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ABSTRACT 

Age-related changes to cytosine methylation have been extensively characterized across 
the mammalian family. Some cytosines that are conserved across mammals exhibit age-related 
methylation changes that are so consistent that they were used to successfully develop cross-
species age predictors. In a similar vein, methylation levels of some conserved cytosines 
correlate highly with species lifespan, leading to the development of highly accurate lifespan 
predictors. Surprisingly, little to no commonality is found between these two sets of cytosines 
even though the relationship between aging and lifespan is by most measures linked. We 
ventured to address this conundrum by first identifying age-related cytosines whose methylation 
levels change in opposite directions between short and long-lived species. We hypothesized 
that age-related CpGs that are also associated with species lifespan would tap into biological 
processes that simultaneously impact aging and lifespan. To this end, we analyzed age-related 
cytosine methylation patterns in 82 mammalian species. For each CpG, we correlated the intra-
species age correlation with maximum lifespan across mammalian species. We refer to this 
correlation of correlations as Lifespan Uber Correlation (LUC). This approach is unique in 
incorporating age and species lifespan in a single analysis. We identified 629 CpGs with 
opposing methylation aging patterns in long and short-lived species. Many of these are found to 
be near BCL11B, NPTN, and HOXC4 loci. Methylation and transcription analyses of Bcl11b 
knockout mice indicate that this gene partially regulates the methylation state of LUC CpGs. We 
developed DNAm age estimators (epigenetic clocks) based on LUC CpGs. These LUC clocks 
exhibited the expected behavior in benchmark aging interventions such as caloric restriction, 
growth hormone receptor knockout and high-fat diet. Furthermore, we found that Bcl11b 
heterozygous knockout mice exhibited an increased epigenetic age in the striatum. Overall, we 
present a bioinformatics approach that identified CpGs and their associated genes implicated 
both in aging and lifespan. These cytosines lend themselves to developing epigenetic clocks 
that are sensitive to perturbations that impact both age and lifespan.  

Keywords: DNA methylation, mammals, evolution, lifespan, aging 

INTRODUCTION 

Aging is partly a result of the gradual accumulation of molecular damage that increasingly 
compromises tissue and organ function. The cause of such stochastic damage and its 
persistence is a complex mix of various stressors 1. In contrast, maximum lifespan appears to 
be an inborn species trait that reflects, in part, the innate capacity of an organism to protect 
against damage from the environment. As such, maximum lifespan is deemed to be a stable 
trait in species. In contrast, average lifespan results from genetic variations, environmental 
conditions or stochastic differences encountered by individuals within a species. For example, 
the maximum human lifespan is set at 122 years by Jeanne Calment, the oldest documented 
human to date 2, while the average human lifespan is 72.6 years. Some studies suggest that the 
increase in human lifespan started to plateau after 1980 3. Although debatable, human lifespan 
appears to be reaching its biological maximum. Several evolutionary theories, including 
antagonistic pleiotropy and the disposable soma theory, were proposed to explain how different 
maximum lifespans evolved in animals. It is proposed that low extrinsic mortality (predation), an 
abundance of food, and low reproductive cost are features that offer long-lived species the 
opporunity to evolve better or more efficient mechanisms to protect against age-mediated 
accumulation of damage. As such, the rate of biological function decline (i.e., aging) would be 
expected to correlate inversely with maximum species lifespan. Although aging and maximum 
lifespan are intimately intertwined, they nevertheless appear in some biological investigations to 
be distinct processes 4. One of the most direct ways to investigate this conundrum is through 
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comparative studies between mammalian species. The mammalian family is constituted of 
species with over a hundred fold range in maximum lifespan and 50 million fold differences in 
body size and weight. The latter is an important consideration, given that there is a very high 
correlation between species weight and lifespan.  

To address the aging-lifespan link, we leveraged the DNA methylation database that was 
generated by the Mammalian Methylation Consortium. This database houses cytosine 
methylation profiles from hundreds of mammalian species, and has already been employed to 
characterize the relationship between CpG methylation and chronological age5-25, and to identify 
cytosines related to life-history traits such as maximum lifespan and gestation time15,26. These 
analyses did indeed uncover the relationship between mean methylation levels of some 
cytosines conserved across species to maximum species lifespan15, but surprisingly these 
CpGs tended to be different from those that correlate strongly with chronological age15,16. While 
this lack of overlap can be explained on statistical grounds (different regression models) and 
biological differences (inborn traits vs individual characteristics), it runs counter to the intuition 
that maximum lifespan reflects intrinsic mortality risk associated with biological aging. Here we 
pursue a different approach, one that is based on the hypothesis that age-related cytosines that 
change their methylation states in opposing directions in long and short-lived species are the 
biological linchpins that link aging with lifespan. We reason that the methylation states of these 
cytosines are more likely to impose biologically relevant effects that impact both aging as well 
as lifespan.  

Our recent study of bats revealed that age-related CpGs with opposing methylation 
patterns in long and short-lived bat species are proximal to genes that are related to the immune 
system and cancer27. Here, we expanded this single species study along several lines. First, we 
profiled 82 mammalian species, including exceptionally long-lived ones such as bowhead 
whales and naked mole rats, as well as many short-lived species such as mice. Second, we 
analyzed several tissue types (e.g., blood, skin, muscle, liver). Third, we developed a statistical 
measure (lifespan uber correlation) to quantify differences in aging patterns between short and 
long-lived species. Fourth, we studied the impact of adult weight on these aging patterns. Fifth, 
we used transcriptomic and mouse knockout studies to characterize some of the most 
significant CpGs. Finally, we used these CpGs to build age estimators (epigenetic clocks) and 
demonstrated that these clocks are able to capture the effects of interventions that are known to 
alter age we well as lifespan.  

Lifespan Uber Correlation 

We analyzed previously-described data from the Mammalian Methylation Consortium 
15,16,26. We used n=8,500 tissue samples (from blood, skin, liver, cerebral cortex, and muscle) 
collected at different ages (neonatal to old life-stages) of 82 mammalian species with a diverse 
range of reported lifespan (3.8 years in rats, to 211 years in bowhead whales). These data were 
generated using the mammalian methylation array platform that measures methylation levels at 
highly conserved CpGs across mammalian species 28. We restricted our analyses to 14,705 
CpGs that are conserved in eutherian species (Methods) 26.  

