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ABSTRACT

Humans display great versatility when performing goal-directed tasks while walking. However, the extent to which such versatility
helps with fall avoidance remains unclear. We recently demonstrated a functional connection between the motor regulation
needed to achieve task goals (e.g. maintaining walking speed) and a simple walker’s ability to reject large disturbances. Here,
for the same model, we identify the viability kernel—the state space region in which the walker can step forever via at least
one sequence of push-off inputs per state. We further find that only a few basins of attraction of the speed-regulated walker’s
steady-state gaits can fully cover the viability kernel. This highlights a potentially important role of task-level motor regulation in
fall avoidance. Therefore, we posit an adaptive hierarchical control/regulation strategy that switches between different task-level
regulators to avoid falls. Our hierarchical task switching controller only requires a target value of the regulated observable—a
‘task switch’—at each walking step, each chosen from a small, predetermined collection. Because humans have typically
already learned to perform such tasks during nominal walking conditions, this suggests that the ‘information cost’ of biologically
implementing such controllers for the nervous system, including cognitive demands in humans, could be relatively low.

Introduction1

When human infants learn to walk, they essentially learn, albeit after extensive practice, to be ‘viable’, i.e. to avoid falls1.2

Likewise, older adults frequently fall while walking, and the related injuries are a serious public health issue2, 3. Quantifying3

individuals’ predisposition to fall is critical to minimizing fall incidence. However, the risk of a fall in humans likely depends4

on multiple biomechanical, neurological, cognitive, and environmental factors4. Stability while walking is not automatic, as5

even healthy humans need to actively cope with physiological motor noise and environmental disturbances. Here, we focus on6

the global dynamic stability of walking, i.e. a walker’s ability to reject large external disturbances (as might occur, e.g. while7

avoiding an unanticipated obstacle, or from a ‘shove’), which is central to avoiding falls.8

The paradigm of ‘limit cycle walking’5, 6 has shown that nominally periodic, disturbance-free walking motions (i.e. ‘limit9

cycles’) that are stable can be achieved without requiring continuous-time active control of walking trajectories between step10

transitions. Such nominal limb trajectories, across a variety of human movements, have also been predicted within the optimal11

control framework consistent with the ‘minimum intervention’ principle7. Many optimality-based approaches naturally seek12

solutions in the form of a single limit cycle, having a specific set of gait parameters such as step length and step time, often13

known a priori. However, such solutions are excessively restrictive as they overly constrain walking motion around a single14

trajectory. In contrast, humans have necessarily learned to walk at many such limit cycles, both stably and efficiently, to remain15

versatile. The notion of viability8 is well-suited to handle the non-uniqueness of solutions to a given walking task as it does not16

seek to optimize desired trajectories, but only to avoid falls. Moreover, at least in principle, humans could remain viable using17

control strategies that quickly switch between multiple limit cycles.18

Typically, humans also walk to achieve one or more task goals, by maintaining one or more gait observables (i.e. empirically19

measurable variables like speed or direction). Moreover, any given walking task could be performed via multiple gait patterns,20

each specified by a set of gait parameters9, 10. Such task-level redundancies also interact with biomechanical redundancies21

at the level of muscles and joints11. This non-uniqueness of solutions to a given motor task makes the problem of biological22

movement control mathematically ill-posed. For tasks that have multiple uncertain goals with similar costs, humans deliberately23

select intermediate movements to maximize task success12. In walking, however, fall avoidance decidedly supersedes achieving24

other task goals, which themselves often have different priorities10. This makes the choice of an optimal strategy far less25

obvious.26

In this vein, our work is motivated by the following fundamental questions: How does the nervous system manage27

redundancies while achieving task goals in any given walking context? Furthermore, how might this functional organization28

help minimize fall incidence? In response, we posit that humans achieve stable and efficient walking gaits via a hierarchical29
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schema, consisting of what we will here distinguish as control versus regulation of movement. Specifically, we use ‘control’ to30

refer to the processes required for a walker to remain viable while taking individual steps. Conversely, we use ‘regulation’ to31

refer to the processes needed to carry out specific goal-directed tasks. Evidently, the walker must remain viable at all times,32

including while carrying out specific walking tasks. Thus, control and regulation, while functionally distinct, are hierarchical33

by design.34

Viability is a generalized form of stability of an actuated dynamical system such that the system can avoid failure forever by35

choosing appropriate sequence(s) of inputs within its actuator limits8. The set of viable states in the system’s state space, in36

which its viability is guaranteed, thus provides a measure of the system’s ability to avoid failure. Indeed, the bigger the viable37

set of states in a walker’s state space, the better is the walker’s ability to avoid falls, as it can, at least in principle, reject a38

larger range of external disturbances13–15. However, by itself, viability does not take into account goal-directedness in walking.39

Indeed, the walker could, at least in principle, step randomly (i.e. with no ‘intent’) forever within the viable region.40

Task-level motor regulation allows the walker to achieve specific task goals by targeting relevant task-level observables41

from each walking step to the next: it rapidly corrects deviations in stepping observables that interfere with achieving a specific42

goal, while allowing task-irrelevant deviations to persist9, 16. Thus, regulation, too, can permit walking at several limit cycles,43

as long as they do not violate the specific task requirements, especially while stability concerns are not paramount. However, by44

itself, task-level regulation does not aim to guarantee stability of the walker’s limit cycle, let alone maximize its global stability.45

