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ABSTRACT 
 
The motility mechanisms of microorganisms are critical virulence factors, enabling their spread and survival during infection. Motility is 
frequently characterized by qualitative analysis of macroscopic colonies, yet the standard quantification method has mainly been limited to 
manual measurement. Recent studies have applied deep learning for classification and segmentation of specific microbial species in 
microscopic images, but less work has focused on macroscopic colony analysis. Here, we advance computational tools for analyzing colonies 
of Proteus mirabilis, a bacterium that produces a macroscopic bullseye-like pattern via periodic swarming, a process implicated in its 
virulence. We present a dual-task pipeline for segmenting (1) the macroscopic colony including faint outer swarm rings, and (2) internal ring 
boundaries, unique features of oscillatory swarming. Our convolutional neural network for patch-based colony segmentation and U-Net with 
a VGG-11 encoder for ring boundary segmentation achieved test Dice scores of 93.28% and 83.24%, respectively. The predicted masks at 
times improved on the ground truths from our automated annotation algorithms. We demonstrate how application of our pipeline to a typical 
swarming assay enables ease of colony analysis and precise measurements of more complex pattern features than those which have been 
historically quantified.  
 
Index Terms— Proteus mirabilis, pattern formation, colony segmentation, patch-based methods, U-Net, VGG-11 
 

1. INTRODUCTION 
 
Bacteria colony development processes, such as swarming motility, have been implicated in the pathogenicity of many microorganisms, 
enabling their spread and survival in unfavorable conditions, such as in the presence of antimicrobials [1-4]. Motility is studied not only on 
the microscopic scale, but also the macroscopic scale via colony growth assays under conditions that produce different types of motility. 
Analysis is traditionally laborious, time-consuming, and low-throughput, often involving qualitative comparison or manual measurement of 
individual colonies [5, 6]. Recent advancements in image acquisition, image processing, and computer vision can enable easier, scalable, and 
nuanced analysis of colony features. However, these advances have mainly been applied to microscopic images of a limited set of microbial 
species [7-9]. A few recent studies have begun the work on the macroscopic scale, but they have analyzed colonies with well-defined contours 
and relatively simple inner features [10, 11]. Many relevant species have more complex colonies with unique internal features and poorly-
defined boundaries, generated by a variety of motility mechanisms. For example, the common soil bacterium and pathogen Proteus mirabilis 
rapidly migrates across solid surfaces via periodic swarming: a highly coordinated movement propelled by flagella. Alternating swarming 
with phases of rest and division, P. mirabilis produces a sequential array of macroscopic rings when inoculated on laboratory agar [5, 12]. 
The role of swarming in P. mirabilis infection of the lungs, wounds, and urinary tract, especially in the presence of catheters, is an area of 
active research [13]. Detection and measurement of the bacterium’s periodic colony features could shed more light on its virulence. These 
features have yet to be quantified in detail, as typical analysis involves measurement of colony radii with a ruler or in ImageJ. Traditional 
edge detection methods are insufficient for segmentation, as depending on experimental conditions, the ring boundaries can be numerous, 
densely spaced, and/or indistinct, compounding the difficulty of quantification. Additionally, to our knowledge, no large datasets of P. 
mirabilis swarm colony images exist to enable development of automated approaches. 

To robustly analyze swarm colony formation, we developed a semi-automated pipeline for segmentation of macroscopic P. mirabilis 
colonies and their ring boundaries, using a dataset generated in our laboratory (Fig. 1). The workflow begins with data acquisition, image 
preprocessing, and automated annotation. Two parallel approaches using convolutional neural networks (CNNs) are implemented for colony 
and ring boundary segmentation. Our first approach uses a patch classification-based CNN and label fusion to segment the colony, including 
faint active swarm rings, from background agar. The second approach uses a VGG-11 U-Net to segment precise boundaries of a colony’s 
rings generated by completed swarming events and postprocessing to refine the predictions [14-16]. The two models provide sufficient 
information to efficiently quantify important motility features in collections of colony images. We demonstrate the utility of this pipeline by 
showing how it enables feature extraction from a standard assay investigating swarming under different conditions. 
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2. METHODOLOGY 

 
We first present image acquisition and preprocessing protocols for dataset preparation (Table 1). We then describe two methods for 
segmenting (1) bacterial colonies from background and (2) inner ring boundaries. Two overlapping datasets of images are used, chosen based 
on appropriateness for the given task (i.e., with both colony and agar spaces for colony segmentation, or with more distinct rings for ring 
segmentation). Both tasks begin with annotation procedures followed by training CNNs.    
 
