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Single-cell technologies have enabled extensive analysis of complex immune composition,

phenotype and interactions within tumor, which is crucial in understanding the mechanisms

behind cancer progression and treatment resistance. Unfortunately, the knowledge on cell

phenotypes and their spatial interactions at present has only limited utilization in guiding

pathological stratification on patients based on their immune microenvironments for better

clinical decisions. Here we used imaging mass cytometry (IMC) to simultaneously quantify
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35 proteins in a spatially resolved manner on tumor tissues from melanoma patients receiv-

ing anti-programmed cell death-1 (anti-PD-1) therapy. Unbiased single-cell analysis revealed

highly dynamic tumor-immune microenvironments that are characterized with variable tu-

mor and immune cell phenotypes and their organizations across and within melanomas, and

identified distinct archetypes of melanoma microenvironments that are associated with ben-

efit from anti-PD-1 therapy based on high-dimensional multicellular features. Our results

demonstrate the utility of multiplex proteomic imaging technologies in studying complex

molecular events in a spatially resolved manner for the development of new strategies for

patient stratification and treatment outcome prediction.

Advanced melanoma had poor prognosis with a 5-year survival rate lower than 10%1. Im-

mune checkpoint inhibitors (ICIs) targeting PD-1 and CTLA-4 have shown improved survival in

advanced melanoma patients1–4, but potent and durable response only presented in a subset of pa-

tients. To date, no single biomarker has been sufficient for patient stratification, presumably due

to the complex immune response to cancer driven by both inter- and intra-patient cellular hetero-

geneities in tumor microenvironments (TMEs). Indeed, with deeper knowledge on the mechanisms

of immune checkpoint blockade (ICB) based immunotherapy developed from recent clinical and

preclinical studies, it is now recognized that ICI efficacy is driven by multifaceted interactions

among a large diversity of cell lineages at both localized and systemic levels5–13, thus defying the

concept of patient stratification based solely on biomarkers that capture only limited dimensions

of these intricate interactions.
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In this study, we used IMC to explore the composition and spatial arrangements of dif-

ferent immune and stromal cells in the vicinity of cancer cells in baseline tumor samples from

26 advanced melanoma patients treated with anti-PD-1 monoclonal antibody at Peking University

Cancer Hospital (PUCH), Beijing, China. Using single-cell analysis on high-dimensional mass cy-

tometry images, we quantified inter- and intra-tumor heterogeneities in a spatially resolved manner

and identified important cellular features to classify melanoma into distinct archetypes linked to

immunotherapy outcome.

Results

Global characteristics of cell compositions in melanoma TME. We used a customized IMC

panel of 35 antibodies targeting markers of tumor, immune, and stromal cell phenotypes, immuno-

regulatory proteins, and proteins providing insights into cell activation, proliferation, and metabolism

status (Supplementary Table 2) on baseline tissue samples from 26 melanoma patients treated with

anti-PD-1 (Fig. 1a, Supplementary Table 1). Regions of interest (ROIs) were randomly selected

for each sample from core tumor (CT) and invasive margin (IM) regions based on hematoxylin and

eosin (HE)-stained serial tissue section inspected by a professional pathologist. After quality con-

trol by manual inspections, 158 IMC images (59 from the CT: 34 responders, 25 nonresponders,

99 from the IM: 58 responders, 41 nonresponders) were further analyzed.

In total, 662,266 cells were clustered into 20 different cell subtypes using FlowSOM14 and

Phenograph15 (Methods), which were further grouped into four major cell types including lympho-
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cytes, myeloid derived monocytes, stromal cells and tumor cells (Fig. 1b, Supplementary Fig. S1a-

b). The lymphocytes included five different subtypes, namely, CD4 T cell (CD3+CD4+), CD8 T

cell (CD3+CD8+), double-positive T cell (DPT; CD4+CD8+), T regulatory cell (Treg; CD4+FOX-

P3+) and B cell (CD19+) identified by their canonical cell markers. Myeloid derived monocytes

(MC1-MC6) were identified by CD14 and CD16, which can be classified into two categories based

on their MHC Class II molecule (HLA-DR) expression. The first category included three subtypes

characterized with highly elevated HLA-DR expression (MC4-MC6), indicative of their potential

role as antigen presenting cells (APC) within TME. Among them, subtype MC4 was further char-

acterized with elevated dendritic cell marker CD11c and MC6 with elevated macrophage marker

CD68. The second category was comprised of HLA-DR− subtypes with elevated expression of

exhaustion markers CAIX and VEGF (MC2, MC3) or indoleamine 2,3-dioxygenase 1 (IDO-1;

MC1), representing their potential immune suppressive roles as myeloid-derived suppressor cells

(MDSCs). Stromal cells consisted of 5 subtypes denoted as S1 to S5 for Collagen+, FAP+,

PDGFRb+, SMA+, and Vimentin+ cells, respectively, and tumor cells included 4 subtypes de-

noted as T1 to T4 for CAIX+, Ki67+, VEGF+, and a non-classified subtype (n.c.) that did not

show elevated expression on any markers from the defined panel, respectively.

All major cell types and subtypes were observed in all patients but with significant variation

in cell compositions among patients and different tumor regions (Fig. 1c). Overall, the IM demon-

strated more diversified cell type compositions as indicated by higher Shannon entropy (Methods)

than the CT for both responders and nonresponders (Supplementary Fig. S1c). Furthermore, Shan-

non entropy analysis indicated more diversified cell type compositions in responders than in non-
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responders in the IM, but not in the CT. Two IMC images to exemplify TMEs with typical immune

cells in a responder and a nonresponder are shown in Fig. 1d.

Cell phenotype proportions differentiate TMEs of responders and nonresponders. Examina-

tion of abundances of individual cell clusters from different TMEs revealed significantly different

cell compositions in TMEs from responders and nonresponders. The percentages of lymphocytes

were significantly higher in responders than in nonresponders in the IM but not CT (Fig. 2a-b).