Our recent work17 highlights a possible answer as to why humans might prefer one equally workable task-level regulation46

strategy over another from the perspective of fall avoidance. We studied this question by integrating the simplest mechanical47

template18 of walking on level ground with motor regulation templates, i.e. empirically motivated models of how humans48

manipulate task-level observables on a step-to-step basis10, 16. In experiments, humans walking on a treadmill tightly regulate49

speed at successive strides, while allowing absolute position to drift for many strides9, 16. We simulated a push-off powered50

compass walker19 that additionally regulated step-to-step speed or absolute position on a treadmill. We characterized global51

stability of the walker’s limit cycles (i.e. steady-state periodic gaits) by the size and shape of their basins of attraction in the52

state space. Task-level regulation, despite not being designed to do so, makes walking more robust to external disturbances:53

it yields superior local (i.e. small) disturbance rejection and improved global stability, both by increasing the size of basins54

of attraction and by regularizing their geometric structure17. While both step-to-step speed and position regulation provide55

workable strategies for treadmill walking, speed regulation enlarges and regularizes the unregulated walker’s basin much56

more than position regulation. These simulation results are consistent with experiments9, 16 and thus demonstrate a functional57

connection between task-level motor regulation and global stability. However, that prior work did not assess motor regulation58

strategies within the context of viability.59

Here, we extend this recent work and study the same powered walker (Fig. 1) to identify the viable region in its state space8,60

i.e. the set of all states beginning in which the walker can step forever by applying at least one sequence of its push-off inputs61

for every starting state. The viable regions of walking models with definite swing leg dynamics, including the compass walker62

studied here, have not yet been explicitly estimated. Conversely, in the nonviable set of states, the walker cannot avoid falls,63

let alone regulate to achieve task goals, even with the best-possible active push-off control. Therefore, the viable region is64

also the set within which different motor regulation strategies can be meaningfully compared for their effect on the walker’s65

ability to avoid falls. Taking step-to-step speed regulation as a model task-level motor regulation strategy9, 16, 17, we estimate the66

speed-regulated walker’s basins for several target speeds vis-à-vis the viable region. Not only do the speed-regulated walker’s67

basins occupy large regular regions, but we find that only a small collection of these basins covers nearly the entire viable68

region itself. Motivated by these results, we propose a hierarchical task switching controller that, at least in principle, allows the69

walker to avoid falls by appropriately switching between different task-level regulators at each walking step. Our work suggests70

a possible mechanism by which humans could avoid falls, by exploiting redundancy in previously learned regulation strategies71

to achieve task goals in any given walking context, including that of responding to a large, unexpected disturbance.72

Results73

We employ the simplest dynamic walker that walks on a level surface by means of impulsive push-off actuation, modeling74

ankle plantar flexion during toe-off in humans19 (see “Methods”). The walker’s state, just after heel strike, is fully described75

by the stance leg angle θ+ and its angular rate θ̇+, in the inertial frame attached to the stance foot (Fig. 1). We study the76

walker’s step-to-step dynamics as a hybrid Poincaré map, FFF , over the two-dimensional state space (θ+, θ̇+) with push-off input77

P (equation 2).78

We further impose viability constraints on the walker that yield restrictions on its states and inputs (see “Methods”):79

specifically, the stance foot must remain on the ground throughout the stance phase; the impulsive actuation must be small80

enough to not lift the walker off the ground when the swing foot’s heel strike is impending, and must be large enough to lift the81

stance foot off the ground after push-off.82
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Where are the compass walker’s dynamics viable?83

1-step viable region84

Walking motions can start in the feasible region V0 of the state space:85

V0 , {(θ , θ̇) | θ+ > 0, θ̇+ 6 0}. (1)86

We further restrict θ+ 6 0.85, which covers the range of stance angles observed in humans.87

Previously17, we identified the ‘1-step’ region of the powered compass walker (Fig. 1) as the set of states from which the88

walker can have at least one heel strike. The 1-step region is the wedge-shaped region within V0, demarcated by the curves89

Ωlow and Ωhigh (Fig. 2a). However, our previous work did not seek to identify the walker’s viability within this region.90

Here, we find the viable subset of the 1-step region, i.e. the 1-step viable region V1, by imposing viability constraints on the91

walker’s dynamics (equation 2). We visualize V1 in a scaled state space (Fig. 2b), which we introduced previously17.92

The nonnegativity constraint of the ground reaction force (GRF) at the stance foot yields two curves, Γ
+
GRF and Γ

−
GRF defined93

by the equalities in equation (5). Each of these curves partition the 1-step region into viable and nonviable sets. Specifically, the94

walker’s stance foot maintains contact with the ground throughout when initialized from states on the sides of both Γ
+
GRF and95

Γ
−
GRF that contain the origin (0,0) (Fig. 2b).96

The actuation limits (equation 8) by themselves do not further limit the push-off-powered walker’s viability over a single97

step. Consequently, the walker’s 1-step viable region V1 is bounded by only four curves, viz. Ωlow, Ωhigh, Γ
+
GRF and Γ

−
GRF98

(Fig. 2).99

Also shown in Fig. 2 are the walker’s period-1 gaits, i.e. gaits that repeat every step. The walker admits families of100