We define “Lifespan Uber Correlation” (LUC) as the correlation between age-related CpGs and 
maximum species lifespan. This is derived by correlating the correlation between CpG and 
chronological age, with maximum lifespan (Fig. 1b). Maximum lifespan was first transformed 
using a base e log transformation. For each CpG and tissue type, the LUC was implemented in 
two steps. First, the Pearson correlation was determined between the CpG and chronological 
age for all tissue samples from a given species. This results in a value, 
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F(Species)=cor(CpG,Age), that is specific to the tissue type of the species in question. Second, 
F(Species) is correlated with log-transformed maximum lifespan across all available species. 

LUC=cor(F(Species), Log Lifespan)=cor(cor(CpG,Age),Log Lifespan). 

Note that the final expression involves a correlation coefficient on top of another. The German 
word "Uber" (which means over/above) indicates that one correlation is above the other. CpGs 
with a negative LUC value exhibit age-related loss of methylation in long-lived species but a 
gain of methylation in short-lived ones (Fig. 1b). Conversely, CpGs with a positive LUC value 
exhibit age-related gain in long-lived species and loss of methylation in short-lived ones.  

It is well established that across the mammalian family, lifespan is significantly correlated with 
the average adult weight of the species. In our analysis of species characteristics in the AnAge 
data-base, we also observed a strong correlation (cor=0.72, Fig. 1a) 29. Therefore statistical 
analyses of maximum lifespan were executed in two ways: one ignored the effect of adult 
weight, and the other accounted for this potential confounder. We start by describing the 
analysis that ignored adult weight. 

 LUC analysis without adjustment for adult species weight 

In our primary analysis, we applied the LUC analysis to two tissues for which a sufficient 
number of species (n>30) were available: blood (n=31 species) and skin (n=35 species). In 
secondary analyses, we applied the LUC method to 3 additional tissue types (cerebral cortex, 
liver, and muscle, Extended Data Fig. 1, Extended Data Fig. 2).  

To assign significance levels to LUC, we applied the Fisher Z transformation to the LUC 
correlation coefficient resulting in the Uber Z statistic that follows a standard normal distribution 
under the null hypothesis of no correlation between aging methylation pattern and maximum 
lifespan. We uncovered 133 CpGs in blood and 433 CpGs in skin that exhibited a significant 
LUC at a nominal significance level of 0.005, which was selected following a permutation test 
procedure (Fig. 2a, Table S1). The permutation test confirmed that the significance level in the 
actual data exceeds that in each of the 1000 permutation tests in blood (observed -log10 P = 
5.65; maximum permutation log10 P= 4.1 Extended Data Fig. 3).  

A high percentage of the significant CpGs had a negative LUC value (95% in blood, 65% in 
skin, Extended Data Fig. 1), indicating that these CpGs lose methylation in long-lived species 
but gain methylation in short-lived ones. The LUC analysis in blood implicates the following 
regions: BCL11B 5’UTR (Uber Z = -5.1), NPTN 2nd exon (Uber Z=-4.9), ZIC4 2nd exon (Uber 
Z=-4.2), and HOXC4 intron (Uber z=-4.2). The LUC analysis implicated 24 gene regions that 
contained multiple significant CpGs (e.g., n=4 CpGs for BCL11B promoter, n=5 CpGs in the 
NPTN exon, and n=7 CpGs in the HOXC4 exon), suggesting a robust signal. The LUC analysis 
in skin implicates TCF4 5’UTR (Uber Z=-5.1, n=2 CpGs), GPAT4 downstream (Uber Z=-5, 
n=2), TFAP2A 2nd intron (Uber Z=-4.8, n=1), and POLG 2nd exon (Uber Z=-4.7, n=1; Fig. 1b) 
in skin (Fig. 2a, Extended Data Fig. 2).  

CpGs that were found in both blood and skin were proximal to CASZ1 2nd intron (Blood 
Uber Z= -3.0, Skin Uber Z= -3.4), WNT1 downstream (-3.0, -3.3), LINC00924 1st intron (-3.7, -
3.0), and POU4F3 1st exon (-3.1, -3.0), all of which had a negative LUC (Fig. 2b). In contrast, 
two CpGs proximal to HNRNPA3 upstream (-2.9, 3.2) and MIR4643 2nd intron (-3.1, 3.6) had 
the opposite LUC value between skin and blood, which may be due to biological differences 
between tissues or may instead reflect false-positive associations. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2022. ; https://doi.org/10.1101/2022.01.16.476530doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.16.476530
http://creativecommons.org/licenses/by-nc/4.0/


 

 5

As a sensitivity test, the LUCs of the top hits were tested in the species that were excluded 
in the primary analysis due to low sample size. This validation data set had a sample size of 4-
10 per species that covered at least 20% of the lifespan. This data set contained 23 species for 
blood and six species for skin. Interestingly, the LUCs of several top hits such 
as BCL11B, HOXC4, HOXC5, and POLG were corroborated in this validation set (Extended 
Data Fig. 4).  

We used the Genomic Regions Enrichment of Annotations Tool (GREAT)30 to carry out 
functional enrichment analyses of the significant CpGs. The CpGs with significant negative LUC 
values in blood were enriched in loci linked to human waist circumference, as revealed by 
genome-wide association studies (GWAS) (Fig. 2e, Extended Data Fig. 5, Table S2). CpGs 
with significant negative LUC values in skin, however, appear to be enriched in loci that are 
implicated in embryonic morphogenesis, mortality/aging, and perinatal lethality. The results for 
CpGs with positive LUC values were insignificant, which probably reflects the low number of 
such CpGs.  

LUC analysis adjusted for adult species weight 

To avoid the confounding effect of adult weight, we defined a weight-adjusted measure of 
maximum lifespan by regressing log lifespan on the log of adult weight and forming residuals. 
As expected, after adjusting for average adult weight, naked mole rats and humans stand out as 
long-lived outliers. For example, the naked mole-rat weighs approximately 35 grams but exhibits 
a maximum lifespan of 37 years 29. This number is seven times longer than the lifespan of the 
comparably-sized prairie voles (40 grams). The weight-adjusted measure of lifespan was used 
to define another LUC measure for each CpG, denoted as LUC.adjWeight (LUC.adjW) (Fig. 
1c).  