2.1. Swarm assays, data acquisition, and image preprocessing 
 
Swarming assays were conducted similarly to the method presented in [17]. We maintained standard conditions throughout all assays for 
reproducibility, including agar volume and drying time, concentration and volume of bacteria inoculated, and the length of colony incubation 
(Table 1). Plates were scanned using an Epson Perfection V800 Photo scanner with consistent settings, generating images of around 
1500x1500 pixels. These protocols for conducting and documenting swarming assays can be easily used by different labs, requiring only 
readily available equipment and reagents.  

Going beyond traditional manual processing of swarm images, we developed a semi-automated MATLAB script to preprocess images. 
After a user inputs an image directory path, each image is converted to grayscale and the Petri rim is removed. The colony is thresholded to 
obtain the center point; if multiple possibilities are found, the user is asked to select the correct one. For ease of analysis and convolution, the 
program then carries out Cartesian-to-polar coordinate transformation via the MATLAB scatteredInterpolant object; radial features thus 
become horizontal in the 1000x1000 output images (Fig. 1a-b). This “flattening” process takes advantage of the near-radial symmetry of the 
colonies. This custom script has enabled us to efficiently preprocess 1,000+ images thus far, and is easily used by students with little to no 
programming experience. 

Two datasets were chosen from these 
images and further preprocessed separately 
(Table 1). For colony segmentation, we 
selected a 306-image subset with a mix of 
colony area and background agar to aid 
training of deep learning models. Adaptive 
histogram equalization increased contrast, and 
any leftover Petri rim edge pixels were 
identified by thresholding and removed (Fig. 
1b5i). For ring boundary segmentation, we 
began with 558 images with distinct ring edges. Table 1. Image acquisition and datasets. 

Fig. 1. Dual-task segmentation pipeline schematic. a-b. RGB Cartesian coordinate images are transformed to grayscale polar coordinate 
form (b1-4), then further preprocessed for subsequent colony (b5i) and ring boundary (b5ii) segmentation tasks. c. Separate algorithms 
generate initial ground truth approximations of colony and ring boundary masks from preprocessed images. d. Parallel deep learning models 
are trained and tested for colony and ring boundary segmentations, enabling automated feature extraction. Here, the postprocessed predicted 
ring boundary mask is laid over image b4 with omitted columns (lacking the true ring boundary count) highlighted in yellow. 
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Images underwent adaptive histogram equalization, then smoothing with 13x13 Gaussian (standard deviation = 2) and 10x10 median filters 
(Fig. 1b5ii).  
 
2.2. Segmentation of swarm colony 
 
We sought to develop a model which could output a colony mask given a preprocessed P. mirabilis image. We first developed an image 
processing-based algorithm for generating ground truths (Fig. 1c). Various filters are applied to the preprocessed colony images and outputs 
are added, emphasizing faint edges; the result is thresholded to create a binary mask. In parallel, Gabor texture analysis generates a second 
option. If the areas of the two masks are similar, the first is used; otherwise, the user is asked to select the more complete mask. Next, 
morphological operations fill holes and eliminate small artifacts, creating an output ground truth mask. We removed 13 suboptimal mask-
image pairs, leaving 306 pairs to split into training, validation, and test sets. 

From each set, 128x128 patches were generated with stride 25 and labeled using the ground truths; the threshold for a positive patch 
was 50% foreground pixels. An image’s patch generation began at the top left and was stopped when white-space was reached, leading to 
about 212,000 training patches and 28,000 each for validation and testing. With total positive patches outweighing negative patches, class 
reweighting was used during training. The dataset was standardized by global mean subtraction. 

Next, a CNN was trained to classify each given patch. We increased complexity from a single convolutional block until a final 
architecture with two convolutional layers was obtained: a convolutional layer with leaky ReLU activation followed by max pooling, a second 
such block with ReLU activation, flattening with Dropout of 0.2 immediately before and after a fully connected dense layer with ReLU 
activation, and a final classification dense layer with sigmoid activation. We also included augmentations of rotations, flips, and brightness 
changes, but observed that the model performed best without augmentation. Model hyperparameters included binary cross-entropy loss, 
Adam optimizer (learning rate 5e-4), and batch size 16. With early stopping, our model achieved 95% training and validation accuracy after 
9 epochs.  

