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Abstract

Single-nucleotide variants (SNVs) are the most common variations in the human genome. Recently developed
methods for SNV detection from single-cell DNA sequencing (scDNAseq) data, such as SCIΦ and scVILP,
leverage the evolutionary history of the cells to overcome the technical errors associated with single-cell
sequencing protocols. Despite being accurate, these methods are not scalable to the extensive genomic
breadth of single-cell whole-genome (scWGS) and whole-exome sequencing (scWES) data.
Here we report on a new scalable method, Phylovar, which extends the phylogeny-guided variant calling
approach to sequencing datasets containing millions of loci. Through benchmarking on simulated datasets
under different settings, we show that, Phylovar outperforms SCIΦ in terms of running time while being more
accurate than Monovar (which is not phylogeny-aware) in terms of SNV detection. Furthermore, we applied
Phylovar to two real biological datasets: an scWES triple-negative breast cancer data consisting of 32 cells
and 3375 loci as well as an scWGS data of neuron cells from a normal human brain containing 16 cells and
approximately 2.5 million loci. For the cancer data, Phylovar detected somatic SNVs with high or moderate
functional impact that were also supported by bulk sequencing dataset and for the neuron dataset, Phylovar
identified 5745 SNVs with non-synonymous effects some of which were associated with neurodegenerative
diseases. We implemented Phylovar and made it publicly available at https://github.com/mae6/Phylovar.git.

Key words: Single-nucleotide variation detection, Single-cell whole-genome sequencing, Single-cell whole-exome
sequencing, Intra-tumor heterogeneity

Introduction
With the advent of the first single-cell sequencing (SCS)
techniques [20, 27], the fields of single-cell genomics,
transcriptomics, proteomics, and epigenetics have witnessed
remarkable growth over the last decade. Single-cell sequencing
technologies have impacted our understanding in different
fields of biology including developmental biology, immunology,

microbiology, and cancer biology [30, 21, 16, 14, 28]. Single-cell
DNA sequencing (scDNAseq), as one of the SCS technologies,
provides insights into the somatic evolutionary process by
sequencing the genomic contents of a complex tissue at a
single-cell resolution [20, 21]. Preparing scDNAseq data requires
a whole-genome amplification (WGA) process to amplify the
DNA material of a single cell to suffice the amount of
DNA needed for sequencing. [35, 14]. WGA technologies,
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such as multiple displacement amplification (MDA) [25, 3]
and multiple annealing and looping-based amplification cycles
(MALBAC) [37] can elevate the noise level in scDNAseq data.
The scDNAseq technical errors include allelic dropout (ADO),
false-positive (FP) errors, false-negative (FN) errors, and non-
uniform coverage [21, 35]. ADO refers to cases where only one of
the two alleles in a heterozygous mutation is amplified, resulting
in the loss of the mutated allele. FP artifacts can appear due to
uneven amplification or at the early stages of the amplification
when the original nucleotide is substituted randomly. The non-
uniform coverage over different genomic loci may result in
missing data due to zero or insufficient coverage. The scDNAseq-
specific technical errors fuelled the development of tools such
as Monovar [36] and SCcaller [5] for detecting single-nucleotide
variations (SNVs) from scDNAseq data. Although Monovar and
SCcaller account for uneven coverage and scDNAseq-specific
errors, more recent methods, SCIΦ [24] and scVILP [6], showed
further improvement in overcoming the scDNAseq-specific
technical errors by simultaneously inferring the cells’ phylogeny
and SNVs. SCIΦ employs a Markov chain Monte Carlo (MCMC)
algorithm to sample the joint posterior distribution of SNVs
and the phylogenetic tree of the single cells and reports the
tree(s) with the best posterior probability and the corresponding
genotypes. scVILP is formulated as an instance of Mixed Integer
Linear Programming (MILP) and it aims to find maximum
likelihood estimation (MLE) of the observed read counts given
the underlying genotype matrix. Here, the MILP solver is
restricted to proposing only the genotype matrices that satisfy
three-gametes condition in order to maximize the likelihood
function (see [19, 10, 7, 11, 23, 9] for more details on work
related to inference under the three-gametes condition).