‘long-period’ and ‘short-period’ gaits6, 19, which are fixed points (θ ∗, θ̇ ∗;P∗) of the map FFF (equation 2), for a given P∗. While101

the long- and short-period gaits admit distinct step times and contrasting open-loop stability as θ+ → 020, their curves17
102

intersect at (0,0) in the original state space (Fig. 2a). In contrast, in the scaled state space (Fig. 2b), those very gaits remain103

bounded away from each other as θ+→ 0, which facilitates further analysis.104

Viability kernel: ∞-step viable region105

While the walker can definitely take a step in the 1-step viable region V1 (Fig. 2), it is not guaranteed to walk forever, even106

with the best-possible push-off control. This is because the walker’s state after taking a step need not remain in V1, but is only107

guaranteed to lie in V0 (equation 1). We therefore identify the largest closed subset V of V1 in which the walker can remain108

viable forever, i.e. for an infinite number of walking steps. That is, for any state xk := [θ+
k , θ̇+

k ]> ∈ V , there exists at least109

one push-off input Pk such that xk+1 := [θ+
k+1, θ̇

+
k+1]

> = FFF(xk;Pk) ∈ V , satisfying viability constraints. The set V is thus the110

∞-step viable region or the viability kernel8, 15 of the powered compass walker. It also follows that V is the largest positively111

invariant set (i.e. invariant in forward time)21 under the walker’s closed-loop dynamics, i.e. with state-dependent push-off112

input. Alternatively, V is the largest controlled-invariant set21 of the push-off-powered compass walker. Outside V , the states113

are nonviable as no sequence of push-offs can prevent the walker from eventually failing (i.e. either violating at least one of the114

viability constraints or falling).115

We employed the viability kernel algorithm8 that avoids brute-force computation by utilizing the positive invariance property116

of V for its estimation (see “Methods”). Our implementation of that algorithm converged after 18 iterations so that the set V18,117

i.e. the 18-step viable region where the walker can take at least 18 steps, is the final estimate of the ∞-step region V (Fig. 3a) to118

within the resolution of the grid on the state space.119

We estimated the areas of different regions in the original state space using the composite Simpson’s rule. The ∞-step viable120

region V (Fig. 3a) occupies ≈ 97.46% area of the 1-step viable region V1 (Fig. 2): This indicates that the walker’s push-off can121

be chosen to make it walk forever beginning in almost all states for which it can have a legitimate heel strike (equation 4).122

Unreachability within the viability kernel123

We found the unreachable subset VUR of V that cannot be traversed by the walker’s trajectories (see “Methods”). The set VUR124

consists of two disjoint subsets of V , together occupying ≈ 2.47% of its area (Fig. 3a). As expected, the walker’s period-1125

gaits lie entirely within the reachable subset of V .126

Evidently, any walking task or target that would require the walker to traverse such unreachable sets cannot be achieved.127

The walker’s state can end up in VUR due to external disturbances or can be initialized within it; however, its state immediately128

(i.e. in one step) leaves VUR under the walker’s dynamics (equation 14).129

Viability kernel boundaries130

The viability kernel algorithm guarantees that the trajectories of nonviable grid-point states (Fig. 3) cannot enter the viability131

kernel V while those originating in the interior of V always remain in it. However, V is a closed set8, so states on its boundary132

must also satisfy the positive invariance property (equation 13): That is, the boundary of V can be mapped into itself or into the133

interior of V 22, provided appropriate input push-offs are chosen.134
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The boundary of V is a union of three curves: Γb, Γt and ΓGRF (Fig. 3). Our numerical results indeed show the positive135

invariance of the estimated boundaries of V , which leads to their validation via the mathematical theory of dynamical systems136

(see “Methods”).137

Task-level regulation, global stability, and fall avoidance138

No strategy can avoid falls for states outside the viability kernel V . Conversely, the walker can walk forever inside V by139

employing any one of infinitely many appropriate sequences of push-offs. However, the region V itself exists and is independent140

of any given control strategy the walker might choose. Thus, it is meaningful to assess the performance of different specific141

control strategies in avoiding falls only for the trajectories starting within V .142

We are particularly interested in motor regulation templates, i.e. empirically motivated models of how humans manipulate143

task-level observables on a step-to-step basis10, 16. As a model task-level regulation strategy, we here specify experimentally144

informed step-to-step speed regulation9, 16 on the walker (Fig. 1): see “Methods”. Specifically, we pick a push-off impulse at145

each step by minimizing the squared discrepancy between the speed V at the next step and its desired target value V ∗, chosen a146

priori.147

Global stability under task-level regulation: basins of attraction148

Previously17, we demonstrated a functional connection between task-level motor regulation and the walker’s ability to reject149

large disturbances, i.e. its global stability. The maximal attainable global stability for the walker, capable of applying arbitrary150

sequence of push-offs within its actuation limits, is, indeed, its viability. Therefore, we assess a walker’s global stability via the151

basins of attraction of its steady-state gaits in the state space vis-à-vis the viability kernel V (Fig. 3).152

As in our recent work17, we numerically estimated basins by simulating the open-loop (Pk := P∗) walker’s trajectories for 50153

steps and those of the speed-regulated (equation 16) walker for 25 steps, starting from every state on the same grid that we used154

for the estimation of V . The walker’s trajectories that fail to satisfy viability constraints are not considered part of its basins.155

The open-loop basins (Fig. 4) are significantly smaller in area than those of the speed-regulated basins (Fig. 5). Moreover,156

the geometric structure of the open-loop basins becomes more intricate as push-off impulse P∗ increases, with a growing157

number of disjoint boundaries (see17 for a discussion of the aspect of the noninvertibility structure of the open-loop basins). In158

contrast, the speed-regulated walker’s basins occupy large areas within V and are highly regular (Fig. 5): their boundaries are159

given by level curves of the form θ− = constant17 and/or shared with the boundaries of V themselves.160