At a nominal value of p<0.001, a total of 44 and 19 CpGs with significant LUC.adjW were 
identified in blood and skin, respectively. The permutation test of LUC.adjW confirmed that the 
observed results in blood and skin are statistically significant (Extended Data Fig. 3, Table S1). 
The top regions per tissue are as follows: blood, TLX1 2nd exon (Uber Z=-4.8), HOX5 1st exon 
(Z=-4.7), HOXC4 5’UTR (-4.5); and skin, HNRNPK 3’UTR (Z=5.2), and LINC00474 upstream 
(Z=-4.4) (Fig. 2c, Extended Data Fig. 7). Similar to LUC analysis (without weight adjustment), 
multiple significant LUC.adjW CpGs were found on the same gene regions 
(e.g., HOXC5, HOXC4, HNRNPK). As was observed with LUC, a high percentage of the 
significant LUC.adjW CpGs exhibited negative values (86% in blood, 58% in skin, Extended 
Data Fig. 7).  

The LUC.adjW for blood and skin only exhibited a weak correlation (r=0.2) with each other, 
and none of the CpGs exhibited significant LUC.adjW values in both tissues at a significance 
value of 0.001 (Fig. 2d). The genes adjacent to significant LUC.adjW CpGs were enriched in 
developmental processes and implicated in the maternal age of individuals (mother’s attained 
age). These are similar to the lifespan uber analysis that did not adjust for adult weight (Fig. 2f, 
d, Extended Data Fig. 6). Only a subset of 11 CpGs (25%) in blood (proximal to BCL11B, 
SP7, NPTN, HOXC4, HOXC5, TLX1, LOC440982, NR2F2, CDKN3) and 5 CpGs (26%) in skin 
(proximal to MSANTD2, ZNF574, TSC22D1, SNRPA1, LINC00474) were shared between LUC 
correlation analysis of lifespanAdjW and lifespan. It is interesting that methylation changes of 
CpGs in BCL11B were found to be significant in both LUC and its weight-adjusted LUC.adjW 
counterpart.  

Methylation versus mRNA levels across horse tissues 
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The identification of cytosines that interface age and lifespan raises the question of 
whether their methylation level changes lead to gene expression changes. We have access to 
datasets from horse tissues with which this question can be addressed. We observed that the 
methylation of several CpGs identified by LUC analysis do indeed correlate significantly with the 
expression of adjacent mRNA levels across 29 different horse tissues31 (Extended Data Fig. 8). 
For example, methylation of CpGs near BCL11B promoter exhibited a negative correlation with 
the expression of this gene in horse tissues31 (Fig. 3b). Even more specifically, methylation of 
the most significant CpG in blood, cg16949290, located in the 5' untranslated region of BCL11B, 
correlates inversely (R= -0.41, p=0.001) with BCL11B mRNA levels across all 29 horse tissues.  

We used publicly available human and mouse transcriptomic data sets to study aging 
effects on mRNA levels from select genes implicated by LUC analysis (Extended Data Fig. 9).  

Epigenetic studies in Bcl11b heterozygous knockout mice 

BAF Chromatin Remodeling Complex Subunit BCL11B is a gene located on human 
chromosome 14 (Fig. 3a) and on mouse chromosome 12. Several CpGs in BCL11B promoter 
had a negative LUC and LUC.adjW relationship in both blood and skin of mammals (Fig. 3a). 
Since BCL11B is highly expressed in the brain (Fig. 3c), we analyzed DNAm levels in several 
brain regions (striatum, cerebral cortex, and cerebellum) of Bcl11b-/+ mouse lines (aged 
between 2 and 6 months). Strikingly, 10 out of 31 CpGs adjacent to the Bcl11b gene itself 
showed a significant methylation change (p<0.005, FDR<0.03) in all considered brain regions 
(Extended Data Fig. 10a). Among those 10 CpGs were the two with highly significant LUC 
scores in mammalian blood (Fig. 2a). At a significance level of p<0.005 (FDR<0.03), the Bcl11b 
knockout caused methylation changes in 4,038, 401, and 221 CpGs in the striatum, cerebral 
cortex, and cerebellum, respectively (Fig. 3d; Extended Data Fig. 10a; Table S3). The large 
number of differentially methylated cytosines in the striatum may reflect the particularly high 
basal level expression of Bcl11b in basal ganglia as indicated by the protein atlas (Fig. 3c)32.  

CpGs in the Bcl11b+/- knockout methylation signature were located near genes that play a 
role in the unfolded protein response and ER-nucleus signaling pathway (Fig. 3e; Extended 
Data Fig. 10d; Table S4). The Bcl11b heterozygous knockout signature overlapped with the set 
of CpGs that were found to be significant in our LUC and LUC.adjW analysis (98 out of 560, 
Fisher exact p= 0.005, Fig. 3f). The nominally significant overlap suggests that a subset of the 
LUC-related CpGs may be regulated by Bcl11b.  

Transcriptomic studies in Bcl11b knockout mice 

We used two publicly available transcriptomic data sets that involved perturbations of 
BLC11B. First, striatal gene expression data from a Bcl11b over-expression study in 
immortalized striatal cells 33. Second, striatal gene expression data from a Bcl11b homozygous 
null mice at postnatal day 0 34. The analysis indicated that several genes with LUC CpGs would 
respond to Bcl11b perturbation (Fig. 3g,h). We found a nominally significant overlap between 
the transcriptomic signature of the Bcl11b KO in striatum and the genes from our LUC and 
LUC.adjW signature (Fisher Exact P=0.05, Fig. 3h). Conversely, the overexpression of Bcl11b 
affected the expression of only five genes from our LUC and LUC.adjW signature (Fig. 3g). 
Specifically, it resulted in the downregulated expression of Sox5, Trib2, Nr2f2, and Reck, but 
upregulation of Cxxc4 and Ptprd.  