Although “regularizing” the mutation detection by using a
tree as a guide is a promising direction [24, 6, 15, 18], applying
SCIΦ and scVILP to datasets with large number of loci such
as in [8, 31] is challenged by either very long running time or
large memory consumption of the methods—the major issues
in SCIΦ and scVILP, respectively. Indeed, scVILP runs out of
memory on all of the datasets considered in our study here,
except for the smallest ones, which is why we do not report
on the performance of scVILP. To address this challenge, we
developed Phylovar, a likelihood-based method for phylogeny-
aware inference of SNVs from scDNAseq datasets consisting of
a large number of loci. To simplify likelihood calculations for
large-scale data, we assume that mutations occur following an
infinite-sites assumption (ISA) [24, 4, 13]. Using this model,
Phylovar finds the tree topology and the placement of mutations
on ancestral single-cells that maximize the likelihood of the
erroneous observed read counts given the genotypes. Utilizing
a vectorized formulation for likelihood calculations, Phylovar
benefits from the vectorized operations in matrix manipulation
packages such as NumPy [12] to scale up to many loci. We
compared the SNV calling accuracy, memory consumption, and
running time of Phylovar against those of the existing methods,
Monovar and SCIΦ, through a simulation study. We found
that Phylovar outperforms SCIΦ in terms of running time with
the same accuracy, while being more accurate than Monovar.
Furthermore, we applied our method to two biological datasets:
a triple-negative breast cancer (TNBC) dataset [31] consisting
of 32 single cells and 3375 candidate loci, as well as the dataset
from [8] containing 16 normal human neuron cells and 2,489,545
candidate loci. For the TNBC data, Phylovar inferred 652 SNVs

with “high" or “moderate" functional impact, out of which 550
(84%) were also supported by bulk sequencing. For the neuron
cells, Phylovar identified 5745 SNVs with non-synonymous
effects some of which were related to neurodegenerative diseases.
To the best of our knowledge, Phylovar is the first scDNAseq
SNV caller that can utilize the underlying tree structure even
when the dataset contains millions of genomic loci.

Methods
The input to Phylovar consists of the reference and variant
count matrices, denoted by R = (rij) ∈ N0

N×M and V =

(vij) ∈ N0
N×M , where N and M represent the number of

single cells and candidate loci, respectively. Each entry in R

and V represents the number of reference and variant counts,
respectively, at cell i and site j. These count matrices are
obtained from an input file in mpileup format. Here, candidate
loci are defined as the genomic loci with a significant number of
variant reads. This significance is measured by a statistic test.
Note that these loci may not necessarily contain SNVs since the
variant reads might be artifacts of scDNAseq technical errors. In
all experiments reported below, we used SCIΦ’s likelihood ratio
test described in [24] to identify candidate loci for the analyses.
If the total read coverage at a cell and a candidate site is less
than λ, the corresponding entry is treated as missing data. We
used λ = 1 in practice.

Single-cell genotype error model

Our genotype model considers bi-allelic genotype with 0
and 1 representing the absence and presence of a mutation,
respectively. We differentiate true genotypes from those being
subject to scDNAseq errors that propagate from WGA to
the sequencing library — called library genotypes. Let G =

(gij) ∈ {0, 1}N×M be the binary matrix containing the true
genotypes where gij represents the true genotype at cell i
and locus j. Similarly, we denote the library genotype matrix
by Ψ = (ψij) ∈ {0, 1}N×M . We assume library preparation
process introduces FP and FN errors into the data resulting
in difference between true genotypes and their corresponding
library genotypes. Let α and β denote the FP and FN error
rates, respectively. Then, the probability of the library genotype
given true genotype and error rates are given by the following
error model adopted from SiFit [34] and SiCloneFit [33]:

P(ψij |gij , α, β) =


α if ψij = 1, and gij = 0

1− α if ψij = 0, and gij = 0

β if ψij = 0, and gij = 1

1− β if ψij = 1, and gij = 1

. (1)

Single-cell read count model

For the convenience of notation, let cij = rij + vij denote
the total read coverage at cell i and locus j. We assume that
variant read counts follow a binomial distribution whose success
probability depends on the value of the library genotype:

P (rij , vij |ψij) =


(cij
vij

)
µ0
vij (1− µ0)rij if ψij = 0(cij

vij

)
µ1
vij (1− µ1)rij if ψij = 1

. (2)

The variables µ0 and µ1 are the success probabilities associated
with reference and alternate alleles, respectively. In practice, we
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set µ0 to 0.001, which is at the same order of magnitude for the
error rate in different Illumina sequencing platforms [26]. We
used 0.5 for the value of µ1, which is the mean of variant read
counts for a heterozygous mutation.