In Fig. 6, we compare the normalized areas of the basins of attraction within the viability kernel V for the open-loop161

and speed-regulated walkers for target speeds V ∗ / 0.38301 (or, push-offs P∗ / 0.79478), leading up to the transcritical162

bifurcation17.163

The open-loop walker’s basin shrinks significantly as P∗ increases from 0.01 to 0.1325, before the long-period gait loses164

open-loop stability at P∗ ≈ 0.13571 via a period-doubling bifurcation. The open-loop basin occupies a maximum of ≈ 8.4%165

area of V at P∗ = 0.01. In comparison, the speed-regulated walker’s basin of its long-period gait grows with speed until166

it achieves its maximum size, ≈ 56.4% area of V , at V ∗ ≈ 0.23308 (P∗ ≈ 0.24214) before shrinking significantly at higher167

speeds.168

Viability via hierarchical task switching control169

The open-loop basins in Fig. 4 together occupy only ≈ 20.36% of the area of the viability kernel V with many hard-to-fill gaps170

in between. Furthermore, we estimate that all of the open-loop basins, corresponding to P∗ values of all the long-period gaits,171

together can cover no more than 40% of the area of V .172

Conversely, the task-level speed regulator, while achieving the specified goal of maintaining a target speed at each step,173

allows the push-off powered compass walker to reject a large range of external disturbances, despite not being designed to174

do so17. The speed-regulated walker’s basins occupy large, regular regions of V for a range of target speeds V ∗ (Fig. 6).175

Furthermore, as we show in Fig. 7, only five of the speed-regulated walker’s basins from Fig. 5 almost fully cover V . Thus,176

starting from almost every state in V , as might occur from an external disturbance, there is at least one task-level speed177

regulator (or V ∗) that allows the walker to avoid falls as long as the state trajectory remains within the corresponding basin.178

Additionally, since a set of target speeds V ∗ can be chosen so that any two adjacent speed-regulated basins overlap (as in Fig. 7),179

there is flexibility to switch between the corresponding regulators immediately (V ∗i ↔V ∗i+1) provided the walker’s state lies180

within the basin intersection. Thus, this suggests that task-level speed regulation, unlike open-loop dynamics, could, at least181

in principle, be used to keep the walker viable for almost all states in V , i.e. allowing it to avoid falls forever, in response182

to any disturbance that does not push the system entirely out of V . For example, a plausible task switching controller could183

appropriately switch target speed at each step to one of the five values {V ∗i , i = 1, . . . ,5}, as in Fig. 7, so that the walker can184

move from one speed-regulated basin to another without falling. We posit that a similar adaptive hierarchical control/regulation185

strategy exists in human walking and provides a key mechanism used to avoid falling.186

4/16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2022. ; https://doi.org/10.1101/2022.01.16.476517doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.16.476517
http://creativecommons.org/licenses/by-nc-nd/4.0/


To further elucidate the function of such task switching control, we consider a scenario where the walker experiences a large187

disturbance while maintaining some desired speed V ∗f . Let the state of the walker immediately after the disturbance lie within188

the viability kernel: xk ∈ V at the kth walking step. Moreover, we assume that xk ∈B(V ∗i ), where B(V ∗i ) is the task-regulated189

basin corresponding to some suitably chosen intermediate target speed V ∗i . The walker then applies a push-off Popt
k,i to achieve190

the target value V ∗i at the next step (V ∗ := V ∗i in equation 15). We construct a possibly minimal set, Vp, of all such target191

speeds V ∗i such that the corresponding set of speed-regulated basins together can cover the viability kernel: V ≈ ∪i B(V ∗i )192

(Fig. 7). Thus, specifying such a hierarchical control strategy amounts to specifying a suitable sequence of ‘task switches’,193

i.e. target speeds {V ∗i ∈ Vp} at each step, for the regulators. Such task switching control can, in principle, allow the walker194

to get back to its original task goal V ∗f ∈ Vp while remaining viable throughout its post-disturbance recovery phase: at the195

(k+1)st walking step, the walker’s state xk+1 not only belongs to B(V ∗i ) but also to B(V ∗j ) for some V ∗j ∈Vp, j 6= i, by design.196

Once the walker’s state trajectory enters the basin B(V ∗f ) corresponding to the original task, the relevant speed regulator to197

achieve that task goal is switched back on for subsequent walking steps, until the next large disturbance is encountered. Thus,198

following such a strategy of switching between a small set of target speeds, the walker could walk forever while overcoming a199

wide range of large disturbances. Furthermore, because task switching is not mechanical, it is not affected by the the walker’s200

inertial properties. Thus, the time scale of task switching in humans would be limited not by mechanics proper, but by the201

speed of processes in the nervous system related to perception, motor activation, and cognition (particularly executive function).202

Therefore, task switching can, in principle, be accomplished almost instantaneously. This has obvious benefits for recovering203

from sudden, unexpected disturbances.204

Discussion205

We studied the simplest dynamic walker’s viability, i.e. its ability to avoid falls forever by applying an appropriate sequence206

of push-off inputs. Specifically, for the push-off-powered compass walker19 we estimated the viability kernel V in its state207

space8 and verified that our numerical results are consistent with the mathematical theory of dynamical systems. We found that208

the walker’s push-off can be chosen to avoid falls forever beginning in almost all states that allow the walker to have a heel209

strike. Moreover, greater than 97% of the states within V remain reachable via push-off inputs, indicating a high degree of210

maneuverability of the viable walker.211

We posited that humans could remain viable, i.e. avoid falls forever, while carrying out specific goal-directed walking tasks212

via a hierarchical schema consisting of both control and functionally distinct task-level step-to-step regulation of gait observables.213

