ratio of 3:1, and then the train set was further divided, 80% of which was 428 

used for model construction and 20% of which (validation set) was used for model 429 

validation in a search for the best model. The train and test set were separately scaled 430 

and centered in preprocessing step. 1138 Linear ARGs and gender were used as model 431 

features. The models were trained in MAE (mean absolute error) and tested in MAE 432 

and other metrics. The hyperparameters space was expanded from default and stated in 433 

the supplementary data.  434 

The Elastic-net model was built in R (4.0.5) by the glmnet package. The cv.glmnet 435 

function was used for the parameter lambda search with 20 fold cross-validation and 436 

MAE as measuring metric. An outer loop of 10-fold cross-validation was applied for 437 

an average MAE. Parameter alpha was determined by grid search and the best average 438 

MAE. The final model was constructed by the best alpha with correspondent lambda.  439 

 440 

Aging rate and Quick/Slow Aging Population Distinguishment 441 

Aging clock prediction was used for aging rate estimation and was calculated with 442 

the difference between the model predicted age and chronological age: 443 

𝛥𝐴𝑔𝑒 = 𝐴𝑔𝑒𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝐴𝑐𝑡𝑢𝑎𝑙𝐴𝑔𝑒 444 

Considering the prediction error distribution, it was adjusted for age itself, and the 445 

data set difference. (0-train set, 1- test set)  446 

𝛥𝐴𝑔𝑒$(&)%"* = 𝛥𝐴𝑔𝑒 − 𝑙𝑜𝑒𝑠𝑠(𝛥𝐴𝑔𝑒 ∼ 𝐴𝑔𝑒 + 𝑆𝑒𝑡), 𝑆𝑒𝑡 = 0,1 447 

With the curated aging rate, the population was further classified into average, 448 

quick-aging, and slow-aging groups. 𝑞+, 𝑞,, 𝑞-	were the ascending quantile numbers of 449 
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the curated aging rate of the cohort. People with 𝛥𝐴𝑔𝑒$(&)%"* > 𝑞-	was classified into 450 

the quick-aging group and people with 𝛥𝐴𝑔𝑒$(&)%"* < 𝑞+ were classified into slow-451 

aging group. 452 

 453 

Sliding Window Analysis 454 

DE-SWAN10 was used with gender as covariant, and the bin size of 10 and 15 was 455 

tested. The number of significantly changed gene in the window were summarized. 456 

 457 

Model Assessment in Cultured Sample 458 

The gene expression matrix was first scaled and centered to gaussian distribution. 459 

Then the gender information was appended. The samples were predicted by the elastic-460 

net-based model. The predicted ages of the treated and control sample were compared 461 

by paired t-test. 462 

 463 

KEGG Pathway Enrichment Analysis 464 

 The gsva function of R package GSVA56 was utilized with parameters as follows: 465 

min.sz of 5, max.sz of 500, “ssgsea” method, abs.ranking and other default parameters. 466 

The KEGG gene sets were obtained from the KEGG pathway database of release 99.1.  467 

 468 

Data Availability: 469 

All the data generated in this study are available upon reasonable request to the 470 

corresponding author. 471 
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Figure legend 619 

Figure 1. Trajectories of gene expression throughout age form functional 620 

modules. 621 

(A) Hierarchical clustering of gene expression trajectories. A red box highlighted each 622 

cluster. 623 

(B) Eight clusters of the aging pattern (five up-regulated, three down-regulated, 624 

respectively). Redline was indicating the fitting curve created by loess. 625 

(C) Top GO terms in which each aging pattern is involved. Color showing the p 626 

adjusted value of enrichment analysis. Dot size showing the number of genes hit by 627 

GO terms. 628 

 629 

Figure 2. The construction of the ensemble model as the aging clock.  630 

(A) Volcano plot shows age-related gene discovered by linear fitting (Linear ARGS). 631 

(p-value <0.05, 608 of which up with age and 530 of which down with age) X-axis 632 

showed signed log10 of linear fitting coefficient; y-axis showed negative of log10 of 633 

the p-value.  634 

(B) Heat map of pathway enriched for the age-related gene in GO and Reactome 635 

terms. 636 

(C) Performance of models constructed by AutoGulon. MAE is for mean absolute 637 

error. The X-axis shows time latency for inference. Y-axis shows model performance 638 

measured in the MAE validation set. 639 

(D) Performance metrics in top10 models. R2: R squared, test: test set, Val: validation 640 

set. The whole table is in supplementary data. 641 

(E) Models that contribute to ensemble WeightedEnsemble_L2 model. The score is 642 

negative MAE, as the algorithm selects the model by the rule that the model with a 643 