Tree model

Our tree model consists of two components: a binary tree
topology T = (V,E)—where V denotes the set of nodes, and E
is the set of edges—and a mutation placement for each genomic
locus j, Mj ∈ {0, 1}2N−1. The latter is a binary vector of
length 2N−1 containing binary elements for each leaf or internal
node in V . We take Mj [q] = 1 to denote that a mutation
occurred at node q during the evolutionary history of locus j.
In our model, we assume mutations evolve following the ISA.
According to this model, at most one element inMj is allowed
to be 1. This vector requires each node to have an index from
{1, · · · , 2N − 1}. For simplicity, we map indices {1, · · · , N} to
the leaves/single cells and use the same mapping for the single
cells in all tree topologies.

Log-likelihood function

Assuming independence across sites/loci, the log-likelihood
function of read counts given true genotypes G, error rates
(α, β), underlying tree topology T , and mutation placements
for all loci (denoted byM) are:

F (R,V|G, T,M, α, β) = F (R,V|G, α, β)

=
N∑
i=1

M∑
j=1

log

∑
ψ

P (rij , vij |ψij)P(ψij |gij , α, β)

 .
(3)

Note that the above likelihood is based on G rather than T

and M directly, as G is derived from T and M. Therefore
we can drop T and M from Eq. (3). It can be shown
that after marginalizing out ψ’s, logP(rij , vij |gij , α, β) =

log{
∑
ψ P (rij , vij |ψij)P(ψij |gij , α, β)} can be simplified as

follows:

logP(rij , vij |gij , α, β) = log
(cij
vij

)
+ (1− gij) log

{
µ0
vij (1− µ0)rij (1− α) + µ1

vij (1− µ1)rijα
}

+ gij log
{
µ0
vij (1− µ0)rijβ + µ1

vij (1− µ1)rij (1− β)
}
.

(4)

Here, the log-likelihood values of the missing data are assumed
to be 0. The MLE solution is obtained as

(G∗, T∗,M∗, α∗, β∗) = argmax
G,T,M,α,β

{F (R,V|G, T,M, α, β)} .

(5)

Hill-climbing search algorithm

Phylovar infers the underlying phylogeny of single-cells and their
genotypes simultaneously in a hill-climbing fashion. At each
step, the log-likelihood function is evaluated and updated by
proposing one of the underlying parameters including the tree,
mutation placements, and error rates. We start the search by
reconstructing an initial tree topology. To obtain this tree, first,

we create the matrix of initial genotypes, G(0), as follows:

g
(0)
ij =


1 if

logP(rij , vij |gij , α(1), β(1))
∣∣∣ gij=1

α(1)=0
β(1)=0

>

logP(rij , vij |gij , α(1), β(1))
∣∣∣ gij=0

α(1)=0
β(1)=0

0 Otherwise

. (6)

Here, (α(1), β(1)) = (0, 0) are the initial estimates of the
error rates. Given G(0), we calculate the pairwise Hamming
distances between the single cells and build an initial tree
topology, T (1), using the neighbor-joining algorithm [22].
Given the proposed parameters (T (1), α(1), β(1)), the mutation
placement with highest log-likelihood for each site j—denoted
by M∗(1)j —is determined yielding the genotype matrix
at first iteration, G(1) and the first log-likelihood value
F (R,V|G(1), T (1),M∗(1), α(1), β(1)). At each iteration t ≥ 2,
either new error rates are estimated or a new tree is proposed
by performing tree rearrangement techniques including subtree
pruning and re-grafting (SPR), nearest-neighbor interchange
(NNI), and swapping two random leaves. The proposed
parameters are accepted if the new log-likelihood value is greater
than or equal to the log-likelihood in the previous iteration. In
case of stochastic hill-climbing, the acceptance probability of
the newly proposed log-likelihood value is:

min

{
1,

F (R,V|G(t), T (t),M∗(t), α(t), β(t))

F (R,V|G(t−1), T (t−1),M∗(t−1), α(t−1), β(t−1))

}
.