As a model task-level motor regulation strategy for the walker, we imposed speed regulation9, 16 that, as we demonstrated in17,214

greatly enhances the walker’s global stability (large disturbance rejection) compared to open-loop (unregulated) dynamics.215

Here, however, we assessed the walker’s global stability relative to its viability—its maximal attainable global stability—via the216

basins of attraction of its steady-state gaits in the state space vis-à-vis V . This facilitated a direct comparison between open-loop217

dynamics, task-level regulation, and theoretically best-possible control strategies from the perspective of fall avoidance alone.218

We found that the speed-regulated walker’s basins, unlike the open-loop basins (Fig. 4), occupy large, regular regions219

within V (Figs. 5 and 6). Moreover, for a range of target speeds, their boundaries are given by simple level curves and/or220

are shared with the boundaries of V themselves. Furthermore, the speed-regulated basins corresponding to only a few target221

speeds together nearly cover the entirety of V even as any adjacent pairs of such basins overlap in the state space (Fig. 7).222

Our results thus strongly suggest a potential role of task-level regulation within high-level control strategies that are explicitly223

geared toward avoiding falls or attaining viability. In light of this, we proposed a high-level, adaptive task switching control224

strategy that, in principle, maintains viable walking by switching between a small collection of task-level speed regulators225

corresponding to a few preselected target speeds—‘task switches’—at each walking step. However, it is clear that, at least in226

principle, such task switching controllers could also employ qualitatively different regulators, based on gait observables other227

than walking speed, or even a combination of such regulators. Thus, our proposed task switching schema is more general than228

switching via speed regulation alone.229

The theoretically best-possible control strategies that guarantee the walker’s viability would perhaps require specifying an230

entire sequence of push-offs for each different walking trajectory. In comparison, a hierarchical task switching controller seems231

advantageous from an information transmission and processing perspective: it needs specifying only a sequence of discrete task232

switches, each belonging to a small predetermined set (or ‘alphabet’). While we are agnostic as to how such hierarchical task233

switching control could be realized biologically, our results nevertheless suggest that its ‘information cost’ could be relatively234

low for the nervous system. This is because the cognitive demands of discretely switching between a few (and likely already235

learned or ‘crystallized’23, 24) tasks could be substantially lower than estimating/specifying appropriate control inputs ‘from236

scratch’ at each walking step. This suggests that humans might prefer cognitively less-demanding hierarchical control strategies237

based on task switching. Indeed, task switching (or ‘set shifting’) is a well-established sub-component of executive function25.238

For older adults, executive function is crucial to their ability to avoid falling and impaired executive function predicts their fall239
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risk26–28. Task switching in particular declines in older adults29 and predicts both poor balance30 and fall history31. Our results240

thus provide direct theoretical support to the idea that the impaired ability to task-switch appropriately and/or quickly enough241

likely contributes to increased fall risk in older adults.242

While our perspective is focussed on goal-directed behavior of biological movement, our results have implications to243

robotics as well. Indeed, some high-level strategies based on switching between different controllers32 or between limit cycles244

with speed changes have demonstrated improved stability and versatility of bipedal walking33 and running34 robot models. For245

multi-degree-of-freedom robot models, it is computationally difficult to map out their viability kernel in the high-dimensional246

state space. However, the concept of task switching within a hierarchical control/regulation strategy could be potentially247

employed to enhance the robustness of walking robots and help reduce (or perhaps minimize) their falls.248

Methods249

Simplest dynamic walker250

We employ a 2D compass walker (Fig. 1) that walks on a level surface by means of impulsive push-off actuation P. The251

continuous stance phase of this walker is fully unactuated with no foot placement control. This makes it the simplest actuated252

model having definite swing leg dynamics, unlike 2D inverted pendulum models15.253

Every forward walking step (Fig. 1) consists of a continuous-time single-support stance phase followed by an instantaneous254

impulsive double-support phase. Thus, the walker’s step-to-step dynamics are inherently hybrid. The walker’s state, just after255

heel strike, is fully described by the stance leg angle θ+ and its angular rate θ̇+, in the inertial frame attached to the stance foot.256

The walker’s step-to-step dynamics can be studied as a hybrid Poincaré map, FFF , [F1,F2]
>, over the two-dimensional state257

space (θ+, θ̇+) with push-off input Pk applied just before heel strike at the end of step k17, 19:258

θ
+
k+1 = F1(θ

+
k , θ̇+

k ), (2a)259

θ̇
+
k+1 = F2(θ

+
k , θ̇+

k ;Pk). (2b)260
261

The map FFF is non-invertible17, i.e. any given state of the walker could have zero, one, or more than one preimage under FFF ,262

even when P is fixed. Also, across heel strikes19 (Fig. 1):263

θ
+
k+1 =−θ

−
k , (3a)264

θ̇
+
k+1 = θ̇

−
k cos2θ

−
k +Pk sin2θ

−
k . (3b)265

266

The walker’s heel strike is legitimate (Fig. 1) when:267

θ
− 6 0, θ̇

− 6 0, φ
− = 2θ

−, and φ̇
− > 2θ̇

−. (4)268

We also assume no slipping at the foot-ground contact.269

Viability constraints270

For the walker to remain viable, its stance foot must remain on the ground so that the ground reaction force (GRF) at the stance271

foot is nonnegative throughout the stance phase. Since this GRF can be smallest either just after or before heel strike, we get272

two inequality constraints over the state space (Fig. 1):273

GRF+ : cosθ
+− (θ̇+)2 > 0, (5a)274

GRF− : cosθ
−− (θ̇−)2 > 0. (5b)275

276

Moreover, this places a state-dependent limit on the maximum push-off, Pk,max, since the walker cannot lift off the ground when277

the swing foot’s heel strike is impending15:278

Pk,max =

{
θ̇
−
k tan2θ

−
k for − (π/4)< θ

−
k 6 0,

∞ for θ
−
k 6−(π/4).

