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Abstract

Motivation: Copy-number aberrations (CNA) are genetic alterations that amplify or delete the number
of copies of large genomic segments. Although they are ubiquitous in cancer and subsequently a critical
area of current cancer research, CNA identification from DNA sequencing data is challenging because
it requires partitioning of the genome into complex segments that may not be contiguous. Existing
segmentation algorithms address these challenges either by leveraging the local information among
neighboring genomic regions, or by globally grouping genomic regions that are affected by similar CNAs
across the entire genome. However, both approaches have limitations: overclustering in the case of local
segmentation, or the omission of clusters corresponding to focal CNAs in the case of global segmentation.
Importantly, inaccurate segmentation will lead to inaccurate identification of important CNAs.
Results: We introduce CNAViz, a web-based tool that enables the user to simultaneously perform local
and global segmentation, thus overcoming the limitations of each approach. Using simulated data, we
demonstrate that by several metrics, CNAViz yields more accurate segmentations relative to existing local
and global segmentation methods. Moreover, we analyze six bulk DNA sequencing samples from three
breast cancer patients. By validating with parallel single-cell DNA sequencing data from the same samples,
we show that CNAViz’s more accurate segmentation improves accuracy in downstream copy-number
calling.
Availability and implementation: https://github.com/elkebir-group/cnaviz
Contact: s.zaccaria@ucl.ac.uk, melkebir@illinois.edu

1 Introduction
The cancer genome of most solid tumors is characterized by the
accumulation of somatic genetic alterations, called copy-number
aberrations (CNAs), which are pervasive across different cancer types
with on average 44% of the genome being affected by CNAs in solid
tumors (Watkins et al., 2020; Dentro et al., 2021; The PCAWG Consortium
et al., 2020). While two distinct copies, or alleles, are expected to
be present in the genome of normal diploid cells for every gene in
autosomal chromosomes, each CNA can simultaneously alter the dosage

of hundreds to thousands of genes by increasing (gain) or decreasing (loss)
the number of copies of a large genomic segment, including chromosome’s
arms and whole chromosomes (Zack et al., 2013; Beroukhim et al.,
2010). Therefore, the identification of CNAs has a critical impact on
the understanding of cancer evolution (McGranahan and Swanton, 2015;
Jamal-Hanjani et al., 2017; Bielski et al., 2018; Watkins et al., 2020).
Moreover, the identification of CNAs may inform the development of
targeted therapies since CNAs can introduce novel vulnerabilities for
cancer cells that can be exploited for drug design (Cohen-Sharir et al.,
2021; Quinton et al., 2021; Memon et al., 2021).

Currently, most cancer studies characterize the presence of CNAs in
large cohorts of cancer patients by performing DNA sequencing of one
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2 Lalani et al.

Fig. 1: CNAViz enables user-guided segmentation for improved copy-number calling. (a) The genome of cancer cells (gray circles) is affected by
CNAs (colored dots). DNA sequencing reads obtained from these cancer cells are aligned to a human reference genome, which is partitioned into bins
(defined by the start and end position of the bin in a certain chromosome). For each bin, two signals are measured from DNA sequencing reads: the RDR,
which is proportional to the total number of copies of the bin in the genome, and the BAF, which measures allelic imbalance. (b) Local segmentation
algorithms combine neighboring bins with identical RDR (top plot) and BAF (bottom plot, where allelic imbalance is represented instead of BAF and is
measured as 0.5− BAF) into segments. Differences across datasets might lead to overclustering. (c) Global segmentation algorithms cluster bins with
similar RDR and BAF values across the entire genome, disregarding genomic location information, which may lead to spurious clusters and omit focal
CNAs. (d) CNAViz allows the user to unify local and global segmentation approaches to obtain a more accurate segmentation.