Similar trend was observed in all 5 lymphocyte subtypes, indicating the important role of the

IM in identifying TMEs that would respond to immunotherapy. Interestingly, despite the well-

established immunosuppressive role of Treg, significantly elevated Treg densities were observed

in the IM of responders compared to nonresponders, which were possibly recruited to the site for

maintaining immunological unresponsiveness to self-antigens and suppressing excessive immune

responses detrimental to the host. As a result, high abundance of Treg could indicate the presence

of highly immunogenic tumor associated antigens that would be able to induce a T cell mediated

immune response after ICB for cancer rejection. For myeloid cells, we identified that HLA-DR+

myeloid cells MC4 were significantly more abundant in responders, while HLA-DR− myeloid

cells MC2 were significantly enriched in nonresponders and the difference can be observed in both

the IM and CT. We also found that tumor cells with hypoxia signals (CAIX+) were significantly

enriched in the IM from nonresponders compared to responders, but this difference was not ob-

served in the CT (Supplementary Fig. S2). No significant differences in other cell type abundances

were observed.
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Cox regression analysis further revealed that the abundances of several cell types in the IM

were associated with immunotherapy outcome. In the IM, CD4 T, SMA+ stromal cells S4, and

Vimentin+ stromal cells S5 were associated with better outcome, whereas HLA-DR− myeloid

cell MC2 and PDGFRb+ stromal cell S3 were indicative of poor outcome after adjusted for age

(Fig. 2c). None of the identified cell phenotypes in the CT was prognostic (Fig. 2d).

Characteristics of checkpoint expressions in TME. We next investigated the expressions of

checkpoint molecules on different cell subtypes within TMEs to see if the compositions of any

cell subtypes are associated with outcome to ICI treatments. Overall, PD-L1 was expressed on

a broad class of tumor and stromal cells within TMEs from both responders and nonresponders,

with MC4 having the highest average of PD-L1+ proportion (Supplementary Fig. S3a). However,

none of their relative abundances, i.e., the percentages of PD-L1+ cells among the corresponding

cell subtypes, was associated with response. Instead, significantly higher relative densities of

PD-1+ CD4 T and CD8 T were observed in the IM of responders than that of nonresponders

(Supplementary Fig. S3b), which is consistent with previous results that the fraction of exhausted

cytotoxic T lymphocytes expressing high levels of CTLA-4 and PD-1 strongly correlates with

responses to anti-PD-1 in human melanoma16.

In addition to PD-1, we also observed increased relative abundances of CD27 and TIM-3

positive cells among a broad class of lymphocyte and myeloid subtypes in the IM of responders

(Supplementary Fig. S3c-d). CD27 is typically upregulated in the memory phenotypes of T cells

upon exposure to stimulation17. In addition to their assumed roles in local immunity control, mem-
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ory CD8+ T cells can further orchestrate the generation of systemic anti-tumor immunity by trig-

gering antigen spreading through DC18, and the presence of resident memory T cells is associated

with durable responses to immunotherapy in metastatic melanoma19. TIM-3 is a checkpoint recep-

tor expressed on immune cells from TME including interferon (IFN)-γ-producing T cells and other

leukocytes as well including DC and natural killer (NK) cells20. Although elevated expression of

TIM-3 within TME was typically associated with T-cell exhaustion, a recent study showed that

lack of TIM-3 expression of T cells may indicate a specific dysfunction status of T cells from ICB-

refractory TMEs despite a brisk T cell infiltrate21. In addition, a preclinical study using a murine

model of head and neck cancer showed that the suppressive activity of TIM-3 can be reversed by

IFN-γ secreted by CD8+ T cells upon PD-1 blockade22. These observations, together with the

results described earlier, suggest the potential clinical utilization of predicting outcome to PD-

1 based ICB therapy based on sigatures of activated or previously activated antigen-experienced

lymphocytes in the IM of tumor.

Spatial analysis reveals heterogeneous cell-cell interactions in melanoma TME. We performed

regional correlation analysis to investigate the potential spatial co-occurrence patterns of different

cells across all images, and permutation-test-based neighbourhood analysis23 to identify statis-

tically significant interaction or avoidance between pairs of cell types in melanoma (Methods,

Fig. 3a-b, examples of cell-cell interaction are shown in Fig. 3c-g). Notably, subtypes of lympho-

cytes (CD4 T, CD8 T, DPT, B cells and Treg) tended to form dense compartments with strong

cognate interactions and their proportions were highly correlated across images in responders

(Fig. 3a, highlighted area 1, Fig. 3c-d). In nonresponders, although the positive correlations be-
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tween different lymphocyte subtypes were still maintained, co-locations of these lymphocytes,

particularly between CD4 T and other T cell subtypes, were observed in fewer ROIs (Fig. 3b, high-

lighted area 1; Supplementary Fig. S4a), indicative of a more diffused distribution of lymphocytes

in these TMEs. We also observed highly different interaction patterns of HLA-DR+ and HLA-

DR− myeloid cells with lymphocytes. Strong cognate interaction between the HLA-DR+CD11c+

myeloid cells (MC4) and lymphocytes can be observed in responders (Fig. 3a, highlighted area

2, Fig. 3e) and, to a lesser extent, in nonresponders as well (Fig. 3b, highlighted area 2; Supple-

mentary Fig. S4a). In contrast, none of the HLA-DR− myeloid cells (MC1-MC3) interacted with

lymphocytes. Instead, consistent with their immune suppressive functions, evidences of avoidance

between these myeloid cells and lymphocytes from both abundance correlations and neighbour-

hood analysis can be observed in both responders and nonresponders (Fig. 3a, 3b, highlighted area

3, Supplementary Fig. S4b). Significant proximate interaction between SMA+ stromal cells, which

are primarily vascular smooth muscle cells that surround lymphatic vessels or blood vessels, and a

broad class of immune cells were observed in most ROIs from both responders and nonresponders

(Fig. 3a, 3b, highlighted area 4, Fig. 3f-g), indicative of the significant role of lymphovascular

structures in maintaining the immune cell populations in TME.