higher score is better than the control. 644 

 645 

Figure 3. Construction of Biological-meaningful Aging Clock predicted 646 

population-based Quick-aging and Slow-aging group. 647 

(A) Aging clock constructed visualized with actual age against predicted age. (each 648 
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dot represents a person, black dots: samples used in training, red dots: samples used in 649 

the validation) 650 

(B) Performance metrics in the regression model. MAE: mean absolute error, R2: R 651 

squared. Correlation: Pearson correlation score. 652 

(C) Aging clock colored with “Quick-aging” and “Slow-aging” population defined as 653 

delta group. Top indicating predicted Quick-aging with curated delta age in the top 654 

quarter of the population, bottom indicating predicted Slow-aging with curated delta 655 

age in last quarter of the population. 656 

(D)-(I) Box plot shows the contrast of cell fraction calculated by deconvolution(F-I)/ 657 

cell count in blood test(D-E) between predicted Quick-aging and Slow-aging 658 

population. (Wilcoxon test) 659 

 660 

Figure 4. Undulating aging transcriptome with a peak around 40. 661 

(A) Count of genes with significant changes around a certain age. (p-value, ANOVA 662 

test) 663 

(B) Circus plot showing the overlap in WaveARG and LinearARG. (in both up and 664 

down direction, p-value < 0.05) 665 

(C) Heat map showing GO term enriched for WaveARG discovered in comparison 666 

with LinearARG. 667 

(D) Count of genes with significant changes peaks at different ages in groups 668 

identified by the model (i.e., Quick-Aging group, Slow-Aging group, and Average). 669 

Quick-Aging group peaks at 39, while Average peaks at 40 and Slow-Aging group 670 

peaks at 41. (q: adjusted p-value, Benjamini-Hochberg method, q<0.1) 671 

(E) Heat map showing general changes in transcriptome during aging in Quick-Aging 672 

group and Slow-Aging group. Signed -log10(FDR) were used as heat map value. The 673 

white dash line marked age 40. 674 

(F) Heat map showing GO term enriched for WaveARG in Quick-Aging Group. 675 

 676 

Figure 5. Model-based assessment for individual responses to known 677 

geroprotective molecules. 678 
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(A) Graphic summary for the drug intervention and assessment pipeline.  679 

(B) Box plots show the model’s prediction of the samples treated with different 680 

molecules compared with control. (Paired t-test and the alternative hypothesis was the 681 

predicted age of control samples were less than the treated samples). Heatmaps of 682 

enrichment score of known KEGG pathways involved in specific drugs. The columns 683 

were grouped in treated and control samples of the same person (Id started with P) to 684 

see the drug effect. The drifts were further compared between individuals on whom 685 

the drug was evaluated to have an anti-aging effect or not. 686 

(C) Box plots show the model’s prediction of the samples treated with different 687 

molecules compared with control. (Paired t-test and the alternative hypothesis was the 688 

predicted age of control samples were less than the treated samples).  689 

(D) Radar charts show individual response heterogeneity to different geroprotective 690 

molecules. Blue: treated sample was predicted younger than the control. Red: treated 691 

sample was predicted older than the control. The value of radius was the predicted age 692 

difference between the treated samples and the controls.  693 

Figure 6. Graphical Summary 694 

  695 
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Figure 1 696 
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Figure 5. Model-based assessment for individual responses to known geroprotective molecules.
(A) Graphic summary for the drug intervention and assessment pipeline. 
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test, and alternative hypothesis was the predicted age of control samples were less than the treated 
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on or not.

(C) Box plots show model’s prediction of sample treated with different molecules compared with control. (Paired t 
test, and alternative hypothesis was the predicted age of control samples were less than the treated 
samples). 

(D) Radar charts show individual response heterogeneity to different geroprotective molecules. Blue: treated 
sample was predicted younger than control. Red: treated sample was predicted older than control. The value 
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Supplementary data legend 710 

Figure S1. Cohort characterization of Chinese population across the life span 711 

(A) Histogram shows sample distribution in this cohort.  712 

(B) Histogram shows sample’s library size distribution of the RNA sequencing data.  713 

(C) Histogram shows sample’s number of expressed genes distribution of the RNA 714 

sequencing data. 715 

 716 

Figure S2. The association of Linear Age-related Genes (Linear ARGs) with 717 

previous studies and sex.  718 

(A) Venn plot of LinearARGs and genes reported in the previous meta-study with 719 

direction. 720 

(B-C) Percentage of variance explained by age and sex in the linear fitting. (ANOVA 721 

test, Sum of square) 722 

 723 

Figure S3. Characterization of Aging Clock modeling. 724 

(A) Relationship between lambda and train error for elastic-net modeling. In this 725 

study, lambda of minimum mean absolute error (MAE) is picked. 726 

(B) The correlation between actual age and delta-age in a model before and after 727 

model curation for age. 728 

(C) Relationship between MAE in the test set and the number of genes in the model, 729 

of which 219 is the turning point. (Genes are selected according to the rank of p-value 730 

in figure 2) 731 

(D) The difference of delta-age between training and testing data set in a model before 732 