or multiple tumor samples (Jamal-Hanjani et al., 2017; Watkins et al.,
2020; The PCAWG Consortium et al., 2020). In particular, CNAs can be
identified from DNA sequencing data by combining two related signals
that are observed for every genomic region, or bin (Fig. 1a) — i.e. a
sequence of neighboring genomic loci (Tarabichi et al., 2021). First, the
read depth ratio (RDR) is defined as the ratio between the observed and
expected number of sequencing reads that align to a specific bin. As such,
variations of RDRs indicate changes in the total number of copies: an
increase/decrease in the values of RDR between different bins indicates a
higher/lower number of copies. For example, while RDRs are expected to
be nearly constant in normal diploid cells, higher/lower values of RDRs
across the cancer genome allow the identification of related gains/losses
due to CNAs. Second, the B-allele frequency (BAF) is defined as the
proportion of sequencing reads that belong to only one of the two alleles
of the bin. A value of 0.5 is expected for normal diploid bins since each
allele is present in one copy and half of the sequencing reads are expected
to be sequenced from each allele. As such, a significant deviation from this
expected value, called allelic imbalance, indicate the presence of CNAs
that affect the proportion of copies between the two alleles. For example,
if BAF is observed to be 0.33 for a bin that is affected by a gain and has
three copies (as indicated by the RDR), we can conclude that the genome
contains two copies of one allele and one copy of the other; in contrast, a
BAF of 0.0 would indicate that the genome contains three copies of only
one allele. Thus, analyzing variations of RDR and BAF values across bins
allow the identification of CNAs in cancer genomes. However, this is a
challenging task for which several algorithms have been proposed.

So far, most of the proposed algorithms to identify CNAs from
variations in RDRs and BAFs are based on local segmentation approaches.
The key idea is that CNAs generally affect large genomic segments
that comprise multiple bins and, therefore, neighboring bins have an
increased probability to be or not be affected by the same CNA. As such,
algorithms for change-point detection (e.g., Hidden Markov models) have
been proposed to identify CNA-based genomic segments by grouping

neighboring bins that do not have higher than expected variations in RDRs
and BAFs (Fig. 1b). Examples of these algorithms for DNA sequencing
data include ASCAT (Van Loo et al., 2010; Ross et al., 2021), BIC-seq (Xi
et al., 2011), Control-FREEC (Boeva et al., 2012), TITAN (Ha et al., 2014)
for bulk tumor samples, as well as HMMcopy (Laks et al., 2019) and
Ginkgo (Garvin et al., 2015) for single cells. However, the performance
of local-segmentation algorithms can be substantially affected in different
sequencing datasets by the presence of decreased or increased variance of
RDR and BAF values between or within distinct genomic segments. While
decreased variance is due to normal contamination, i.e. the presence of
normal, non-cancerous cells in the sample (Van Loo et al., 2010; Watkins
et al., 2020; Zaccaria and Raphael, 2020), increased variance results from
differences in sequencing technologies and platforms (Zare et al., 2017;
Zaccaria and Raphael, 2021).

To deal with the limitations of local segmentation, global segmentation
approaches have been proposed, which leverage the presence of distinct
genomic segments affected by similar CNAs. In fact, similar CNAs are
frequent across the entire genome of the same tumor, resulting in bins
from across the genome with similar RDR and BAF values. Thus, global-
segmentation algorithms, such as FACETS (Shen and Seshan, 2016)
and CELLULOID (Notta et al., 2016), leverage these shared signals
from different CNAs by clustering bins that share RDR and BAF values
(Fig. 1c). Moreover, the recent HATCHet (Zaccaria and Raphael, 2020)
and CHISEL (Zaccaria and Raphael, 2021) algorithms have demonstrated
that this global approach can be further extended to jointly leverage the
signals even across multiple samples (or single cells) obtained from the
same tumor, obtaining improved power to accurately identify CNAs even
in contexts of low tumors purity or CNAs that are only present in distinct
subpopulations of cancer cells. However, this increased power afforded
by global segmentation comes at the cost of a diminished ability to
identify smaller or focal CNAs, as well as CNAs that are only present
in few or single tumor samples, which are frequent in cancer (Zaccaria
and Raphael, 2020). Since local-segmentation algorithms generally have
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CNAViz: User-guided segmentation 3

improved power for these smaller and focal CNAs by leveraging the local
signals of neighboring genomic regions, there is thus a trade-off between
local and global segmentation approaches.