(7)
The search procedure terminates when the log-likelihood does
not improve after a user-specified number of iterations or when
it reaches the maximum number of iterations.

Proposing new error rates

The new error rates at iteration t are calculated using the
following equations from the entries of G(t−1) and G(0):

α(t) =

∑
i,j [g

(0)
ij = 1 ∧ g(t−1)

ij = 0 ∧ cij 6= 0]∑
i,j [cij 6= 0]

, (8)

β(t) =

∑
i,j [g

(0)
ij = 0 ∧ g(t−1)

ij = 1 ∧ cij 6= 0]∑
i,j [cij 6= 0]

. (9)

Here, the number of 0 entries in G(0) that were “corrected” to 1
in G(t−1) provides a measure of what a more realistic α would
be through the hill-climbing trajectory. The same rationale
applies to proposing a new value of β.

Finding the best mutation placement

Given a topology T (t) and a site j, each possible mutation
placement on T (t) yields a unique genotype configuration at the
level of single cells. We seek the mutation placement with the
highest log-likelihood. LetM(t)(vk)k∈{1,··· ,2N−1} denote the
mutation placement when the kth node is mutated. As a special
case, letM(t)(v2N ) represent the absence of mutation. Because
the set of all possible mutation placements is the same for all
the sites, we dropped the index j from these two notations. To
summarize the effect of all possible ISA mutation placements on
genotype configurations, we define S(t) = (s

(t)
ki ) ∈ {0, 1}2N×N
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whose kth row, S
(t)
k∗ , represents the genotype configuration

corresponding to M(t)(vk). We formally define the mapping
from mutation placements to genotypes, denoted by Φ, as
follows:

Φ
(
M(t)(vk)

)
= S

(t)
k∗ = [s

(t)
k1 , · · · , s

(t)
kN ], (10)

s
(t)
ki =

{
1 if vi ∈ T (t)

vk

0 if vi /∈ T (t)
vk or k = 2N

. (11)

where i ∈ {1, · · · , N} and k ∈ {1, · · · , 2N}. Here, T (t)
vk denotes

the subtree rooted at node vk. Note that the mapping Φ is
one-to-one, so we can use its inverse to retrieve the genotypes
given a mutation placement. In addition to S(t), we define two
other matrices that store the log-likelihood values from Eq. (4),
one assuming all genotypes are 0, called matrix of zero-allele
likelihoods, Z(t), and the other assuming all genotypes are 1,
called matrix of one-allele likelihoods, O(t). Formally, we define
the matrices O(t) = (o

(t)
ij ) ∈ (−∞, 0]N×M and Z(t) = (ζ

(t)
ij ) ∈

(−∞, 0]N×M as follows:

o
(t)
ij = logP(rij , vij |gij , α(t), β(t))

∣∣∣
gij=1

, (12)

ζ
(t)
ij = logP(rij , vij |gij , α(t), β(t))

∣∣∣
gij=0

. (13)

It can be shown that the following matrix multiplication results
in a matrix X(t) = (χ

(t)
kj ) ∈ (−∞, 0]2N×M whose each element

χ
(t)
kj is equal to the log-likelihood value ofM(t)(vk) at site j:

X(t) = S(t)O(t) + (J2N,N − S(t))Z(t). (14)

Here, J2N,N is matrix of all-ones. The best mutation placement
at site j,M∗(t)j , is associated with the highest value in the jth

column of X(t):
M∗(t)j =M(t)(vk∗ ). (15)

The index corresponding to the highest value is denoted by k∗:

k∗ = argmax
k∈{1,··· ,2N}

{
χ
(t)
kj

}
. (16)

Using Φ−1, we can determine the best genotype configuration
at site j which constitutes the jth column of G(t) using