Comparison with the transcriptomic profile of Polg knockout mice 

CpGs near mitochondrial polymerase gamma (POLG) were among the top hits in our LUC 
analysis in mammalian skin. The PolgD257A/D257A mouse line is a known model of progeria with 
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accelerated mitochondrial point mutations and premature aging phenotypes such as hair loss, 
graying, spinal curvature, testicular atrophy, decreased bone mass, anemia, weight loss, 
hearing loss, and premature death 35. We analyzed a publicly available transcriptomic dataset 
from the cochlea of 9 month old PolgD257A/D257A mice 36. The transcriptomic signature associated 
with PolgD257A/D257A did not overlap significantly with genes from the LUC signature (Fig. 3i, 
Fisher Exact P=0.5). However, the two sets of genes only shared 15 genes in common (Fig. 3i). 
Thus, this analysis suggests that Polg does not have a regulatory effect on genes implicated by 
our LUC analysis. However, the analysis of Polg effects should be revisited with other tissue 
types such as skin and blood, when these data become available. 

Human GWAS and GenAge database 

We overlapped genes from the LUC signature with genes found in human genome-wide 
association studies (GWAS) of various pathologies and conditions37. With all due caution, we 
report that some of the genes from the LUC signature were those highlighted by GWAS to be 
associated with type II diabetes (e.g., ADCY5, TCF4, BCL11A), stroke (e.g., CASZ1), chronic 
kidney disease (e.g., BCAS3), and breast cancer (e.g., CREB5, FOXP1) (Extended Data Fig. 
11a).  

We also examined the potential overlap between genes associated with LUC signature and 
those reported in the GenAge database 38, which is a curated collection of longevity genes. We 
found that 55 genes (14%) of those identified by LUC are also present in the GenAge database, 
but this overlap was not statistically significant (Fisher Exact P=0.2, Extended Data Fig. 11b).  

Epigenetic clocks based on the LUC signature 

We and others have previously shown that cytosine methylation levels lend themselves 
to defining highly accurate estimators of chronological age in many species5-25,39-41. These 
epigenetic clocks are typically based on elastic net regression with respect to all CpGs on the 
mammalian methylation array that map to the respective species (Methods). Here we pursued a 
slightly different strategy to build epigenetic clocks. First, we only used the subset of CpGs that 
were found to be significant in our LUC (or LUC.adjW) analysis. Second, we used a ridge 
regression model (as opposed to an elastic net regression model) to ensure that all CpGs were 
kept in the predictive model. We fit different regression models based on different selections of 
tissues. Since these clocks are based on LUC, we refer to them as the LUC clocks. Our pan-
tissue LUC clock was trained on 1468 samples from 10 different tissue types and is expected to 
apply to most mouse tissues (Table S5). By contrast, tissue-specific LUC clocks were trained 
on data derived from a single tissue type such as liver (Table S5). The underlying multivariate 
regression model can be used to predict age. The predicted value is often referred to as DNA 
methylation (DNAm) age or epigenetic age. An application to independent test data reveals that 
the resulting Uber epigenetic clocks are highly accurate predictors of chronological age 
(Pearson correlation between the DNAm age estimate and age ranges from r=0.92 to 0.99, Fig. 
4). To avoid the confounding effect of age, we defined an age-adjusted measure of DNAm age, 
referred to as epigenetic age acceleration, by regressing DNAm Age on chronological age and 
forming residuals.  

LUC clock analysis of aging interventions in mice 

Growth hormone knock-down mouse lines have been shown to exhibit a lower 
epigenetic age42. Age analyses using the LUC clocks replicated these findings in several 
tissues, including kidney (p=3e-6), and liver (p=7e-8) (Fig .5a).  
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Another age intervention is caloric restriction, which has also been shown to be 
associated with delayed epigenetic aging42-44. Once again, analyses of the methylation profiles 
by our LUC clock replicated these results in livers of calorie-restricted mice (p=1e-10). 
Conversely, a high-fat diet, which has been shown to increase the epigenetic age of murine 
liver45,46, was also demonstrated to do so by the LUC clocks (p=0.0008, Fig. 5a).  

We applied the LUC clocks to the striatum of Bcl11b knockout mice. As expected, 
Bcl11b knockout caused an age acceleration in the striatum of these mice (panTissue clock 
p=5e-5; brain clock p= 0.001) (Fig. 5b), which is another piece of indirect evidence supporting 
the likelihood that Bcl11b may regulate LUC signatures.  

DISCUSSION 

Here we describe a novel approach for analyzing the methylation data from the Mammalian 
Methylation Consortium that hones in on divergent aging patterns between long and short-lived 
species. To quantify this divergence in aging patterns, we introduced an integrative correlation 
coefficient referred to as LUC. We distinguish two types of LUC analyses: one that ignores 
differences in body size, and the other that accounts for it. The latter analysis, LUC.adjW, lends 
itself to finding CpGs and their associated genes that may play a protective role in long-lived 
species with a relatively small body size. Previous studies have looked at aging-associated DNA 
methylation dynamics as a molecular readout of lifespan variation among mammalian species 
47. The current study has a different emphasis: it aims to select CpGs with strongly divergent 
aging patterns in long and short-lived species. While the LUC approach is biologically 
compelling, it has a statistical limitation: it requires large sample sizes. Our permutation test 
analysis provides insights into the significance levels that are needed to protect against false 
positives. 

Our LUC results are clearly dependent on tissue type. The most significant LUC CpGs in 
blood are largely different from those in skin. The poor agreement of LUC results between 
tissue types is likely due to multiple reasons. First, each tissue type involved a different set of 
species. For example, we analyzed over 750 blood samples from dogs but did not have any 
skin samples from this species. Second, the overlap may also reflect biological differences. 
Genes and underlying CpGs that are associated with an enhanced immune system (i.e., blood) 
in long-lived species may differ from those that play a protective role in skin. This tissue 
specificity may indeed be relevant with regards to POLG, which was identified by the LUC 
EWAS in skin, but was not corroborated by transcriptome data from the cochlea of Polg mutant 
mice. Therefore, similar analysis in skin of Polg mutant mice 36,48 would be necessary to resolve 
this question.  