Different TME archetypes based on multicellular compositions. We investigated how to trans-

late the composition of single cells within TMEs into better stratification of melanoma to identify

patients for immunotherapy. Using unsupervised hierarchical clustering on all the IMC images

based the abundances of cell phenotypes that significantly differ in the IM regions of responders

and non-responders, we obtained six TME archetypes that demonstrated distinct cell composi-
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tions, including three immune “hot” TMEs characterized by strong infiltration of CD4 T and B

cells (H1), HLA-DR+CD11c+ myeloid derived cells (H2), and CD8 T cells (H3), respectively,

and three immune “cold” TMEs with enrichment of CAIX+ tumor cells (C1), HLA-DR−CAIX+

myeloid derived cells (C2), and an archetype with no significant enrichment of any cell type (C3),

respectively (Fig. 4a, HE and IMC images of example ROIs from each TME archetype shown

in Fig. 4c). Signal pathway analysis with bulk RNA-seq data from paired samples also identified

shared and distinct pathways of different TME archetypes (Fig. 4d and Supplementary Fig. S5). As

expected, all immune “hot” TMEs showed multiple elevated signaling pathways that are correlated

with adaptive and innate immune activation including IFN-α/γ response, allograft rejection, and

complement pathway activities. H1 and H3 further showed unregulated inflammatory response

and KRAS up-signaling pathways, while H2 was uniquely enriched for hallmarks of p53 pathway,

and H3 uniquely enriched for hallmarks of apoptosis, IL2-STAT5 and IL6-JAK-STAT3 pathways.

Immune “cold” TMEs were predominantly enriched for signaling pathways typically associated

with cancer progression or immune evasion such as epithelial–mesenchymal transition and KRAS

down signaling.

We further performed community analysis24 to investigate if single cells were organized dif-

ferently in different TMEs. Using Louvain community detection25 to identify communities of

multicellular units that were physically contacted with each other, followed by unsupervised clus-

tering based on their cellular compositions using Phenograph, we obtained 19 common communi-

ties across all images (Methods, Supplementary Fig. S6a). Close examination on the community

composition of different TME archetypes showed that each archetype had its own predominant
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multicellular communities (Supplementary Fig. S6b). For the immune “hot” TMEs, H1 was dom-

inated by Community 3 that constituted large networks of CD4 T cells, B cells and CD8 T cells

(Supplementary Fig. S7a); while in H2, the dominant community was Community 18 (Supplemen-

tary Fig. S7b) enriched for myeloid cells, primarily the HLA-DR+CD11c+ subtype MC4; and the

majority community in H3 is Community 11 (Supplementary Fig. S7c) comprised of CD8 T cells

that interacted with HLA-DR+ myeloid cells MC5. These multicellular communities were seldom

found in immune “cold” TMEs. Instead, “cold” TME C1 contained the highest percentage of Com-

munity 6 (Supplementary Fig. S7d) that was characterized by CAIX+ tumor cells in close contact

with MC2 and Collagen+ stromal cells; and C2 was mostly dominated by Community 4 (Sup-

plementary Fig. S7e) enriched for networks of Vimentin+ stromal cells and HLA-DR−VEGF+

myeloid cells MC2. Finally, “cold” TME C3 showed a highly diffused cell distribution without

any dominant communities.

We asked if the above classification of TMEs was associated with clinical outcome to anti-

PD-1. Overall, by dividing the clustering results into “hot” and “cold” categories, this clustering

achieved a classification accuracy of 79.3% (46 out of 58 responder ROIs classified as immune

“hot”) for responders and 95.1% (39 out of 41 nonresponder ROIs classified as immune “cold”)

for nonresponders on the ROI level (Fig. 4b). Analysis further revealed that ROIs from a same

patient were in most cases highly homogeneous: most patients had ROIs from only one or two

archetypes of the same immune “hot” or “cold” category (Fig. 4b). The exceptions included only

two responders (79F, 63F) and one nonresponder (41F) who had ROIs from both immune “hot”

and “cold” clusters. If we used majority voting to determine the TME archetype for each patient,
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all the 11 patients that were classified as immune “hot” were responders, representing an objective

response rate (ORR) of 100%; and only 3 responders were from the immune “cold” patients,

representing an ORR of 23.07%. Kaplan-Meier analysis revealed better overall survival (OS, p =

0.013) and progression-free survival (PFS, p = 0.06) in patients defined as immune “hot” (Fig. 4e).

Interestingly, despite the recognized important role of CD8 T infiltration to immunotherapy

efficacy, only ROIs from H3 were characterized with significant CD8 T infiltration, representing

only 6 out of 14 responders from this cohort. Close examination on different TMEs revealed

highly different cell composition in the vicinity of CD8 T cells (Fig. 4f). In immune “hot” TMEs,

the dominant cells surrounding CD8 T are either CD4 T and B cells in H1 or HLA-DR+ myeloid

cells (MC4, MC5) in both H2 and H3, which is consistent with the recognized immune-enhancing

actions governed by these cells. On the contrary, we observed significantly elevated accumulation

of the HLA-DR− subtypes of myeloid cells (MC1, MC2) in close contact with CD8 T cells in all

three immune “cold” TME archetypes (Fig. 4f), indicative of the potential role of these cells in

creating an ICI resistant TME through mediating effector T cells functionality.

Gene signature derived from distinct TME archetypes predicts anti-PD-1 therapy response.