Importantly, accurate segmentation is key to identifying tumor clones
with accurate copy number calls. To solve the trade-off between local
and global segmentation algorithms, we introduce CNAViz, a graphical,
interactive, and web-based tool to perform user-guided segmentation of
tumor DNA sequencing data for the identification of CNAs (Fig. 1d).
By providing an accessible and highly portable interactive platform to
combine RDR and BAF values across both the entire genome and multiple
samples while simultaneously revealing the presence of local genomic
patterns, CNAViz represents a unifying approach that combines the
advantages of local and global segmentation approaches. In particular,
CNAViz is applicable to a wide range of novel and retrospective analyses,
as it can be used to perform both segmentation de novo or to improve
the segmentation performed by other existing segmentation methods. We
have used simulated multi-sample tumor sequencing dataset generated
by the published MASCoTE framework (Zaccaria and Raphael, 2020) to
demonstrate the improved accuracy of CNAViz relative to existing local
and global segmentation methods. Moreover, we have applied CNAViz
to previous bulk DNA sequencing data generated from 6 tumor samples
obtained from 3 breast cancer patient (Casasent et al., 2018). Using these
data, we have demonstrated that CNAViz is more concordant with parallel
single-cell sequencing data of these samples, revealing the presence of
CNAs for known breast cancer driver genes that would have been missed
by current methods.

2 Requirements
We describe the input data in Section 2.1. We discuss the analysis tasks
required for effective segmentation of copy-number data in Section 2.2.

2.1 Data Characteristics

Input and Output. CNAViz input data adhere to seven characteristics.
(D1) One or more samples, quantified bym > 0, are sequenced from a

tumor. Samples may correspond to bulk DNA sequencing samples and/or
single-cell DNA sequencing samples.

(D2) The genome is partitioned in n bins that may vary in size. We
indicate the chromosome in which bin i occurs by chr(i), its start position
on that chromosome by start(i) and end position by end(i).

(D3) The read depth ratioRDR(p, i) is provided for each bin i in each
sample p.

(D4) The B-allele frequency BAF(p, i) is provided for each bin i in
each sample p.

(D5) Optionally, each bin may be assigned to a segment/cluster
cluster(i). These values represent the local or global segmentation
performed by existing algorithms and is used for further refinement.

(D6) Optionally, a setD of driver genes may be provided with genomic
coordinates (chr(d), start(d), end(d)) for each driver gene d.

(D7) Export new clustering. The new clustering created is exportable
for future usage. Bins that have been erased (C5) are excluded from export.

2.2 Analysis Tasks

CNAViz is characterized by five groups of analysis tasks: (i) plotting, (ii)
filtering, (iii) selecting, (iv) clustering, and (v) analytics. The overarching
requirement underlying these tasks is that the tool should be able to support
both local and global segmentation.

Plotting. We begin by introducing the requirements regarding plotting.
(P1) Plot the RDR and BAF values of bins for each sample sorted by

genomic coordinates. To facilitate local segmentation, the user can inspect

RDR and BAF values ordered by genomic coordinates. This will enable
the user to identify breakpoints along the genome.

(P2) Simultaneously plot RDR and BAF values of bins for each sample.
To facilitate global segmentation, the user can inspect RDR and BAF values
in a two-dimensional plot for each sample. This will enable the user to
identify groups of bins distributed across the genome with similar RDR
and BAF values across all samples.

(P3) Indicate clustering of bins with the same set of colors in all plots.
To enable the user to view the current clustering, the tool should indicate
cluster assignments of bins with colors. Specifically, the same set of colors
is used in both the local plots (P1) as well as the global plots (P2).

(P4) Show input data and cluster assignment of an individual bin. The
user can inspect the input data of an individual bin as well as its assigned
cluster (if any).

Filtering. As we envision a tool that enables both local and global
segmentation, the user can set filters in both a localized manner as well as
a global manner.

(F1) Show only bins that occur in a localized genomic range. The user
can restrict the shown bins to only those that occur within a user-specified
linear genomic range via the local plots introduced in (P1).