(6)279

Furthermore, the impulsive actuation cannot apply a braking force, i.e., Pk > 0. Additionally, we assume that the stance foot280

must lift off the ground after push-off. This places a state-dependent limit on the minimum push-off, Pk,min, so that the walking281

motion can continue (Eqs. 3b and 1):282

Pk,min =

{
0 for − (π/4)< θ

−
k 6 0,

−θ̇
−
k cot2θ

−
k for θ

−
k 6−(π/4).

(7)283

Therefore, the push-off impulse at each step k needs to satisfy actuation limits (Eqs. 6 and 7) for the walker to remain viable:284

Pk,min 6 Pk 6 Pk,max. (8)285
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Numerical estimation of the viability kernel286

Estimating the viability kernel V for a given actuated dynamical system is in general a non-trivial task, even in low-dimensional287

state spaces21. For instance, V is more difficult to estimate than a basin of attraction, another positively invariant set. The288

trajectories originating in V can only be guaranteed to remain in an as yet unknown V ad infinitum by choosing an appropriate289

input sequence. Brute-force estimation of V requires the computation of many sufficiently long trajectories starting from each290

state, each of which differ due to distinct control input sequences. If at least one such trajectory satisfies viability constraints,291

then the corresponding starting state would likely belong to V . Conversely, the trajectories of basin states approach an attractor292

that is often known a priori. Thus, brute-force estimation of a basin requires only a single sufficiently long trajectory starting293

from each state and a decision as to whether or not it will eventually reach the attractor. A recent study15 examined the viability294

of 2D inverted pendulum models of walking, which have a 1-dimensional state space and a 2-dimensional control input space.295

In contrast, the system considered here has a 2-dimensional state space and a 1-dimensional control input space.296

The viability kernel algorithm [8, pp. 153-154] avoids brute-force computation by utilizing the positive invariance property297

of V , which for the walker (equation 2) can be written as:298

FFF(V ;P)⊆ V . (9)299

Here, the set FFF(V ;P), {FFF(x;P(x)) | x ∈ V ,P(x) ∈P}, where P(x) is any appropriately chosen push-off P depending on300

the state x := [θ+, θ̇+]>, and the set P is the collection of all such push-offs matched to states such that the relation (9) holds.301

The positive invariance property pertains to sets in the state space alone. Since P is not known a priori, we consider all302

push-offs within the actuation limits (equation 8) to eliminate P from the relation (9).303

The dynamics of a powered compass walker, capable of applying any push-off within the actuation limits at each step, is304

described by a difference inclusion8, i.e. a set-valued map F̃FF satisfying305

xk+1 ∈ F̃FF(xk), (10)306

where the set F̃FF(xk) is obtained from equation (2):307

F̃FF(xk) :=
{[

θ
+
k+1, θ̇

+
k+1

]> | θ̇
+
k+1 ∈ Θ̇k+1

}
, (11)308

where Θ̇k+1 is an interval defined, using equation (3b) and the allowable range of push-offs Pk (Eqs. 6 and 7), as:309

Θ̇k+1 :=

{[
θ̇
−
k (1/cos2θ

−
k ), θ̇

−
k cos2θ

−
k

]
for − (π/4)< θ

−
k 6 0,

(−∞, 0] for θ
−
k 6−(π/4).

(12)310

Thus, at step k, the set F̃FF(xk) is a vertical line segment, Θ̇k+1, in the state space at θ+ = θ
+
k+1 =−θ

−
k (equation 3a). Therefore,311

equation (9), expressed solely in terms of states, becomes:312

F̃FF(x)∩V 6= /0 for all x ∈ V . (13)313

Thus, in principle, one can recursively obtain V via the following algorithm:314

Algorithm 1: discrete viability kernel8

Result: viability kernel V
1 V0← feasible region (equation 1);
2 V1← 1-step viable region (Fig. 2);
3 j← 1;
4 while V j 6= V j−1 do
5 V j+1 :=

{
x ∈ V j | F̃FF(x)∩V j 6= /0

}
;

6 j← j+1;
7 end
8 V ← V j;

315

The intermediate estimates {V j+1 ⊆ V j; j = 1,2,3, . . .} form a nested sequence of j-step viable regions, whose limit is the316

viability kernel: V := ∩∞
j=1V j = lim j V j. We numerically approximate V via a uniform 42500×1002 grid of points over the317

scaled state space (Fig. 2b): ∆θ+ = 2×10−5 and ∆θ̇+
sc = 1/1001. However, all dynamics calculations are carried out in the318

original state space, for the corresponding grid over the wedge-shaped region (Fig. 2a).319

Algorithm 1 is practically useful if it converges (stops) in a finite (preferably small) number of iterations. This requires320

an accurate representation of the boundaries of V j (at the jth iteration) so that the intersection F̃FF(x)∩V j in Algorithm 1321
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can be found reliably. The boundaries of V1 (Ωlow, Ωhigh, Γ
+
GRF and Γ