Recently, numerous gene expression signatures26–29 have been developed to study cellular compo-

sition of TMEs based on bulk RNA-seq data when single cell information is not available. Here,

we investigated the consistency between our single cell analysis results from IMC data and the

results from these signatures using RNA-seq data generated from adjacent serial section from the

same samples in the PUCH cohort30. We performed correlation analysis between 29 curated GEP
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signatures28 and the cell type abundances estimated by averaging over all IMC ROIs for each

sample (Supplementary Fig. S8a). Interestingly, we found an over-representation of CD8 T cells

abundance in existing signatures despite that many of them have a putative target other than CD8

T cells. Among the 29 GEP signatures, the “Macrophages” signature shows the highest correla-

tion with CD8 T cells abundance in the paired sample, followed by “Effector cells” and “T cells”.

Other than CD8 T cells, DPT abundance showed strongest association with the “Effector cells”

signature, while Treg abundance showed strongest association with the “Macrophage DC traffic”

signature. Unfortunately, other than these three cell types, we did not find strong association be-

tween abundance of other cells and GEP signatures. For example, no surrogate GEP signatures

for the abundances of myeloid subtypes were identified, while some myeloid cells (e.g., MC4), are

strongly associated with clinical outcome to ICI in present study. We further performed correlation

analysis between the cell type proportions estimated by the deconvolution method CIBERSORTx29

from bulk RNA-seq data and those estimated from IMC of the same sample, and similar observa-

tion can be made (Supplementary Fig. S8b). These findings suggested that existing RNA signature-

and deconvolution-based methods for analyzing cellular compositions of TME could, at best, only

capture the average cellular compositions of the whole tissue slide rather than their localized ac-

cumulations within TMEs due to the spatial heterogeneity of tummor tissues, while the latter are

generally more essential for immunotherapy response prediction.

We further asked if it is possible to derive a global RNA-seq signature that could directly

differentiate patients of different TMEs for immunotherapy outcome prediction without using cel-

lular compositions as surrogates. To this end, we divided PUCH patients into immune “hot” and
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“cold” groups based on majority voting on their respective TMEs, and identified 20 significantly

up-regulated immune-related genes and 4 significantly down-regulated immune-related genes in

the immune “hot” group (Fig. 5a-b), where immune-related genes were defined as genes from

the 770 curated cancer immune-related genes by Nanostring’s IO 360 panel (Methods). We then

calculated a response score as the ratio of mean expressions of 20 up-regulated genes and 4 down-

regulated genes to measure the anti-tumor immunity level for predicting anti-PD-1 outcome.

To validate the performance of this signature, we analyzed RNA-seq data from the PUCH

cohort and three independent external datasets from melanoma patients treated with anti-PD-1

(Riaz1731, Gide1932, Liu1933, Supplementary Table 3). Receiver operating characteristic (ROC)

curve generated with clinical response data showed that the response score achieved an AUC of

0.83 (95% CI: 0.67-0.96) on PUCH, 0.75 (95% CI: 0.54-0.91) on Riaz17, 0.74 (95% CI: 0.59-

0.89) on Gide19, and 0.65 (95% CI: 0.49-0.8) on Liu19, respectively (Fig. 5c). In addition, higher

response scores were also associated with improved OS in the four datasets (Fig. 5d). Collectively,

the above data demonstrated the potential value of using the response score derived from differen-

tially expressed immune-related genes from patients of distinct TMEs as a biomarker for anti-PD-1

ICI treatments.

Discussion

Our multidimensional interrogation of baseline melanoma tissue samples before anti-PD-1 treat-

ment provided a systematic landscape of immune microenvironments of melanoma patients with
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different response to immunotherapy. Importantly, our results revealed highly heterogeneous

TMEs from responders to immunotherapy, and only a subset of these TMEs have significant CD8+

T cells infiltration prior to immunotherapy, suggesting that anti-PD-1 therapy may have a much

broader spectrum of mechanisms of action than only rejuvenating cytotoxic T cells that already

reside in the TME. Indeed, rather than focusing on the specific state of a single cell type, a com-

prehensive recognition on the contributions from all cell types relevant to effective anti–PD-1 ac-

tivity would be required for developing successful biomarkers in immunotherapy. For example, it

is now well recognized that helper CD4+ T cells play a pivotal role in generating effective immune

responses34, 35 and CD4+ T cell responses are required for optimal priming of antigen restricted

CD8+ T cells and their maturation36. Although PD-1 is thought to predominantly restrain CD8+ ef-

fector T cells, recent studies show that its’ downstream effects further include activation of CD4+ T

cells through targeting its costimulatory receptor CD28 by PD-1-recruited SHP2 phosphatase37, 38.

Moreover, recent studies demonstrate that pre-existing T cells in TME have limited reinvigoration

capacity39, and T cell responses to ICB are mainly derived from newly primed T cell clones from

extrinsic repositories such as tumor-draining lymph nodes (TDLN)40, for which T cell priming

through APCs that acquire tumor antigen and migrate to the TDLN would be required41, 42. For

these reasons, as observed in the present study, enrichment of CD4+ T cell and/or myeloid derived

APCs within TME could be a strong indicator to potential positive outcome to ICI in parallel to

CD8+ T infiltration.

Tumors have been previously classified into immune “hot” with strong immune cell infil-

trates or “cold” with sparse infiltration, and these pre-existing immune states are related to their
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potential responses to immunotherapy28. Our results supported this notion. Furthermore, empow-

ered by multiplex single cell image analysis, we were able to identify multiple immune archetypes

from both immune “hot” and “cold” TMEs. Each archetype is made up with a unique cellular

community composition and charcterized by distinct dominant immune pathways, indicating that

the previous TMEs delineations are incomplete to reveal the nuance of TMEs shaped by different

tumor progression and immune evasion mechanisms. It is thus conceivable that such subdivision

would enable us to further investigate the mechanisms behind different TME archetypes, from

which better individualized therapeutic strategies based on archetypal assignments may be derived.