(left) and after (right) model curation for data set. 733 

 734 

Figure S4. Wave ARGs distribution in different window sizes across the group. 735 

(A-C) Changes in the number of genes experienced significant changes in a window 736 

size of 20 (bin size is half of the window size, thus window size of 20, the bin size is 737 

10. The figures show gene changes in  -10 ~ +10 around center age). 738 

(D-F) Changes in the number of genes experienced significant changes in a window 739 
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size of 30 ( -15 ~ +15). 740 

 741 

Figure S5. Characterization of molecule-treated samples. 742 

(A) Table of the existed sample. (1 - sample existed, 0 - sample not existed). The 743 

sample not existed is lost due to technical error. 744 

(B) Box plot shows the qPCR relative expression of TNF in LPS treated sample in 745 

comparison with control. (Paired t-test) 746 

(C) Heatmap of enrichment score of known KEGG pathways involved in Aspirin and 747 

Curcumin. The columns were grouped in treated and control samples of the same 748 

person (Id started with P) to see the drug effect. The drifts were further compared 749 

between individuals on whom the drug was evaluated to have an anti-aging effect or 750 

not. 751 
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Figure S1 770 
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Figure S2 772 
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Figure S3 774 
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Figure S4 776 
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Figure S5 778 
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Supplement

Source Age Gender Aspirin Curcumin Metformin NMN Resveratrol
P14 47 Male 1 1 0 0 1
P18 42 Male 0 1 1 1 1
P21 48 Male 0 0 0 1 1
P29 42 Female 1 1 0 1 1
P30 46 Female 1 1 0 1 1
P38 67 Female 1 0 1 1 0
P44 51 Male 0 0 1 1 1
P9 59 Female 0 0 0 0 1

Supplementary Figure 5. Characterization of molecule treated samples.
(A) Table of existed sample.(1 - sample existed, 0 - sample not existed) Sample not existed are lost 

due to technique error.
(B) Box plot shows the qPCR relative expression of TNF in LPS treated sample in comparison with 

control. (Paired t test)
(C) Heatmap of enrichment score of known KEGG pathways involved in Aspirin and Curcumin. The 

columns were grouped in treated and control sample of the same person (Id started with P) to 
see the drug effect. The drifts were further compared between individuals whom the drug was 
evaluated to have an anti-aging effect on or not.

A

T test: 0.005T test: 0.005T test: 0.005T test: 0.005T test: 0.005T test: 0.005T test: 0.005T test: 0.005

0.0025

0.0050

0.0075

control LPS−treated
Group

TN
F 

re
la

tiv
e 

Ex
pr

es
si

on

condition control LPS−treated

TNF in LPS−treated vs Control

hsa04150_mTOR_signaling_pathway

hsa04068_FoxO_signaling_pathway

hsa04350_TGF−beta_signaling_pathway

hsa04064_NF−kappa_B_signaling_pathway

hsa04668_TNF_signaling_pathway

Group
Result Result

Effective
Non−effective

Group
Control
Treat

−1.5
−1
−0.5
0
0.5
1
1.5

hsa04152_AMPK_signaling_pathway

hsa00190_Oxidative_phosphorylation

Group
Result Result

Effective
Non−effective

Group
Control
Treat

−1.5
−1
−0.5
0
0.5
1
1.5

As
pi
rin

C
ur
cu

m
in

P30 P38 P14 P29

P18 P30 P14 P29

CB

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 20, 2022. ; https://doi.org/10.1101/2022.01.17.476558doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.17.476558


 37 

Supplement table legend: 780 

Supplement table 1. Gene ontologies of eight aging trajectories; 781 

Supplement table 2. List of linear ARGs; 782 

Supplement table 3. Gene ontologies of linear ARGs; 783 

Supplement table 4. Model parameter and performance metrics of autogluon; 784 

Supplement table 5. Feature importance of the ensemble model inferred by 785 

autogluon; 786 

Supplement table 6. Parameter grid search result for the elastic-net model; 787 

Supplement table 7. List of Wave ARGs; 788 

Supplement table 8. Gene ontologies of linear and wave ARGs in comparison; 789 

Supplement table 9. Gene ontologies of wave ARGs in quick aging group. 790 
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