Our analysis of blood implicates BCL11B which was significant in both LUC and LUC.adjW 
analyses. B cell leukemia 11 b (BCL11B) is a zinc finger protein with a wide range of functions, 
including the development of the brain, immune system, and cardiac system49. This gene is also 
implicated in several human diseases including, but not limited to, Huntington disease50, 
Alzheimer’s diseases50, HIV51, and T-cell malignancies52. BCL11B plays an important role in 
adult neurogenesis53, but is less studied in the context of lifespan disparities in mammals.  

We investigated the effect of Bcl11b-/+ knockout on brain methylation levels and 
transcriptomic changes. Strikingly, we find that Bcl11b knockout affected both DNA methylation 
and mRNA expression of LUC genes. Our current study does not inform us about the potential 
role of Bcl11b in the aging processes during adulthood since the observed patterns could be 
attributed to developmental defects. Future studies should include conditional Bcl11b knockout 
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or knockdown after adulthood to distinguish between the developmental and aging effects of 
this protein.  

We used LUC-related CpGs to develop novel epigenetic age estimators for mice. These LUC 
clocks do not outperform existing mouse clocks in terms of accuracy of chronological age. 
Rather, these clocks are meant to address a more elusive aim: the measurement of biological 
age that correlates with lifespan. The LUC clocks are based on the premise that LUC-related 
CpGs, being also linked to lifespan, are more informative of biological age than purely age-
related CpGs. However, this hypothesis requires validation. The tools to carry out such studies, 
namely epigenetic clocks, epigenetic predictors of maximum lifespan, and LUC clocks are 
available to address this hypothesis. Here we demonstrate that LUC clocks show the expected 
behavior in benchmark anti-aging (caloric restriction, GHRKO) and pro-aging interventions 
(high-fat diet). Furthermore, the LUC clocks also revealed that Bcl11b KO mice undergo 
accelerated epigenetic aging in the striatum (Fig. 5c). We are characterizing other genetic and 
non-genetic interventions that perturb the LUC clocks, and these will feature in a separate report 
that will uncover the biological processes that are regulated by the LUC cytosines and their 
associated genes.  
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METHODS  

DNA methylation data 

The data used in this study included a total of 8,663 samples from blood, cerebral cortex, 
liver, muscle, and skin that are collected from 82 mammalian species. These included species 
had >4 samples at different ages that covered at least 20% of the lifespan. Sample collection 
and ethical approval for each mammalian species is described in separate individual papers 5-

26,41. The species level characteristics such as maximum lifespan, average weight, and age at 
sexual maturity were chosen from anAge database 54. All DNA samples were analyzed by the 
novel custom-designed mammalian methylation array, which profiles around 36k conserved 
CpGs across several mammals 28. Following data collection, the SeSaMe normalization method 
was used to define beta values for each probe 55. The analysis was limited to 14,705 highly 
conserved CpGs in eutherian species (description in 26).  

Bcl11b heterozygous KO mice 

Bcl11b heterozygous KO mice (Strain name: C57BL/6N-Bcl11btm1.1(KOMP)Vlcg/JMmucdwere) 
(Valenzuela 2003, PMID: 12730667) were obtained from Mutant Mouse Regional Resource & 
Research Center (MMRRC). 

The mouse methylation array study was conducted at UCLA. Animals were housed in 
standard mouse cages under conventional laboratory conditions, with constant temperature and 
humidity, 12�h/12�h light/dark cycle (7.00 a.m./7.00 p.m.), and food and water ad libitum. All 
animal studies were carried out in strict accordance with National Institutes of Health guidelines 
and approved by the UCLA Institutional Animal Care and Use Committees. C57BL6J mice were 
used as controls in this experiment. The brain samples were collected at two ages: 0.16 and 0.5 
years. A total of 4 animals/group per sex (total of 16 per group) were sacrificed at each age. The 
EWAS analysis was done by combining both groups and using chronological age as a co-
variate in the multivariate regression model.  

Growth hormone receptor KO mice 

GHRKO mice (GHR -/- dwarfs) from the University of Michigan (Richard A. Miller). Full-
body growth hormone receptor knockout (GHR-KO) 56. Sample size: GHRKO, 12 kidney, 11 
liver; C57BL6J, 10 kidney, 10 liver. Ages: 0.6-0.7 years.  

Caloric restriction  

These data will be described in another publication by Acosta-Rodríguez V and J. Takahashi 
(submitted). 

Transcriptome datasets 

DNAm-mRNA analysis was done in 57 horse transcriptome data generated from 29 
different horse tissues 31. For humans, we leveraged gene expression studies from 1) GTEx 
project, which represents multiple tissues and brain regions of 651 men and women, aged 20-
80 yr 57,58, 2) three gene expression data studied in 59 (GEO datasets from studies 60,61,36) and 3) 
the summary data across three studies in 62. Mouse datasets included single cell RNA seq data 
from 23 mouse tissues across the lifespan in the Tabula Muris Consortium 63, and microarray 
data from 33,34,64. GTEx data: 04/13/2020 and/or dbGaP accession number phs000424.v8.p2 on 
04/13/2020.  

Identification of Mappable CpGs for eutherians 
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Mammalian methylation array contains up to 36k CpGs with high conservation in mammals. 
However, several of these CpGs only have partial conservation in mammals. Thus, we used 
stringent criteria to select the CpGs that can be aligned to 11 representative species from 
different phylogenetic orders 28. These species included Human (hg19), mouse (mm10), Vervet 
monkey (ChlSab1.1.100), Rhesus macaque (Mmul_10.100), Cattle (ARS-UCD1.2), Cat 
(Felis_catus_9.0.100), Dog (CanFam3.1), Elephant (loxAfr3.100), Bat 
(Rhinolophus_ferrumequinum.HLrhiFer5), Killer whale (GCF_000331955.2_Oorc_1.1), and 
Opossum (Monodelphis_domestica.ASM229v1.100). These species are selected based on a 
large sample size in our data, a relatively high genome quality, and also representation from 
different phylogenetic orders. This set of probes was further filtered by calibration data 
generated from the array’s performance on human, mouse, and rat synthetic DNA at different 
methylation levels (from 0-100% methylated) 28. Only the 14,705 probes with a linear correlation 
of >=0.8 in all three species calibration data were kept as a mappable probe in eutherians.  