Although myeloid-derived cells are considered to associated with immune suppression within

TME, it is now recognized that distinct myeloid cell subpopulations in the TME play different

roles43, 44. Consistent with this notion, our results revealed two highly distinct archetypes of TMEs

enriched for different myeloid cells. The first archetype (H2), of which the TMEs were all from

responders, showed significant enrichment of HLA-DR+ myeloid cells, primarily the CD11c+

subtype MC4, but low pre-treatment lymphocytes infiltration, suggesting a potential seminal role

played by this group of myeloid cells in mediating an inflammatory microenvironment towards

positive outcome from anti-PD-1 treatment. The second archetype (C2), which was associated

with poor clinical outcome to ICI, showed elevated accumulation of subtypes of highly exhausted

myeloid cells with low HLA-DR expression and elevated VEGF and CAIX expressions (MC2),

confirming their roles in immune suppression. Hence, in developing combination therapy that

targets both T cell rejuvenation and macrophage depletion45, e.g., through CSF1R inhibitors46

combinning with ICB therapy, it may be necessary to identify the right target patients based on the
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composition of their myeloid infiltration as these inhibitors may lack the specificity to differenti-

ate between protumor and antitumor myeloid cell subsets. In addition, repolarizing myeloid cells

within TME to sustain or restore their tumoricidal activities through engaging pathogen recog-

nition receptors (PRRs)47 or agonistic anti-CD40 antibody48 could be a promising combination

therapeutic strategy to improve clinical response to ICI treatments for patients with this archetype

of cold TME.

Other than TMEs enriched with exhausted myeloid cells, our results indicated the existence

of another distinct immune “cold” TME archetype derived primarily from nonresponders (C1).

TMEs of this archetype did not show strong infiltration of myeloid cells, but were characterized

with enrichment of tumor cells with high expression of hypoxia signaling molecule CAIX. Hy-

poxic condition of tumor regions is typically arisen from increased oxygen consumption by rapidly

proliferating tumor cells in combination with inadequate oxygen supply due to abnormal tumor

angiogenesis49. Hypoxia-driven mechanisms allow tumor cells to continue to survive and prolif-

erate in the hypoxic TME, while creating an inhospitable environment for immune cells through

promoting apoptosis of T lymphocytes50 and DCs51, preventing effector T cells activation52 and

their homing to the TME50, and promoting immune-suppressive stromal cells differentiation53,

leading to tumor resistance to immunotherapy. Therefore, hypoxia may be exploited as a potential

biomarker to identify this type of nonresponders, for whom strategies that combine methods to

overcome hypoxia in cancer including hypxia-activated prodrugs (HAPs)54, inhibition of HIF sig-

naling or its downstream pathways55, or supplemental oxygenation53, 56 with immunotherapy may

be explored.
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The limitations of this study include the small size of cohort and retrospective design. Nev-

ertheless, our analysis has revealed highly heterogeneous multicellular features and their spatial

interaction within a histological context of tumor TME, and confirmed that many of these features

are associated with the clinical benefit of immunotherapy. Our results thus provide the basis for

future studies on multicellular structures based on spatially resolved single-cell data for an in-depth

characterisation of the tumor microenvironment, from which better methods to identify the right

patients for different immunotherapy strategies can be derived. Moreover, our results further in-

dicate that such knowledge is highly translatable, and can be exploited in multiple applications

ranging from guiding the design of traditional bulk molecular tests for better patient segregation

results despite their limitations in both spatial and single cell resolutions, or identification of targets

for development of novel therapies.

Methods

Patient material. A total of 55 formalin-fixed, paraffin-embedded (FFPE) tumor tissue samples

were obtained from melanoma patients with anti-PD-1 monotherapy at Peking University Cancer

Hospital, Beijing, China. Patients were treated between March 2016 and March 2019 (Supplemen-

tary Table 1). Samples were collected from untreated patients before anti-PD-1 monotherapy.

Twenty-nine tissue samples were excluded as they did not meet the IMC experimental re-

quirements, yielding the final cohort of 26 samples in the study (14 responders and 12 nonrespon-

ders). Clinical data, including sex, age, OS, PFS and clinical efficacy, were obtained from records
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of the patients with updated follow-up in Jun 2021. PFS was defined as the time from the date of

treatment to disease progression or last contact. OS was defined as the time from treatment to death

or last contact. Clinical efficacy to anti-PD-1 monotherapy was evaluated by Response Evaluation

Criteria in Solid Tumors (RECIST) version 1.157, including complete or partial response (CR/PR),

stable disease (SD) and progressive disease (PD). All patients with CR/PR or SD were regarded as

responders and PD patients are regards as nonresponders.

Antibody conjugation and validation. An antibody panel of 35 proteins was designed to distin-

guish cell types and states, including immune, mesenchymal, proliferative and immune checkpoint

proteins (Supplementary Table 2). Twenty-five labelled antibodies were purchased from Fluidigm

(https://www.fluidigm.com) and the remaining 10 unlabelled antibodies were purchased from Ab-

cam (https://www.abcam.com/). Antibodies from Abcam were conjugated with metals using Max-

par X8 Multimetal Labeling Kit (Fluidigm, 201300) following the manufacturer’s protocol. All

conjugated antibody titration and specificity were tested by visual comparison of IMC images of

some tissue slides from melanoma patients. Details about antibodies, metals and concentration

used in the study can be found in Supplementary Table 2.