To generate the colony segmentation, images were padded using reflection, then split into overlapping patches generated with stride 12; 
each patch was then classified using the trained CNN. Predictions were thresholded at 0.5. For each region in the original image, all patches 
overlapping it were identified. Predicted labels were then stacked on that region, creating a multichannel image in which each channel 
represents a specific overlapping prediction. Majority voting, i.e. labeling regions as positive if more than half of the overlapping predictions 
were positive, fused labels and generated the colony segmentation. 
 
2.3. Segmentation of swarm ring boundaries  
 
In parallel, we sought to segment ring boundaries (edges delineating periodic swarming phases) within P. mirabilis colonies. We developed 
another algorithm for generating ring ground truth masks on the preprocessed dataset. The Canny edge detector, using the derivative of a 

Fig. 2. Qualitative segmentation predictions by various models on distinct test images. Predictions are compared to examples 
of a. high quality and b. suboptimal ground truths*. For the latter, cropped masks are enlarged to visualize where the pipeline 
exhibited better performance, by detecting a faint outer swarm front (red arrow) and connecting a broken ring boundary. 
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Gaussian filter with a 1.9 standard 
deviation and edge thresholds of 0.06 
and 0.15, generates initial ring 
boundaries [18]. Retained edges are 
postprocessed with morphological-
based methods, such as dilation, hit-
miss operations, and skeletonization, 
resulting in binary output masks. 

Whereas the previous CNN’s 
input was local patches, here a U-Net 
architecture was employed to consider 
the sparse yet localized and globally-
dependent ring boundary pixels 
within a full-size image [14]. The ring 
boundary intricacies, which 
complicate annotation procedures, 
motivated an iterative supervised 
learning method (Fig. 1d). In the first 
cycle, 558 preprocessed images and 
their Canny-derived masks were used 
for training, validation, and testing 
(with an 80-10-10% split) of a U-Net 
with a VGG-11 encoder pretrained on ImageNet [15, 16, 19, 20]. Hyperparameters included Dice loss, Adam optimizer (learning rate 1e-4), 
sigmoid activation, and batch size 3. Input images were padded to 1024x1024 using the border reflect method. After just 4 epochs, the 
model’s predictions on the unseen test set proved sufficient. Thus, this model was used to generate predictions on a broader collection of 
~750 images. Pixel probabilities were thresholded at 0.5 to yield binary masks.  

For the second cycle, 300 predicted masks were skeletonized, then manually refined in ImageJ to connect broken boundaries and 
eliminate noise. The refined set was used to retrain the U-Net. Under early stopping (patience 3), an optimal model was obtained after 35 
epochs when validation loss reached 0.23.  
 

3. FINDINGS AND TESTING  
 
In the process of arriving at our final pipelines, we evaluated various model architectures, hyperparameters, and postprocessing methods. For 
the colony segmentation task, only two convolutional layers and no augmentations were needed to successfully predict patch labels. Three 
label fusion methods were explored: majority voting, averaging of predictions, and a single convolutional layer with leaky ReLU activation. 
Although the single convolutional layer’s predicted masks were mostly accurate visually, their similarity to ground truth was less than those 
of the non-convolutional methods, suggesting a simpler method was better for fusing the predictions and that location of a given region within 
an image was not increasing labeling accuracy (Fig. 2). The mean method was largely comparable to the majority voting method, but 
qualitatively the majority voting method appeared to generate the most accurate predictions at the colony edge, achieving a Dice score of 
0.93 (Table 2). In the important case of a barely visible outer ring of actively swarming bacteria, which is not fully captured by image 
processing and U-Net approaches, the patch-based majority voting approach successfully predicted the region as colony (Fig. 2b, first row).  

While deep learning requires large datasets, biological data such as ours is laborious to generate and annotate. An important consideration 
was the number of initial predicted ring boundary masks to manually refine before the second training cycle. Various subsets of the manually 
refined masks (ranging from 8 to 300 images) were used to retrain the VGG-11 U-Net, with and without training data augmentations including 
rotations, flips, translations, and scaling. Decrease in validation loss became relatively marginal after 200 images, suggesting a dataset of 300 
images was reasonable for this model. Training data augmentation resulted in overly thick predicted ring boundaries. Augmentations may 
have further amplified the dataset’s inherent underlying biological noise, impeding the model’s ability to precisely detect fine edges.   