(F2) Show only bins that occur within a range of BAF and RDR values.
The user can specify a range of RDR and BAF values for each sample,
restricting the tool to only show those bins whose RDR and BAF values
occur within the specified ranges.

(F3) Zooming and panning can be reset to a default state where all
bins are shown. This can be done on both the local and global plots.

(F4) Show only bins that occur on an individual chromosome. The user
can specify an individual chromosome, restricting the tool to only show
those bins that occur on the specified chromosome.

(F5) Show only bins that are assigned to a specified set of clusters.
The user can specify one or more clusters, restricting the tool to only show
those bins that are assigned to any of the specified clusters.

(F6) The same set of bins should be shown in both the local and global
plots for each sample. To maintain visual consistency, it is important to
ensure that the same set of bins is shown for each sample at all times.
This is particularly important when altering filtering criteria via any of the
aforementioned filtering tasks.

Selecting. We now proceed with introducing the requirements regarding
selection functionality. Specifically, selection is an important step to enable
the user to identify a group of bins and subsequently update their cluster
assignments.

(S1) A range of localized bins can be selected and deselected. The
user can add a range of bins to the current selection via the local plots
introduced in (P1). Conversely, the user can remove bins from the current
selection in a localized fashion.

(S2) A set of bins with similar RDR and BAF values in one sample can
be selected and deselected. The user can add a set of bins with similar RDR
and BAF values to the current selection via the global plots introduced in
(P2). Moreover, the user can remove bins from the current selection using
the same global plots.

(S3) The current selection can be cleared. The user can quickly clear
the current selection (i.e. deselect all bins).

(S4) The current selection of bins must be shown in all local and global
plots. The user can view the current selection in all plots across all samples.

Clustering. Next, the user can cluster the selected bins as captured by the
following requirements.

(C1) The current selection of bins can be assigned to a new cluster.
Specifically, the tool should identify a new cluster index that has not been
previously used and assign the bins to this cluster. If a subset of the selected
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4 Lalani et al.

bins were previously assigned to another cluster, they should be re-assigned
to the new cluster.

(C2) The current selection of bins can be merged into an existing
cluster. The user can select a previous cluster and assign the selected
bins to this cluster. If a subset of selected bins were previously assigned
to another cluster, they should be re-assigned to the cluster selected by the
user.

(C3) The cluster assignments of the selected bins can be cleared. This
functionality should reset the cluster assignments of the selection without
assigning the selected bins to an existing cluster.

(C4) All cluster assignments can be cleared. The user can quickly clear
cluster assignments of all bins.

(C5) The current selection of bins can be erased. To enable the user
to remove outlier bins from consideration by downstream copy-number
callers, the tool should provide functionality to erase the current selection.

(C6) Any of the aforementioned clustering tasks can be undone. To
enable the user to recover from any mistakes during clustering (without
starting over), the tool should maintain an undo stack.

(C7) A log of all clustering operations is maintained. To facilitate
reproducibility, the tool should maintain an exportable log of all operations.

Analytics. Finally, the tool provides the user with feedback reflecting
the current clustering. Specifically, we have the following analytics
requirements.

(A1) Show metrics assessing homogeneity and separation for each
cluster. A good clustering satisfies the following two criteria. First, bins
within each cluster have similar RDR and BAF values per sample (i.e.
homogeneity or cohesion). Second, distinct clusters are comprised of bins
with distinct RDR and BAF values per sample (i.e.ṡeparation). Our tool
should provide the user feedback of the current clustering regarding these
two criteria. In particular, the tool should identify clusters that would
benefit from further refinement.

(A2) Show centroids of currently selected clusters. To enable the user
to visually assess the clustering, the tool can show cluster centroids in the
global plots (P2). Only centroids for the currently selected clusters (F5)
should be shown.

(A3) Show driver gene locations. To facilitate interpretation of CNAs,
the tool should show driver gene locations in the linear plots (P1). The set
of shown driver genes can be customized by the user (D6).