Preparation and staining. Tissue slides were stained following IMC staining protocol (Fluidigm,

PN400322) provided by Fluidigm. FFPE tumor samples were baked at 65% for 2h to remove all

visible wax. Slides were deparaffinized in fresh xylene (10 min twice) followed by rehydration

through a graded alcohol series (100%, 95%, 80%, 70% for 5 min each). Antigen retrieval was

conducted in a 96°C water bath with Tris-EDTA buffer (pH9.0) for 30 min. Following cooling to
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70°C at room temperature (RT), slides were then blocked with 3% BSA in PBS (Maxpar) for 45

min at RT in a hydration chamber. Meanwhile, the antibody cocktail was prepared in 0.5% BSA

buffer mixed with the optimal dilution for each antibody (Supplementary Table 2). After blocking,

slides were incubated with the antibody cocktail overnight at 4°C in a hydration chamber. The

next day, each slide was washed twice with 0.2% Triton X-100 in PBS (Maxpar), and twice with

PBS (Maxpar). For DNA staining, slides were incubated with Intercalator-Ir (Fluidigm, 201192A)

in PBS (Maxpar) at RT for 30 min. Finally, slides were washed with deionized water twice and

air-dried at least 20 min before IMC acquisition.

Imaging mass cytometry. Images were acquired using a Hyperion Imaging System (Fluidigm).

All operations were conducted following manufacturer’s procedure. Briefly, based on the HE-

stained serial tissue section by a professional pathologist, we randomly selected ROIs at the CT

or IM region. Images were laser ablated at 200 Hz, and raw data were acquired using a commer-

cial acquisition software (Hyperion Imaging System, Fluidigm). The state of Hyperion Imaging

System was monitored by interspersed acquisition of data from tuning slide (Fluidigm).

IMC image processing, single-cell segmentation and quantification. We first checked the qual-

ity of every image by inspecting all marker staining patterns in the MCD Viewer (Fluidigm,

v1.0.560.2). After quality control, a total of 158 images resulting in 662,266 single cells were

used in the following analysis. Raw data (.mcd files) were converted to TIFF format using the imc-

tools Python package (https://github.com/BodenmillerGroup/imctools). Then we used an in-house

developed segmentation tool to perform single cell segmentation on each image58. The mean ex-
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pression of 35 proteins of the segmented single cells were extracted using the “measure” module

in scikit-image (Python package, v0.16.2) by overlaying the generated segmentation masks on the

corresponding TIFF images. To improve the accuracy of cell protein expression value, all im-

ages for each channel were processed by our developed quantification pipeline59. Briefly, for each

protein channel, a large number of random decoy cells were generated from IMC image regions

that likely contained noise only. We then subtracted the mean expression of the decoy cells from

those of the segmented single cells to remove the effect of the background noise on the quantifi-

cation results. To remove the potential batch effect between ROIs, for each protein channel, we

further identified positive cells by comparing the distribution of the expressions of the segmented

single cells to that of the decoy cells with a false discovery rate (FDR) of 0.01, and normalized

expressions of the segmented single cells across ROIs based on the expression of positive cells.

Cell clustering analysis. Single cell protein expression data were clipped at the 99th percentile

followed by min-max normalization. For cell type identification, 20 markers were used to define

cell types: CD45, CD3, CD4, CD8a, FoxP3, CD20, CD68, CD14, CD16, CD11c, CD11b, IDO, Vi-

mentin, α-SMA, E-cadherin, EpCAM, CAIX, VEGF, PDGFRb, Collagen I. Four main cell types

(lymphoid cells, myeloid cells, stromal cells, tumor cells) were clustered and identified based on

the protein expression pattern of each cluster. Then a second clustering was performed separately

on all markers except for the immune checkpoint proteins and PD-L1, resulting in 20 distinguish-

able cell types from 77 clusters. All clustering analyses were performed with two consecutive

steps: first meta-clusters were grouped with a self-organizing map implemented in FlowSOM14 (R

package, v1.18.0), then Phenograph15 (R package, v0.99.1) was applied on the mean expression
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values of each group from FlowSOM clustering result to obtain the final clustering results. Cell

type density was measured by the number of a certain cell type over total cells segmented from

each image.

Spatial analysis. To investigate cell-cell interactions, a permutation test method23 implemented

in neighbouRhood (R package, v0.3.0) was used to determine whether the interactions/avoidances

between or within cell types occurred more frequently than random observation. Briefly, cells were

classified based on their protein expression values by cell clustering analysis as mentioned above,

then a null distribution of cell interaction pairs was generated with 1,000 times permutation of

random selection for each image. Observed interaction pairs were defined with a certain distance

(distance between centroid of cells smaller than 20 µm). The P-value of interaction/avoidance

between cell type A and B for each image was calculated as:

PAB =


1, Cobs = 0;∑

(Cperm ≥ (≤)Cobs) + 1

Nperm + 1
, otherwise,

where Cperm is the number of cell pairs (A, B) in each permutation, Cobs is the actual number of

cell pairs (A, B) given a defined distance, and Nperm is the number of permutation. P values ≤

0.01 were considered as significant interaction/avoidance between cell types. Interactions from

observation and averaged interactions from permutation were compared by calculating log2 fold

change (log2FC) to determine the extent of interactions/avoidance. Spatial proximity between two

cell types were measured based on the distribution of the shortest distance from cells of one cell

type to those of the other cell type on IMC images.
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We further performed community analysis on IMC to identify common communities of mul-

ticellular units that existed across different TMEs24. Briefly, the IMC images were converted into

topological neighbourhood graph in which cells were represented as nodes and direct cell-cell

neighbouring pairs within 20 pixels (20 µm between cell centroid) were represented as edges.

Then we used the Louvain community detection method25 to identify highly interconnected spatial

subunits in the graph. This analysis was performed on all cells to uncover the microenvironment

communities across samples. Phenograph implemented in the cytofkit (R package, v0.99.0) was

then used to identify recurring similar spatial cell type communities between samples based on

minimum to maximum normalized percentages of cell types in each community.

Measurement of inner-patient tumor heterogeneity. Each tumor sample represents a mixture

of cells including lymphoid, myeloid, stroma and tumor cells. We used Shannon entropy (H) to

characterize inner-patient heterogeneity based on annotated cell subtypes from cell clustering re-

sult. To account for the different number of cells per sample, we subsampled 1,000 cells from each

sample i for three times and calculated its Shannon entropy of each occurred cell type frequency

Pc as:

Hi = −
∑
C

Pclog2(Pc).