The un-augmented refined set was used to train the following additional encoders pretrained on ImageNet, with and without SCSE 
decoder attention: EfficientNet-B0, ResNet18, and VGG-11 with batch normalization [15, 19-23]. The addition of batch normalization and 
attention resulted in predictions qualitatively similar to those of the baseline VGG-11 U-Net (Fig. 2). Ultimately, the baseline U-Net with a 
pretrained VGG-11 encoder yielded the best values for all test metrics, such as the highest Dice score of 0.83 and IoU of 0.76 (Table 2). The 
model even improved upon certain ground truths. For example, the model connected a ring boundary that was erroneously disconnected by 
a user during the manual refinement step (Fig. 2b, second row). Taken together, these results suggest that data augmentation and 
supplemental blocks within a network’s layers do not yield superior predictions for our task that would justify the computationally intensive 
additions. 

Finally, we present a biologically and clinically relevant experiment to demonstrate the generalizability and utility of our pipeline (Fig. 
3). P. mirabilis colonies were grown at two standard laboratory conditions known to generate two colony patterns. Denser colonies with 
regular rings covering the whole plate grew on 1.5% agar in a 37°C incubator (Condition 1), while less dense colonies with a single ring 
covering part of the plate grew on 1.3% agar on the ~25°C benchtop (Condition 2). The pipeline was used to predict colony and ring boundary 
masks for each image. Predicted colony masks were used to calculate colony area. As the VGG-11 U-Net occasionally missed the faintest 
regions of boundaries, predicted ring boundary masks were postprocessed to omit image columns which lacked the true number of ring 
boundaries. Maximum inter-ring-boundary distances were measured. A paired t-test demonstrated significant difference of these colony 

Table 2. Performance of various approaches for segmentation. 
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features between the two conditions, with 
p<<0.05 for both. These features, distinguishing 
the conditions, and others could be later used to 
evaluate motility of clinical or experimentally 
relevant strains. This experiment demonstrates 
how our pipeline can be adapted to distinguish 
different colony patterns that researchers might 
encounter when working with swarming 
bacteria. Quantitative findings from experiments 
such as this have clinical significance, as surface 
hardness, environmental temperature, and 
nutrient availability affect swarming motility, 
and thus are of interest to understand 
pathogenicity. 
 

4. CONCLUSION 
 
We have developed a dual-task pipeline for 
accurately segmenting motility-dependent 
macroscopic colonies and ring boundaries within 
images from P. mirabilis swarming assays. 
Colony segmentation captures faint active 
swarm rings and enables evaluation of overall 
colony features. Ring boundary segmentation 
allows quantification of colonies’ repetitive 
pattern features, which have thus far not been 
analyzed in detail. Easing the burden of manual 
input, our pipeline includes preprocessing, data 
compilation, postprocessing, and feature 
extraction functions which are easily scaled to 
thousands of images, and can enable researchers 
to collect and analyze larger datasets.  At the 

same time, our patch-based and transfer learning approaches allowed us to work with biological datasets that are small relative to typical 
deep learning datasets. Overall, the pipeline provides essential information to analyze P. mirabilis motility. In the future, it could be applied 
to analyze the motility and macroscopic colonies of other clinical isolates and soil microbes with more complex features such as branched 
and fractal structures. We plan to integrate this pipeline into a single package such as an ImageJ plugin for dissemination. This work can 
serve as a framework for researchers developing new computational tools to analyze bacteria with diverse colony morphologies and roles in 
infectious disease spreading.  
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Fig. 3. Example application of pipeline. Representative images are shown of bacteria 
grown on 1.5% agar at 37°C (9 images, Condition 1) and 1.3% agar at 25°C (10 images, 
Condition 2). Ring boundary masks were postprocessed to retain only relevant 
information prior to feature extraction. Error bars are STD. For colony area, mean at 
Condition 1 was 44.1 cm2 and STD = 0.23; mean at Condition 2 was 14.4 cm2 and STD 
= 1.98. p = 4.53e-19. For ring width, the maximum distance between any two ring 
boundaries on the plate was calculated; for Condition 1 the mean was 0.95 cm with STD 
= 0.03 and for Condition 2 the mean was 1.12 cm, STD = 0.04. p = 2.72e -9. 
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