G
(t)
∗j = S

(t)
k∗ ∗ = Φ−1

(
M(t)(vk∗ )

)
. (17)

Finally, G(t) is the concatenation of best genotypes
configurations at all sites:

G(t) = [G
(t)
∗1 , · · · ,G

(t)
∗M ]. (18)

Results and Discussion

Simulation study

We first compared the computational efficiency and SNV calling
accuracy of Phylovar, SCIΦ, and Monovar using synthetic
datasets simulated under five scenarios: 1) varying the number
of mutations, 2) varying the number of cells, 3) varying the
ADO rates, 4) copy number effect, and 5) violation of ISA. We
simulated the datasets using the simulator introduced in [24].
In the first scenario, we investigated how Phylovar performs

(a) (b)

(c) (d)

(e) (f )

(g) (h)

Fig. 1: Summary statistics of different benchmarking
experiments. (a-e) F1 accuracy of the methods from
simulated data with different number of mutations (a), number
of cells (b), ADO rate (c), copy number rate (d), and
fraction of ISA violations (e). (f-g) Runtime of the methods
on simulated data with varying number of mutations (f) and
varying number of cells (g). (h) Linear regression between
estimated false-negative error rates (β’s) and actual ADO rates
used for simulated data.

compared to the other methods when increasing the number of
mutations dramatically to a large extent.

We simulated datasets containing 16 single cells with 1000,
104, and 105 mutations. For each mutation value, ten datasets
were generated. Phylovar’s accuracy was comparable to that of
SCIΦ in terms of F1 measure, while both SCIΦ and Phylovar
were more accurate than Monovar because of accounting for
evolutionary history (Fig. 1a). Fig. 1f shows that the running
time of each method increased with the number of mutations.
For the largest dataset with 105 mutations, Phylovar was
approximately three orders of magnitude faster than SCIΦ.

In the second scenario, we sought to answer how the
methods’ performances depend on the number of cells. Here,
we fixed the number of mutations at 105 and varied the number
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of cells, N ∈ {8, 16, 32}. For each setting, we generated ten
datasets. The F1 accuracy scores of all methods improved as the
number of cells increased (Fig. 1b). Again, Phylovar’s accuracy
was comparable to that of SCIΦ while it outperformed Monovar.
We observed that increasing the number of single cells improved
the accuracy of all methods more than increasing the number
of mutations. As demonstrated in Fig. 1g, similar to the first
scenario, the running time of Phylovar was almost three orders
of magnitude less than that of SCIΦ.

In the third scenario, the ADO rate was varied while cells
and mutations were fixed at 16 and 1000. We selected ADO
rates from the values {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35}, and
generated ten datasets for each ADO value. Fig. 1c shows that
both SCIΦ and Phylovar were more robust to high ADO rates
than Monovar due to the utilization of the underlying single-cell
phylogeny.
Since Phylovar can estimate the false-negative error rates
(denoted by β), we measured the correlation between the
ADO rates used for generating the simulated datasets and the
estimated β’s. As demonstrated in Fig. 1h, these two values were
highly correlated (the Pearson correlation coefficient was 0.991).
It is worth noting that based on the linear regression line, the
estimated β was almost half of the true ADO, pointing to the
difference between the dropout mechanism in the simulator and
our definition of β (see Methods). Given an ADO rate µ, the
simulator chooses µ fraction of the mutations. It changes µ

2
of

them into reference genotype, and µ
2
of them into homozygous

mutations; the β in our model indicates the probability of a
mutation becoming reference genotype implying β ≈ µ

2
, which

we can observe in Fig. 1h.
Since Phylovar assumes the read counts are originated from

diploid strands, in the fourth scenario, additional wild type
alleles were introduced to the read counts to imitate the effect of
copy number changes. The simulator randomly selects a fraction
of mutated loci (named copy number rate), and chooses c extra
copies for each loci with probability 1

2c
[24]. We increased the

copy number rate from 0 to 0.5 with step size 0.125. For each
value, we generated ten datasets containing 16 cells and 1000
mutations. Fig. 1d shows that the SNV calling accuracy of the
methods decreased as more mutated loci were subject to copy
number changes.