Lifespan Uber Correlation analysis 

This study introduced “Uber correlation” as a new measure to identify the conserved CpGs 
with differential aging rates that relate to mammalian lifespan. This analysis comprises of two 
stages. 1) the CpG-level correlations with age within each species were extracted. 2) the DNAm 
aging correlation values for each CpGs were correlated with log maximum lifespan of 
mammalian species. We define the “Lifespan Uber Correlation” (LUC) by correlating the within 
species aging pattern (defined as Pearson correlation between CpG and chronological age) with 
maximum lifespan (Fig. 1b). Maximum lifespan was transformed using a log transformation 
(base e). For each CpG and tissue type, the LUC is implemented in two steps. First, one 
calculates the Pearson correlation between the CpG and chronological age for all tissue 
samples from a given species. This step results at a number, F(Species)=cor(CpG,Age), that 
depends on species (and tissue type). The analysis is restricted to samples of a given tissue 
type (e.g., blood) to avoid confounding by tissue type. Second, F(Species) is correlated with log 
transformed maximum lifespan across all available species. 

LUC=cor(F(Species), Log Lifespan)=cor(cor(CpG,Age),Log Lifespan). 

We used the Pearson correlation test implemented in the R function 
"standardScreeningNumericTrait" function from the "WGCNA" R package 65.  

For body size independent analysis, the log maximum lifepan of the 82 mammalian species 
in this study were regressed on log average adult weight of these animals. The residuals of this 
regression were used as the outcome of the LUC.adjW analysis.  

Permutation analysis 

As a sensitivity analysis, the chronological ages of the samples of each species were 
permuted. This permutation effectively removed the signal between aging pattern and maximum 
lifespan. The permutation was repeated for 1000 times and the most significant p value, and 
also maximum correlation value were stored. These permutation test statistics allow us to 
characterize the distribution of LUC values under the null hypothesis.  

Meta-analysis of transcriptional changes 

We aimed to compare the direction of gene expression changes in our target genes in 
peripheral and brain tissues of mice and humans. In GTEx, the transcription-age association 
was tested by a mixed-effects model; fixed effects: sex, age; random effect: subjects; outcome: 
log2 TPM of the genes. For other studies, the summary statistics of the age related gene-
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expression were available. Stouffer meta-analysis was used to combine the z scores for each 
tissue with more than one available study. We then extracted the median Z score of the gene 
expression changes for all the peripheral or brain tissues to do a directional comparison 
between mice and humans.  

Differential expression analysis 

The expression and sample characteristics data were downloaded from NCBI GEO using 
the “GEOquery” package. Differential gene expression analysis for each experiment was done 
using linear modeling (Limma package in R).  

Gene ontology enrichment 

The genomic region level enrichment was performed using GREAT analysis 30, which 
used 14,705 eutherian CpGs as the background. The analysis used human hg19 annotations, a 
50kb window for extending the gene regulatory domain, and default settings for the other 
options. The biological processes were reduced to parent ontology terms using the “rrvgo” 
package. The Human GWAS enrichment was done by a hypergeometric overlap analysis 
between the identified gene regions with the gene sets from 97 published large scale GWAS of 
various phenotypes. For each GWAS result, we used the MAGENTA software to calculate an 
overall GWAS P-value per gene, which is based on the most significant SNP association P-
value within the gene boundary (+/- 50 kb) adjusted for gene size, number of SNPs per kb, and 
other potential confounders 66. 
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Figures 