−
GRF in Fig. 2) are smooth level curves, which we322

accurately represent via fitted piecewise cubic splines with continuous curvature (MATLAB’s spline). Since sets {V j; j > 2}323

are recursively estimated as collections of j-step viable grid-point states, their boundaries are not known in closed form. We324

represent such boundaries by employing shape-preserving piecewise cubic polynomials (MATLAB’s pchip) to reduce potential325

artifacts (overshoots and oscillations) in the fitted curves over the grid. We passed such fitted boundary curves through nonviable326

grid-point states tightly enveloping estimates of V j so as to avoid accidental removal of viable states during the iterations of327

Algorithm 1. Our implementation of Algorithm 1 converged at j = 18, so that the set V18 is the final estimate of the ∞-step328

region V (Fig. 3a) to within the grid resolution.329

Unreachable subset of the viability kernel330

The image of V under F̃FF , i.e. F̃FF(V ) := {F̃FF(x) | x ∈ V }, does not cover V entirely, so that the unreachable subset of V is the331

open set:332

VUR , V \{F̃FF(V )∩V } := {x ∈ V | x /∈ F̃FF(V )}. (14)333

We found that the set VUR consists of two disjoint subsets of V demarcated by the boundaries Γ1 and Γ2 (Fig. 3a). None of334

the grid-point states in V map above the boundary Γ1 with P = 0, and consequently for any P > 0 (equation 3b). Studies of335

non-invertible maps35, 36 thus suggest that the boundary Γ1 belongs to a critical curve (often denoted as LC): the number of336

preimages of states on opposite sides of LC differs by two, which we also found to be the case for Γ1.337

Validation of the viability kernel boundaries338

The boundary of V is a union of three curves: Γb, Γt and ΓGRF (Fig. 3). The composite boundary ΓGRF itself is a subset of339

the union of the boundaries Γ
+
GRF and Γ

−
GRF of the 1-step viable region V1 (Fig. 2b). The boundary Γb smoothly merges with340

the Ωhigh curve (θ̇+
sc =−1 in Fig. 3) at θ+ ≈ 0.37402. Thus, Γb is partitioned into two subsets, Γb \Ωhigh := {(θ+, θ̇+) ∈ Γb |341

θ+ / 0.37402} and Γb∩Ωhigh := {(θ+, θ̇+) ∈ Γb | θ+ ' 0.37402}. We numerically verified that both ΓGRF and Γb∩Ωhigh342

can indeed be mapped in the interior of V .343

Furthermore, both boundaries Γb \Ωhigh and Γt map into Γb \Ωhigh after one step of the walker with zero push-off.344

Moreover, the boundary Γb is tangent to the curve of short-period gaits at the open-loop-unstable gait U (a saddle point) at345

{(θ ∗, θ̇ ∗);P∗}= {(0,0);0} (Fig. 3). These numerical results suggest that Γb \Ωhigh and Γt belong to the stable set of the saddle346

U17, 36, 37 of the walker’s non-invertible map FFF with P = 0 in equation (2). Consistently, we found that both Γb \Ωhigh and Γt347

are contained in the open-loop basin boundaries for P∗ = 0 (Fig. 3b), which constitute a stable set17. Since the stable set of a348

saddle is positively invariant, this confirms that the set {Γb \Ωhigh}∪Γt is also positively invariant.349

Step-to-step speed regulation as a model task-level regulation strategy350

We pick a push-off impulse at each step based on the discrepancy between the speed V at the next step that depends on the351

walker’s current state and its desired target value V ∗, chosen a priori. Thus, at step k, the smallest push-off, Popt
k , that minimizes352

the next-step quadratic cost is17:353

Popt
k := argmin

P
[Vk+1(xk;P)−V ∗]2 , (15)354

where xk := [θ+
k , θ̇+

k ]> is the walker’s state at the beginning of step k. Then, the speed-regulated walker applies push-off Pk that355

satisfies actuation limits (equation 8) at step k:356

Pk :=


Popt

k for Popt
k ∈ [Pk,min,Pk,max],

Pk,min for Popt
k < Pk,min,

Pk,max for Popt
k > Pk,max.

(16)357

We note that this speed regulation strategy (equation 15) does not explicitly utilize the location of the boundaries of V (Fig. 3)358

to infer Popt
k .359

The push-off Popt
k places the speed-regulated walker’s state xk+1 on the target-speed manifold—a goal equivalent mani-360

fold38—that is a piecewise-smooth curve in the two-dimensional state space17, defined by:361

V =V ∗ or
∂V
∂P

= 0, (17)362

whenever Popt
k ∈ [Pk,min,Pk,max] (equation 8). We efficiently simulated the speed-regulated walker’s trajectories by precomputing363

the target-speed manifold by solving equations (17) using numerical continuation17.364
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(c)swing legstance leg

“switch” legsstance phasehip

Figure 1. Three snapshots of a 2D powered compass walker19 walking on a level ground (step speed, Vk): (a) just after kth, (b)
just before (k+1)st and (c) just after (k+1)st heel strike. The walker has straight, massless, stance (red) and swing (blue) legs,
and a mass at the hip (circle). The masses at the feet (not shown) are infinitesimally small compared to the hip mass. The
push-off impulse, P, is applied instantaneously just before heel strike. At the beginning of the kth step, the walker’s state in the
inertial frame is [θ+

k , θ̇+
k ]>.