In the fifth scenario, we were interested in observing how
violations of ISA affect the SNV calling accuracy of the methods.
Given a fraction of mutations, the simulator randomly selects
half of them to recur in different branches, and the rest of them
to be lost in the same subtree. We increased the fraction of
mutations subject to ISA violations from 0 to 0.15 with 0.05
step size. For each value we generated ten datasets with 16 cells
and 1000 mutations. Fig. 1e shows that all three methods had a
stable performance as the fraction of ISA violations increased.
This observation suggests that even though the phylogenies
inferred by SCIΦ and Phylovar might be inaccurate due to the
presence of violations of their evolutionary model, the effect of
such violations on mutation inference is negligible.

Application to real data

We applied Phylovar on two human scDNAseq datasets. The
first dataset consists of single-cell whole-exome sequencing
(scWES) samples from a triple-negative breast cancer (TNBC)
patient [31]. Since the population sequencing data from bulk

tumor and matched normal tissue are available for the TNBC
dataset, the number of mutations shared by scWES and bulk
data provides us a metric for measuring the accuracy of our
approach. The TNBC dataset consists of 16 diploid cells, eight
hyperdiploid/aneuploid cells, and eight hypodiploid cells [31].
Given the control normal cells, SCIΦ’s likelihood ratio test
identifies the loci likely to contain somatic mutations. Applying
this statistic test on the input mpileup file resulted in 3375
candidate loci on which we applied Phylovar. Phylovar was run
with ten parallel hill-climbing chains, each for 100,000 iterations
on a pool of five CPU’s, each with 48 cores (AMD EPYC
7642) on a node with 192 GB RAM. The total runtime was 91
minutes. Phylovar inferred an 18.21% false-negative error rate
and a 1.03% false-positive error rate from TNBC data. We ran
SCIΦ and Monovar with default parameters; SCIΦ and Monovar
terminated after 10 hours and 144 minutes, respectively. Fig. 2
shows the three methods’ mutation calls on TNBC data from
the overlapping sites as well as the initial genotype matrix at
the first iteration of our hill-climbing search. We performed
hierarchical clustering with Ward’s minimum variance method
implemented in Python’s SciPy package [29] on the genotype
matrix for better visualization. We observed concordance
between the calls from Phylovar and SCIΦ while Monovar’s calls
are noisy and resemble Phylovar’s initial genotypes.

To annotate the mutations, we applied snpEff [1] on the
SNVs detected by Phylovar. Out of 3375 candidate loci, 652
loci contained SNVs with “high" or “moderate" functional effects
(see [2] for details on the types of variants’ effects and their
descriptions). Then, we ran HaplotypeCaller (GATK version
4.2.0.0) for mutation calling on the bulk tumor and normal
samples. Among 652 SNVs in single cells, 550 (84%) mutations
were found in bulk data (Fig. 3).

The second biological data consists of 16 neuron cells on
which scWGS was performed to study somatic mutations in
human brain development [8]. Applying SCIΦ’s statistic test
on the input mpileup identified 2,489,545 candidate loci. We
ran Phylovar with five parallel hill-climbing chains, each for
50,000 iterations on five CPUs with 192 GB RAM. Phylovar
finished the process after 17 hours and 45 minutes. To compare
our results with other methods, we ran Monovar and SCIΦ
with default parameters. Monovar processed the data in 10
hours and 26 minutes, while SCIΦ was still running after ten
days. Phylovar’s inferred false-positive and false-negative error
rates were 75.22%, and 1.17%, respectively. snpEff identified
5745 non-synonymous SNVs among Phylovar’s mutation calls.
Fig. 4 shows hierarchical clustering on the genotypes of
Phylovar, Monovar, and the initial genotypes at sites with non-
synonymous SNVs. We observed similarities between Monovar’s
calls and the initial genotypes. By comparing the panel of
Phylovar in Fig. 4 with the other panels, one can see the
sparse regions of mutations in panels of Monovar and the
initial genotype matrix that are inferred as reference alleles by
Phylovar.