 
Fig. 1 | Schematic view of lifespan uber correlation analysis in mammalian data. a, Scatter 
plot of maximum lifespan and average adult weight of the mammalian species in this study. b, 
Schematic chart of the CpGs with significant LUC in mammals. The LUC analysis first correlates 
intraspecies correlations between a given CpG and chronological age, cor(CpG,Age). Next it 
forms the inter-species correlation with log-lifespan: LUC=cor(Log Lifespan,cor(CpG,Age)). Only 
the species with a sample size of >10 (range 11 to 1,111) and at least 20% coverage of lifespan 
were included in this analysis. The number of species per tissue: Blood, 30 species, Skin, 34 
species. c, Schematic chart of the CpGs with the uber correlation of log lifespan adjusted for 
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body size (lifespanAdjW). This analaysis includes the inter-species correlation of within species 
CpG-Age correlations with the residuals of log-lifespan regressed on log-weight of the animals. 
LUC.adjW=cor(residuals,cor(CpG,Age)). Only the species with a sample size of >10 (range 11 
to 1,111) and a 20% coverage of lifespan were included in this analysis. The number of species 
per tissue: blood, 30 species, skin, 34 species.  
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Fig. 2 | LUC and LUC.adjW EWAS of mammalian skin and blood. a, Manhattan plots of the 
LUC EWAS in 14,705 conserved CpGs in eutherians. The coordinates are based on the 
alignment to Human hg38 genome. The direction of association is highlighted by red (positive 
correlation with lifespan) and blue (negative correlation with lifespan) at p<0.005 (red dotted 
line) significance. b, Sector plot of the LUC in skin and blood of mammals. Red-dotted line: 
p<0.005; blue-dotted line: p>0.05; Red dots: the CpGs that were shared between blood and 
skin; blue dots: the CpGs with divergent LUC between blood and skin. c, Manhattan plots of 
LUC.adjW analysis in 14,705 conserved CpGs in eutherians. d, Sector plot of the LUC.adjW 
correlations in skin and blood of mammals. e, f, Gene set enrichment analysis CpGs with LUC 
and LUC.adjW correlations.   
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Fig. 3 | BCL11B partially regulates DNAm and expression of genes with LUC correlation 
in mammals. a, Genome view of BCL11B CpGs with LUC or LUC.adjW correlations. The figure 
only depicts CpGs that were found to be significant in at least one of the LUC analyses. The 
genome view plots show the chromosome ideogram, human coordinates (Hg38), Ensemble 
transcript track, gene-regions annotation of highlighted CpGs, chromatin state of highlighted 
CpGs, CpG island status of the highlighted CpGs, LUC or LUC.adjW correlation in mammals, 
and the Z score of DNAm-mRNA association in 29 tissues horses tissues 31. b, The scatter plot 
of DNAm-mRNA association in horse tissues were illustrated for a selected CpG in BCL11B 
promoter. c, BCL11B has the highest expression in skin and basal ganglia of GTEx data. d, 
EWAS of Bcl11b-/+ knock-out striatum. Sample size: 16/group, ages, 0.16-0.5 years. The 
association was done by a multivariate model with age as co-variate. red line, p<0.005 
(FDR<0.03). The results for cerebral cortex and cerebellum is reported in Extended Data Fig. 
10. The top CpGs overlapping with Uber correlation results are labeled with adjacent genes in 
the boxes and larger fonts. e, Gene set enrichment analysis CpGs related to Bcl11b-/+ striatum. 
f, overlap of striatum Bcl11b-/+ differentially methylated CpGs with uber correlation hits. Overlap 
Fisher exact test p = 8.6e-03, Odds ratio = 1.3. g,h,i, Transcriptome effects of the Bcl11b 
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overexpression (N=4 per genotype) (g), Bcl11b heterozygous knockdown (N= 4 Bcl11b+/-; 3 
Control) (h), and Polg knockin mutation (N=5 per genotype) (i). Datasets: GSE31096, 
GSE9330, GSE4866. All experimental data have mouse origins. Red line: p<0.005. The genes 
identified by mammalian LUC and LUC.adjW analyses are highlighted by larger font size and 
square outline in the figures. The overlap pvalue reports the Fisher exact test of the overlap of 
differentially expressed genes (p<0.005) with 400 LUC (or LUC.adjW) genes. The background 
was limited to the genes that are covered in Mammalian Methylation Array.  
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Fig. 4 | Epigenetic clocks developed from CpGs with significant LUC. The LUC epigenetic 
clocks are trained in different mouse tissues using 604 CpGs from uber correlation analysis by 
ridge regression. Total sample size includes: blood, 94; liver, 474; heart, 49; kidney, 45; muscle, 
96; cerebral cortex, 185; striatum, 137; panTissue, 720. The samples were split into the train 
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and test sets by 0.7 / 0.3 ratio. The coefficients for the mouse LUC clocks are reported in Table 
S6.  
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Fig. 5 | LUC epigenetic clocks are responsive to the lifespan intervention experiments. a, 
The lifespan LUC epigenetic clocks predicts a decrease of epigenetic aging by growth hormone 
knock out and caloric restriction treatment, but an age acceleration by the high fat diet. b, 
Bcl11b knockdown striatum has accelerated aging based on both panTissue and brain LUC 
clocks that the age matched wildtype mice. “1” indicates the treatment, “0” indicates control 
(Age matched C57BL6/J mice on normal diet) for each experiment. Reported pvalues in each 
plot is based on two sided Student T test. The box plots represent lower and upper quartile of 
the distribution. The notch around the median number of CpGs (horizontal line inside box) 
depicts the 95% confidence interval. The whiskers extend to the most extreme data point that is 
no more than 1.5 times the interquartile range from the box. The sample size for each group is 
reported on top of each box. 
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Extended data  

 
Extended Data Fig. 1 | Tissue specific CpGs with differential aging rates related to the 
maximum lifespan of mammals. a, Manhattan plots of the EWAS of differential aging 
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correlation by lifespan in 14,705 conserved CpGs in Eutherians. The coordinates are based on 
the alignment to Human hg38 genome. The direction of assocoation is highlighted by red 
(positive correlation with lifespan) and blue (negative correlation with lifespan) at p<0.005 (red 
dotted line) significance. Only the species with sample size of >10 (range 11 to 1111) and a 
20% coverage of lifespan were included in this analysis. Number of species per tissue: Blood, 
30 species; Cerebral cortex, 9 species; liver, 21 species; muscle, 12 species; and Skin, 34 
species. b, stacked bar presentation of the number of significant CpGs per tissues with 
differential aging correlation with maximum lifespan of mammals. c, Pairwise sector plots of 
differential aging correlation by lifespan in different mammalian tissues. Red-dotted line: 
p<0.005; blue-dotted line: p>0.05; Red dots: shared CpGs; blue dots: the divergent CpGs. 
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Extended Data Fig. 2 | Scatter plots of top CpGs with differential aging correlations 
associated with mammalian lifespan in different tissues. Pearson correlation coefficients 
and pvalues are indicated in each figure. The reported gene regions are based on the alignment 
to Human hg38 genome. 
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Extended Data Fig. 3 | Permutation analysis of the EWAS of differential aging analysis by 
lifespan or lifespan residuals. Histograms of the minimum pvalues in 1,000 permutation of 
EWAS of differential aging analysis by lifespan (a), or lifespan residuals (c). Histograms of the 
maximum correlation in 1,000 permutation of EWAS of differential aging analysis by lifespan (b), 
or lifespan residuals (d). The red dashed lines indicate the actual (unpermuted) EWAS results. 
The blue dashed lines indicate the median results of the permutation analysis for each tissue.  
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Extended Data Fig. 4 | Validation of the top CpGs with differential aging correlation by 
lifespan in species with less than 10 sample size. The species with small sample size were 
not included in the main analysis, thus could be used as a validation dataset for the top hits of 
this study. Number of species per tissues: blood, 23; skin, 6. Scatter plots shows the top EWAS 
CpGs with corroborated differential aging correlation by lifespan in blood (a), and skin (b) 
validation datasets. 
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Extended Data Fig. 5 | Gene set enrichment analysis of the CpGs with differential aging 
correlations with mammalian maximum lifespan or lifespan residuals.  
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Extended Data Fig. 6 | Tissue specific CpGs with differential aging rates related to the 
residuals of mammalian maximum lifespan adjusted for adult weight of the species. a, 
Manhattan plots of the EWAS of differential aging correlation by lifespan residuals in 14,705 
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conserved CpGs in Eutherians. The coordinates are based on the alignment to Human hg38 
genome. The direction of assocoation is highlighted by red (positive correlation with lifespan) 
and blue (negative correlation with lifespan) at p<0.005 (red dotted line) significance. Only the 
species with sample size of >10 (range 11 to 1111) and a 20% coverage of lifespan were 
included in this analysis. Number of species per tissue: Blood, 30 species; Cerebral cortex, 9 
species; liver, 21 species; muscle, 12 species; and Skin, 34 species. b, stacked bar 
presentation of the number of significant CpGs per tissues with differential aging correlation with 
lifespan residuals in mammals. c, Pairwise sector plots of differential aging correlation by 
lifespan residuals in different mammalian tissues. Red-dotted line: p<0.005; blue-dotted line: 
p>0.05; Red dots: shared CpGs; blue dots: the divergent CpGs. 
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Extended Data Fig. 7 | Scatter plots of top CpGs with differential aging correlations 
assciated with lifespan residuals in different tissues. Pearson correlation coefficients and 
pvalues are indicated in each figure. The reported gene regions are based on the alignment to 
Human hg38 genome. 
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Extended Data Fig. 8 | Genome view of the selected CpGs with differential aging 
correlation by lifespan that relates to gene expression in horse tissues. The genome view 
is based on human Hg38. For each gene, the CpGs that were significant in at least one analysis 
were marked in the plot. The genome view plots includes chromosome ideogram, coordinates of 
the zoomed in region, Ensemble transcript track, gene-regions annotation of highlighted CpGs, 
chromatin state of highlighted CpGs, CpG island status of the highlighted CpGs, differential 
aging correlation by mammalian lifespan or lifespan residuals, and the Z score of DNAm-mRNA 
association in 29 tissues from the two female horses 31. Highlighted genes: BCL11B (a), NPTN 
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(c), ST18 (e), and TFAP2A-AS2 (g). The scatter plot of DNAm-mRNA association in horse 
tissues were illustrated for the selected CpGs in BCL11B (b), NPTN (d), ST18 (f), and TFAP2A-
AS2 (h). The plots were created using “Gviz” package in R. 
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Age-related mRNA changes in the identified genes in humans and mice 