(a) (b)

GRF

GRF

Figure 2. Powered compass walker’s 1-step viable region V1, i.e. the set of states beginning in which the walker takes at least
one step while remaining viable, bounded by the curves Ωlow, Ωhigh, Γ

+
GRF, and Γ

−
GRF: (a) In the wedge-shaped region in the

middle (‘1-step’ region17), demarcated by the curves Ωlow and Ωhigh, the walker has at least one heel strike though it may not
necessarily maintain a nonnegative GRF at the stance foot. Indeed, in the nonviable region, the stance leg either moves too
slowly to swing past the vertical, moves too fast so that the walker falls forward, or fails to maintain ground contact throughout
the stance phase. Thus, V1 is a strict subset of the ‘1-step’ region17. (b) To better visualize V1, we plot the state space with θ̇+

scaled to θ̇+
sc , θ̇+−Ωlow(θ

+)
Ωlow(θ+)−Ωhigh(θ+)

for any given θ+ ∈ (0,0.85], so that the new variable θ̇+
sc is 0 on the upper Ωlow curve and

takes a value −1 on the lower Ωhigh curve17 (freehand arrows). The period-1 gaits of the walker, viz. ‘long-period’ and
‘short-period’ gaits that repeat every step, along with their open-loop stability, are as in our previous work17: solid lines show
open-loop-stable gaits, while broken lines depict open-loop-unstable gaits. Inset shows zoomed-in area where Γ

+
GRF, and Γ

−
GRF

intersect each other and the period-1 gaits.
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(b)(a)

Figure 3. The ∞-step viable region or the viability kernel V in the scaled state space (Fig. 2b) of the powered compass walker,
numerically approximated via Algorithm 1 as the 18-step viable region V18 after convergence on a grid. The set V , bounded by
the curves {Γb,Γt,ΓGRF}, is a strict subset of the 1-step viable region V1 (Fig. 2): indeed, states within V1 (or ‘1-step’ region17)
that are either below Γb or above Γt are nonviable. The boundary ΓGRF is common to both V and V1. The curves of long- and
short-period gaits are from Fig. 2. (a) The two unreachable subsets (hatched regions) of V , demarcated by the boundaries Γ1
and Γ2, cannot be traversed by the walker. (b) The open-loop basin of attraction with zero push-off (P∗ = 0) is a subset of V ,
within which trajectories approach the steady-state long-period gait S at {(θ ∗, θ̇ ∗);P∗}= {(0,0);0}. The basin boundaries
form the stable set17, 36 of the unstable short-period gait U (a saddle point) at {(θ ∗, θ̇ ∗);P∗}= {(0,0);0} and also contain the
boundaries Γb \Ωhigh := {(θ+, θ̇+) ∈ Γb | θ+ / 0.37402} and Γt of V .
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Figure 4. Evolution of the open-loop (Pk := P∗, constant) walker’s basin of attraction within the viability kernel V of its
long-period steady-state gait (×+) with increasing push-off impulse P∗. Compare to Fig. 5. The open-loop basin at P∗ = 0.001
is similar in structure to that with no push-off (P∗ = 0) that shares boundaries with V (Fig. 3b). As P∗ increases, the basins
shift to the right within V , while shrinking progressively for P∗ > 0.01. The first period-doubling bifurcation occurs at
P∗ ≈ 0.13571, so that the open-loop basin at P∗ ≈ 0.288 is empty. Basin areas (% of the area of V ) for increasing P∗:
{8.32,8.36,5.38,3.11,1.46,0}%. 13/16
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Figure 5. Evolution of the speed-regulated walker’s basin of attraction within the viability kernel V of its long-period
steady-state gait (×+) with increasing target step speed V ∗ (or, push-off impulse P∗ ∈ {0.001,0.01,0.05,0.1,0.1325,≈ 0.288}).
Compare to Fig. 4. For V ∗ > 0.113, the basins are highly regular regions delimited by the level curves (Γleft and/or Γright of the
form {θ− = constant}) and the boundaries of V themselves. The geometric structure and size of the speed-regulated basins at
V ∗ ∈ {≈ 0.016,≈ 0.051} is affected by viability constraints, specifically, actuation limits (equation 8): the basin at V ∗ ≈ 0.016
is similar in structure to the open-loop basin for P∗ ∈ {0,0.001} (Figs. 3 and 4). Basin areas (% of the area of V ) for
increasing V ∗: {8.12,11.62,20.59,36.62,44.83,54.13}%.
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Figure 6. Evolution of the basin sizes [percent of the area of the viability kernel V (Fig. 3)] for the open-loop and
speed-regulated walkers. Both V ∗ and P∗ correspond to the steady-state long-period gait. The markers denote sizes of the
basins estimated via simulations (Figs. 3, 4, and 5). The solid line for speed regulation denotes analytical approximations of
basin sizes when basin boundaries can be predicted (either as level curves and/or coinciding with the boundaries of V ): these
predictions match simulations well except when actuation limits significantly affect the basin structure at low speeds or
push-offs. The solid line for open loop corresponds to unstable gaits so that their basins are empty.
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Figure 7. Five of the speed-regulated walker’s basins from Fig. 5 of its long-period steady-state gait (×+) corresponding to the
target step speeds, {V ∗1 ≈ 0.016,V ∗2 ≈ 0.051,V ∗3 ≈ 0.113,V ∗4 ≈ 0.178,V ∗5 ≈ 0.251}. These five basins together cover
> 99.99% of the area of the viability kernel. Also, any two adjacent basins have some overlap with each other.
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