3 Methods
This section introduces CNAViz, a web-based tool for user-guided
segmentation implemented using D3 and React. CNAViz is open source
and is available at: https://github.com/elkebir-group/

cnaviz. Section 3.1 defines the input and output of the tool. Section 3.2
covers how the genomic bins are visualized and interacted with in CNAViz.
The cluster analysis task are discussed in Section 3.3. Finally, Section 3.4
provides guidelines on how the tool can be used to perform de novo
segmentation or refine an existing segmentation.

3.1 Input and Output

Input. Following (D1)-(D5), the user may upload a tab-separated values
(TSV) file containing the RDR and BAF values of bins across multiple
samples. The first row specifies column headers, which must contain
‘CHR’, ‘START’, ‘END’, ‘RD’, ‘BAF’ and, optionally, ‘CLUSTER’.
The order in which these columns are specified does not matter. If the
‘CLUSTER’ is not provided, then we consider all the genomic bins not
clustered. That is, internally, we set cluster(i) = −1 for each bin i.
As these files can be large (about 10 MB for m = 3 whole genome
samples with 50 Kb bins), we require the rows to be ordered as follows to

facilitate fast processing. First, all bins part of the same chromosome must
be grouped together and sorted by genomic position. Second, bins at the
same genomic position, but from different samples are grouped together.
Third, every genomic bin should be present in every sample. Note that the
TSV input file may contain additional columns, which will not be used,
but will be included in exported files as discussed below.

Per (D6), the user may also upload a list of driver genes. The input data
for driver genes must have the following columns: ‘symbol’ and ‘Genome
Location’. The latter column is of the format ‘{CHR}:{START}-{END}’.

Output. Following (A4), the user may export the current clustering. When
doing so, two files will be downloaded. One file contains a log of all
clustering operations that were performed (C7). The other file adheres to
the same TSV format used for input and specifies the clustering. Bins i that
were erased (C5), which we internally assign cluster cluster(i) = −2,
will not be exported.

3.2 Plotting, Filtering, Selecting and Clustering

Visualization. The user interface of CNAViz is composed of a sidebar that
can be hidden (Fig. 2a) as well as a main view containing the linear plots
and scatter plot. We accomplish (P1) with two linear plots that both have
the genomic position on the x-axis (Fig. 2c). On the y-axis, one of them
contains the RDR, and the other contains the allelic imbalance. The allelic
imbalance of a bin i in sample p is defined as 0.5 − BAF(p, i). We
accomplish (P2) using a scatter plot, where the x-axis shows the allelic
imbalance and the y-axis shows the RDR of each bin (Fig. 2b). Note that
rather than plotting BAFs directly, we chose to plot a transformation of the
BAF so that bins that are unaffected by CNAs appear close to the origin
in the scatter plot. Bins in both the linear and scatter plots are colored
according to their cluster assignment (P3). Both the scatter plot and linear
plots are side-by-side and display all bins from the same sample. Up to m

scatter-linear plot pairs can be displayed at a time, where each pair displays
all genomic bins part of one of the m samples. As a result, users can view
genomic bins across multiple samples at the same time.

Each plot was created using the D31 and D3FC2 libraries. In order
to give the user maximum control over the clustering, all bins from the
input data are plotted without any merging. We found that directly using
SVG or drawing points using HTML Canvas does not scale to the number
of bins that we have in our data (∼ 50,000 bins). In order to efficiently
plot a large number of bins, we used D3FC wrapper methods for WebGL.
WebGL takes advantage of the rendering speed of the GPU, which allows
for the efficient rendering of large amounts of data points. Each plot in
CNAViz contains an SVG layer and WebGL layer to allow for both user
interactivity and efficient rendering.

Interactivity. To support interactivity, our tool can be in one of three global
states: (i) pan/zoom mode, (ii) add-to-selection mode and (iii) remove-
from-selection mode. In all three modes, when hovering over any point in
the scatter plot, a tooltip will appear with information about the genomic
bin (P4). A D3 quadtree with all the points in the plot was used to achieve
this effect. The genomic position of the bin being hovered over is displayed
on the linear plots with a black bar.