This analysis was performed on samples with different regions to investigate the cell type com-

position diversity in the CT or IM regions of patients using student t-test. We then compared the

distribution of Shannon entropies of patients between responders and nonresponders.
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Identification of TME archetypes. We first selected the cell types that were differentially en-

riched between responders and nonresponders (log2FC ≥ 1.2, adjusted p ≤ 0.05), and with a cell

type density of at least 1% over total cells. The cell types that met these criteria were B, CD4

T, CD8 T, MC4, MC2, tumor (CAIX+) cells for ROIs in the IM, and MC2 and MC4 cells for

ROIs in the CT. Hierarchical clustering was then conducted separately for ROIs in the IM on the

basis of the Euclidean distance on the selected cell type abundances using hclust function with the

Complete agglomeration method implemented in stats (R package, v3.6.3). For ROIs from IM, six

distinct groups were generated by cutree function (R package stats) with k equal to 6. The resulting

TME archetypes were further classified into two different categories (immune “hot”: H1, H2 and

H3; immune “cold”: C1, C2 and C3) depending on their respective cell compositions.

Whole-transcriptome RNA sequencing and external public datasets. Total RNA was extracted

from unstained tissue slide which was adjacent serial section from the same FFPE tumor samples

used in generating the IMC images. Sample RNA library construction and sequencing methods

followed those as described in Cui et al.30. Briefly, RNA-seq reads were mapped by STAR60 and

then quantified by RSEM61 to get fragments per kilobase of transcript per million mapped reads

(FPKM) values at gene level. We further log2-transformed the read counts to avoid extremely

skewed gene expression distributions.

In this study, we collected three RNA-seq datasets of melanoma patients treated with im-

munotherapy, together with their corresponding clinical information, including the Riaz17 (n =

51)31, Gide19 (n = 50)32, Liu19 (n = 54)33 datasets (Supplementary Table 3). We used the im-
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munotherapy outcomes provided in the original papers following RECIST guidelines. For the

Gide19 and Liu19 studies, only samples received anti-PD-1 monotherapy (nivolumab or pem-

brolizumab) were used. The RNA-seq raw data of Riaz17 and Gide19 datasets were obtained and

processed by the same pipeline mentioned above to generate the gene expression data. For Liu19

datasets, the gene expression data were downloaded from respective references provided by the

authors.

Identification of DEGs, pathway analysis, and prognostic score calculation. Patients were

classified into different TME archetypes based on majority voting, i.e., the archetype that had the

most number of ROIs from a particular patient was assigned to the patient. Differential expression

genes (DEGs) of each TME archetype were then identified using GLM function in edgeR (R

package, v3.28.1) based on gene expressions of patients classified into that archetype vs. those of

patients classified into archetypes of the opposite category. For example, DEGs of TME archetype

H1 were derived based on gene expressions of patients from H1 vs. those from C1, C2 and C3. All

DEGs with log2FC ≥ 1 and p ≤ 0.05 for each TME archetype were inputted into ClusterProfiler (R

package, v3.14.3) for gene set enrichment analysis on hallmark gene sets in Molecular Signatures

Database (MSigDB v7.4).

To derive a prognostic gene signature, we identified DEGs between immune “hot” and im-

mune “cold” patients. By using the common genes between DEGs and Nanostring’s IO 360 panel

(770 curated cancer immune-related genes), we found 20 up-regulated genes (PLA1A, FAM30A,

BLK, TDO2, CD19, MS4A1, GZMA, CCL19, FBP1, CD79A, TNFRSF17, CTLA4, CD7, CCL5,
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CDH1, CXCL9, CCL21, CD48, IL2RB, CD3G) and 4 down-regulated genes (MAGEA4, FGF9,

COL11A2, FZD9). For each patient, the prognostic score was calculated as the ratio of mean

expression of up-regulated genes to that of down-regulated genes.

Deconvolution and ssGSEA score of 29 gene signatures from bulk RNA-seq data. Immune

cell frequencies of bulk RNA-seq data were inferred using CIBERSORTx (https://cibersortx.stanford.

edu/)29 which uses gene expression profile matrices from scRNA-seq data for deconvolution.

We uploaded PUCH RNA-seq data, selected the absolute mode with online provided melanoma

scRNA-seq data as the signature matrix, disabled quantile normalization and applied 100 permu-

tations for deconvolution robustness.

Single-sample gene set enrichment analysis (ssGSEA, Python implementation by Bagaev

et al.,28) was performed for 29 gene signatures which characterize four main TME groups (i.e.,

anti-tumor microenvironment, pro-tumor microenvironment, angiogenesis fibrosis, and malignant

cell properties)28. To account for local region bias of IMC, the density of cell types for each

sample were measured as the mean cell fraction of all ROIs taken from the same sample. Then we

computed Spearman’s rank correlation and R-squared of linear regression model between cell type

abundance from IMC and from RNA-seq data either by CIBERSORTx deconvolution or ssGSEA

score of gene signature.

Response prediction and survival analysis. To validate the prediction performance for each

dataset, ROC curve was drawn based on the prognostic score using sklearn (Python package,

v0.22.2). Kaplan-Meier analysis was performed to estimate OS or PFS using survival (R pack-
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age, v3.2.3). For each dataset, we separated samples into two groups based on their prognostic

scores with thresholds determined automatically by survminer (R package, v0.4.7). The log-rank

test was used to assess the statistical comparison between two groups and a p-value ≤ 0.05 was

considered significant. Univariable Cox proportional-harzards models adjusted by age were used

to estimate the prognostic factors on survival, and the hazard ratio (HR) of each factor was reported

using survival (R package, v3.2.3).