Further, we investigated the genes likely related to
neurodegenerative diseases by comparing our findings with
the genes reported in [32]. Wei et al. [32] studied somatic
mutations in 1461 control and diseased human brains with
different neurodegenerative disorders. Among the genes inferred
by Phylovar to harbor non-synonymous mutations, 12 genes
were reported in [32]. We observed that the genes MUC16 and
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Fig. 2: Clustered heatmaps of mutation calls by different
approaches performed on the TNBC dataset. Here,
rows and columns represent the genomic loci and the single-
cells, respectively. The pixels show mutation calls (dark blue),
reference alleles (light blue), and missing data (pink). The initial
genotypes are the initial estimates of genotypes considering no
error rates and no underlying phylogeny at the starting step of
Phylovar’s search algorithm.

MLIP were frequently mutated in different regions; also, non-
synonymous SNVs were observed within KRT33A and SEMA5B
in [32] from patients with Creutzfeldt-Jakob and Alzheimer
diseases, respectively. The presence of these non-synonymous
mutations in both diseased and normal samples implies the high
mutability of these genes even in a healthy individual.
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Fig. 3: Clustered heatmap of the mutations detected
from TNBC data and population sequencing data of
tumor and matched normal tissues. The pixels show
mutation calls (dark blue), reference alleles (light blue), and
missing data (pink). Columns (cells) are colored according to
the ploidy of the cells. The colors of the rows (genes) indicate
whether the SNV was found in bulk data or not. Here, popT and
popN are the tumor and normal population sequencing samples,
respectively. Out of 3375 candidate loci, 652 loci contained SNVs
with high or moderate functional effects in the single-cell data
among which 550 mutations were found in bulk data as well,
which is 84% of the single-cell calls.

Conclusions
The rapid growth of SCS technologies poses computational
challenges due to the increasing number of cells and sites
sequenced per genome [17]. In this work, we focused on
addressing the computational challenge associated with the
breadth of genomic sites in scDNAseq data. Here, we
introduced Phylovar, a scalable MLE method for phylogeny-
guided inference SNVs from single-cell DNA sequencing data
suitable for scWGS and scWES data with an extensive number
of loci. We introduced a novel vectorized formula for likelihood
calculation, making Phylovar scalable to hundreds of thousands,
even millions of loci.

We assessed Phylovar’s performance against state-of-the-art
variant callers SCIΦ [24] and Monovar [36], through simulated
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Fig. 4: Clustered heatmaps of mutation calls by different approaches performed on neuron cells. Rows and columns
represent the genomic loci and the single-cells, respectively. The pixels show mutation calls (dark blue), reference alleles (light blue),
and missing data (pink). The initial genotypes are the initial estimates of genotypes considering no error rates and no underlying
phylogeny at the starting step of Phylovar’s search algorithm.

benchmarks. Phylovar outperforms SCIΦ in terms of running
time while being more accurate than Monovar in different
simulation scenarios. We also applied Phylovar to two real
biological datasets. For a TNBC dataset with 32 single cells and
3375 candidate loci, Phylovar identified SNVs with functional
impact among which 84% were supported by bulk sequencing
data. Phylovar was also more accurate than Monovar and
6.5x faster than that of SCIΦ. For a larger dataset containing
16 normal human neuron cells and approximately 2.5 million
candidate loci, Phylovar identified 5745 non-synonymous SNVs
some of which were related to neurodegenerative diseases.
Interestingly, Phylovar detected 75.22% false-positive, and

1.17% false-negative error rate for this dataset. The neuron cells
data was particularly challenging due to large number of sites.
For this data, SCIΦ failed to converge even after ten days of
running while Phylovar terminated after less than 18 hours.

Phylovar makes it possible to analyze datasets with
large number of loci within reasonable time and memory
requirements, thus adding to the growing toolbox for analyzing
scDNAseq data. As a direction for future research, we will
explore deviations from the simplified ISA model and investigate
the feasibility of applying more general finite-sites models
(FSM) [34, 33] to datasets with many loci. As scDNAseq
technologies advance, the sequencing cost per cell decreases [16,
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28]. Consequently, we expect more scWGS and scWES datasets
to emerge in the future, requiring methods such as Phylovar that
can perform scalable variant calling on datasets with millions of
loci.
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