If in pan/zoom mode (as indicated by the highlighted magnifying glass
icon next to the sidebar), zooming and panning can both be done on the
linear plots (F1) and scatter plot (F2). Otherwise, if in one of the two
selection modes, the user can still pan/zoom on the axes, but not on the plot
area. While in pan/zoom mode, if the user holds down ‘shift’ then bounding
box zoom is enabled through clicking and dragging on the scatter plot and
linear plot. The scales of the scatter plot are kept in sync with the y-axis

1 https://github.com/d3/d3
2 https://github.com/d3fc/d3fc
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Fig. 2: CNAViz contains a variety of options, modes, and plots to help the user create an effective segmentation. (a) Sidebar containing import/export
options, filtering by cluster or chromosome, analytics, centroids, etc. (b) Scatter plot with RDR on the y-axis and allelic imbalance on the x-axis. When
hovering over a point in the scatter plot, a tooltip appears with information about the corresponding bin including the genomic position, bin size, RDR,
allelic imbalance, and cluster ID. In addition, the hovered bin’s position on the linear plots is indicated with a black bar. (c) RDR and allelic imbalance
linear plots with genomic position on the x-axis. (d) When points are selected, the color of the bins on all plots changes to a dark blue color. The cluster
composition of the selected points is displayed under the plots with a table, where the row color matches the cluster color in the plots. (e) Button to
open/close sidebar (left arrow), as well as buttons to switch between three modes: pan/zoom (magnifying glass), add-to-selection (mouse pointer), and
remove-from-selection (eraser). (f) Average silhouette coefficient bar plot. Above the bar plot, the average of the silhouette scores for each cluster is
displayed. (g) Average Euclidean distance bar plot. Displays the average inter-cluster distance of each cluster to the cluster selected in the drop-down
above the plot. (h) Driver genes are displayed as red dots along the x-axis of the linear plots. When a driver gene is clicked, it is locked in place and
represented as an orange bar with the driver gene symbol above it. Hovering over one of the red dots allows the user to preview the driver gene (displayed
as a green vertical bar).

scales of the linear plots, so any zooming done on the scatter plot will be
reflected in the linear plots. The same is true the other way, any y-axis
zoom on the linear plot will be reflected by the scatter plot. In addition,
zooming along the x-axis (genomic position) of either linear plot will act
as a filter for the scatter plot of the same sample. To reset any zooming or
panning done on a plot, the user can click the corresponding ‘Reset View’
button in the top right of the plot (F3).

Beyond panning and zooming, there are two main ways of applying
global filters to the genomic bins. First, the user can filter by chromosome
through the use of the corresponding drop down in the sidebar (F4). Second,
the user has the option to filter by cluster globally by using the cluster
table in the sidebar (F5). For filtering, the crossfilter3 library is
used, which allows for filters along multiple dimensions to be added and
removed with ease. Finally, both the scatter plots and linear plots for the
same sample will always display the same bins as required by (F6).

In add-to-selection mode, points can be added to the current selection
through the use of a bounding box in either the scatter or linear plots (S1)-
(S2). The user can enter this mode by clicking the corresponding icon next
to the sidebar (Fig. 2e). Alternatively, the user may temporarily enter this
mode by holding down the control/command modifier key. To clear the
selection, the user can click anywhere on the plot without dragging (S3).
Points selected will be kept in sync between all plots in the visualization
(between samples) as required by (S4). To erase part of a selection, the user
can switch to remove-from-selection mode by clicking the corresponding
icon next to the sidebar (Fig. 2e). Alternatively, the user may hold the

3 https://github.com/crossfilter/crossfilter

alt/option key modifier to enter this mode. In this mode, all bins within
the user-guided bounding box will be deselected (S1)-(S2). As points
are selected and deselected, a variety of statistics for each cluster in the
selection is displayed. For each cluster j, the user can see the percentage
of bins assigned to cluster j covered by the selection, the percentage of
the selection belonging to cluster j, and, finally, what percentage of bins
the selection belonging to cluster j correspond to.