Statistics and reproducibility. No statistical method was used to predetermine sample size and

sample selection of this study was based on sample availability. All analyses were conducted using

software R (version 3.6.3) and Python (version 3.7). The Wilcoxon rank-sum test was used for sta-

tistical analysis comparing continuous measurements, with Benjamini–Hochberg adjustment for

all statistical tests involving multiple comparisons. An FDR-adjusted P ≤ 0.05 was considered

significant. All box plots depict the median (the center line), interquartile range (IQR), and 1.5

times the IQR (whiskers), with outliers exceeding 1.5 times the IQR. For survival analysis, sta-

tistical significance between Kaplan-Meier curves were tested by the log-rank test. Correlation

between cell type abundance was assessed by non-parametric Spearman’s rank correlation and

the corresponding test. All statistical information used for experiments are defined in the figure

legends.
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All codes with data used to produce the results in this study are available at https://github.com/

xmuyulab/IMC melanoma.
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Figure 1: Overview of the study of melanoma patients using IMC and characteristics of cell com-
position in TMEs of melanoma. (a) Workflow of IMC images acquisition from melanoma patients
and data analyses. (b) Heatmap of mean values of scaled protein expression per cell type iden-
tified by unsupervised clustering (FlowSOM and Phenograph) for a total of 662,266 single cells.
The boxplots on the right depict the proportion of each cluster per IMC image. (c) Stack bars
showing averaged cell percentage in images in the IM (top) and CT (bottom) from responders and
nonresponders, colored by four main cell types (left) and 20 subtypes (right). (d) Representative
multichannel IMC images from one responder and one nonresponder. Vimentin (magenta) and
collagen I (white) were used to portrait the structure of tissue.
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Figure 2: The prognostic impact of cell phenotypes in TME. (a) Volcano plots showing differential
testing of cell abundance in the IM (left) and CT (right) between responders (R) and nonresponders
(NR). The color of the nodes represents significant higher abundance (red) and lower abundance
(blue) of cell type in responders. The size of the nodes displays the percentage of cell type. (b)
Boxplots showing the proportion of cell type in ROIs from responders (R, red) and nonresponders
(NR, blue). Each boxplot is shown with the median (the center line), interquartile range (IQR),
and 1.5 times the IQR (whiskers), with outliers exceeding 1.5 times the IQR. Points in the boxplot
represent the cell percentage of each IMC image (IM: n = 99, CT: n = 59). Comparisons were
performed using Wilcoxon rank sum test and adjusted with Benjamini-Hochberg method. (c-d)
Forest plots showing hazard ratios (nodes) and 95% confidence intervals (horizontal lines) of PFS
for each cell type in the IM (c) and CT (d) by univariate Cox models adjusted for age. The red
nodes represent the significant factor with p value < 0.05.
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Figure 3: Spatial analysis among cell phenotypes. (a-b) Circles indicating patterns of cell-cell
interactions (green) or avoidance (red) for responders (a) and nonresponders (b). The circle size
showing the percentage of images with significant interaction or avoidance determined by permu-
tation test (P < 0.01). Rows representing the relationship of all other cell types surrounding a
cell type of interest. Columns representing the relationship of a cell type of interest surrounding
other cell types. Color in heatmap squares indicating the Spearman’s rank correlation of cell types
across all IMC images in the nonresponders and responders. Highlighted interactions or avoidance
(numbered black boxes) include: (1) lymphocytes; (2) MC4 cells and lymphocytes; (3) HLA-DR−

myeloid cells and lymphocytes; (4) stromal SMA+ cells and immune cells. (c-g) Representative
IMC images colored by marker and cell type showing the cell-cell interactions: B cells are sur-
rounded by CD4 T cells (c), CD8 T cells are surrounded by CD4 T cells (d), CD8 T cells are
surrounded by MC4 cells (e), CD4 T cells are surrounded by SMA+ stromal cells (f), CD8 T cells
are surrounded by SMA+ stromal cells (g).
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Figure 4: Identification of six distinct TME archetypes. (a) Heatmap showing scaled cell type
abundance from the IM ROIs. Six TME archetypes are clustered by the level of selected cell types
(MC2, Tumor CAIX+, B cells, CD4T, CD8T, MC4). (b) TME archetype patterns of each patient.
If all ROIs from one patient are classified as having the same TME archetype, the patient is marked
as the corresponding color of TME archetype. Patients who have ROIs that contain heterogeneous
TME archetypes are indicated with magenta. (c) An example ROI from each TME archetype
with HE image (top) and its corresponding IMC image (bottom) with cell phenotyping (B, CD4T,
CD8T, MC2, MC4 cells). (d) Kaplan-Meier curves of OS (left) and PFS (right) for melanoma pa-
tients based on their TME archetypes. (e) Gene set enrichment analysis (GSEA) of genes with up-
regulated expression for each TME archetype. Significantly enriched gene sets (adjusted P <0.05,
Benjamini–Hochberg method) from MSigDB HALLMARK collection are shown. (f) Histograms
showing the nearest distance in µm between CD8 T cells and other immune/myeloid cells.
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Figure 5: Prognostic impact of gene signature derived from TME archetypes. (a) Volcano plot
showing the up-regulated genes (red) and down-regulated genes (blue) in patients with immune
“hot” TME. (b) Heatmap depicting the expression of 24 DEGs (20 up-regulated genes, 4 down-
regulated genes) from PUCH patients classified as immune “cold” and immune “hot” groups.
(c) ROC curve of sensitivity vs 1-specificity of the prediction performance of prognostic score
calculated by the 24 DEGs for PUCH dataset (discovery cohort) and other three public datasets
(i.e., Riaz17, Gide19, Liu19). Patients with SD were not included in AUC calculation. (d) Kaplan-
Meier curves of OS in melanoma patients with high versus low prognostic score calculated by
the 24 DEGs for PUCH dataset (discovery cohort) and other three public datasets (i.e., Riaz17,
Gide19, Liu19). Log-rank p values are shown.
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