To evaluate whether CpGs with significant LUC are adjacent to genes whose mRNA levels 
also show a divergent aging pattern between long lived and short lived species, we analyzed 
several publicly available transcriptomic datasets of human and mouse tissues. 

When considering publicly available transcriptomic data from humans and mice, we find 
opposing aging patterns across tissues from the same species (Extended Data Fig. 9b,c). For 
example, BCL11 is positively correlated with age in human skeletal muscle, adipose, tibial artery 
but is negatively correlated with age in human prefrontal cortex, temporal cortex, pons, and 
other brain regions (Extended Data Fig. 9b). As expected, we find opposing aging patterns 
between species. While BCL11 has a positive correlation with age in human skeletal muscle, it 
exhibits a significant negative correlation in murine limb muscles. This high divergence of 
transcriptomic aging patterns can be observed for thousands of genes, i.e. it is not specific to 
genes that have been implicated in the LUC analysis. 

 To remove the confounding effect of tissue type and sequencing platform, we carried out 
meta analysis across tissue type and data set to quantify the relationship between mRNA and 
age in each species (Extended Data Fig. 9a). Our meta analysis statistic was defined as the 
median Z score of the age correlation test across tissue types (peripheral tissues or brain). The 
analysis revealed that many genes exhibit transcriptomic aging patterns that differ between the 
two species.  

For example, CLK1 mRNA increased with age in humans (p=5e-0.3) but it showed the 
opposite aging pattern in mouse tissues (p=2e-20). Similarly, HNRNPA3 expression increased 
weakly with age in human peripheral tissues but decreased very significantly in mouse tissues 
(p=0.03 in humans, p= 4e-19 in mice). Several genes implicated by the LUC analysis presented 
with an age related decrease in mRNA in mice but not in humans (Polg, p= 1e-10 mice, NPTN 
p=4e-54 in mice, HNRNPK p=1e-26 mice). The meta analysis results for BCL11B were less 
striking (nominally significant evidence that Bcl11b increases with age in murine brain regions 
but no significant associations in human brain regions or in peripheral tissues).  
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Extended Data Fig. 9 | Meta analysis of age related gene expression changes in the top 
identified genes in different human and mouse tissues. a, the meta-analysis of age-related 
mRNA changes in peripheral and brain tissues of human and mouse. The heatmap represents 
the median of z scores for different peripheral tissues and brain regions. We used Stouffer 
meta-analysis z scores if there was more than one dataset available for the tissue. 
Transcriptome datasets: Human (b)57,67, Mouse (c) 64. Age related mRNA changes was 
assessed by multivariate model including sex, and batch as co-variates.  
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Extended Data Fig. 10 | Bcl11b-/+ knock out mainly cause DNAm changes in the striatum. 
a, Manhattan plots of the EWAS of Bcl11b heterozygous knockout in the striatum, cerebral 
cortex and cerebellum of mice. The coordinates are based on the alignment to Mouse mm10 
genome. The direction of association is highlighted by red (positive association) and blue 
(negative association) at p<0.005 (red dotted line, FDR<0.03) significance. Sample size: 
16/group, ages, 0.16-0.5 years. The association was done by a multivariate model with age as 
co-variate. b, venn diagram of the significant EWAS results in each brain region. c, scatter plot 
of DNAm aging in Bcl11b-/+ vs wildtype mouse lines. Red dots indicate the shared age related 
CpGs at p<0.005. d, gene set enrichment analysis of the genes associated with Bcl11b 
knockout.  
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Extended Data Fig. 11 | Genes from the LUC or LUC.adjW signature versus GWAS and 
GenAge. a, Mammalian LUC (and LUC.adjW) exhibit a nominally significant overlap with genes 
that have been found by GWAS of human chronic diseases 37. b, The overlap of the mammalian 
LUC (and LUC.adjW) results with longevity genes reported in GenAge database 38. The pvalues 
in Venn diagram report the Fisher exact test results of the overlap of 400 LUC (or LUC.adjW) 
genes with each dataset. The background was limited to the genes that are covered in 
Mammalian Methylation Array.  
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