Once the user has selected the genomic bins desired, they can create
a completely new clustering by clicking ‘New Cluster’, which will assign
the points to the next cluster ID available (C1). Alternatively, they can
choose an existing cluster from the drop down on the top of the scatter
plot, and click ‘Assign Cluster’ (C2). This drop down also has options
−1 as a temporary not clustered state (C3) and −2 which represents a
deleted state (C5). The user has the ability to clear all cluster assignments
by clicking on ‘Clear Clustering’ in the sidebar (C4). If the user wants to
undo a cluster assignment, they can click ‘Undo’ (C6). To see information
about the actions taken, the user can click the ‘Previous Actions’ button
in the sidebar (C7).

3.3 Analytics

Visualization and Interactivity. In order to allow users to see how well
they are clustering the data, we introduce a ‘Cluster Analytics’ tab
(A1) that shows the silhouette values of the clustering (Rousseeuw,
1987) as well as pairwise cluster distances. Specifically, given
m samples, we represent each bin i as a vector vi =

[RDR(1, i), . . . ,RDR(m, i),BAF(1, i), . . . ,BAF(m, i)]⊤ in 2m-
dimensional space, combining the m RDR and the m BAF values of the
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bin across all m samples. This enables us to compute Euclidean distances
between pairs of bins. To view analytics about the current clustering, the
user can click the ‘Analytics’ button in the sidebar. A pop-up will appear
that displays two bar plots (Fig. 2f, g).

The first bar plot shows the approximated average silhouette coefficient
for each cluster j, fulfilling (A1). The silhouette value s(i) of a bin i is a
value between −1 and 1, where a high value indicates that the bin is well
matched to other bins assigned to the same cluster (homogeneity/cohesion)
and poorly matched to bins from other clusters (separation). The silhouette
coefficient s(j) of a cluster j is the mean silhouette value of all bins i

assigned to cluster j. Computing the exact silhouette coefficient of each
cluster is time intensive, i.e. it requires O(n2) time where the number
n of bins is around 50000 for real data. Therefore, we approximate the
computation silhouette coefficient via downsampling of points. The goal
is to obtain a clustering with silhouette coefficients near 1.

The second bar plot represents the average Euclidean distance between
the points of two clusters, which enables the user to identify pairs of clusters
that can be merged. From the drop down above the plot, the user chooses a
specific cluster for which to compute distances to other clusters. Clusters
that have a distance near 0 to the specified cluster are good candidates for
merging. The goal is to obtain clusters that show good separation, and have
large pairwise Euclidean distances. Finally, we provide the user the ability
to visualize cluster centroids through a checkbox in the sidebar (A2).

In order mark important driver genes on the linear plots, the user can
upload a list of driver genes using the ‘Import Driver Genes’ button in
the sidebar. The data must abide by the format described in Section 3.1.
Following (A3), once uploaded, the driver genes will be represented by
dots along the x-axis of the linear plots. By default, we use the driver genes
published in the COSMIC Cancer gene census, and restricted ourselves to
those genes for which a genomic location was provided (Tate et al., 2019).
Each driver gene marker acts as a toggle button, where if toggled on, the
genomic region that the driver gene spans is highlighted. When hovering
over one of the markers, the highlighted region can be previewed (Fig. 2h).

3.4 Usage Guidelines

In the following, we provide general guidelines on how CNAViz can be
applied in each scenario. Screencasts and detailed tutorials demonstrating
the application of these guidelines on real and simulated data are
publicly available and can be found at https://github.com/

elkebir-group/cnaviz.

Using CNAViz to Perform De Novo Segmentation. We begin by providing
guidelines for de novo segmentation using CNAViz. We recommend
displaying all samples in order to evaluate bins across samples
concurrently. Moreover, we recommend using the scatter plot to quickly
identify potential clusters that share similar RDR and BAF values across
samples at a glance. However, the use of linear plots is essential to refine
this clustering, especially in the presence of large number of clusters
or clusters corresponding to small CNAs. Thus, both the scatter and
linear plots should be used in the process of selecting relevant bins in
the following three steps.

First, the user should select bins that are well separated on the scatter
plot of a single sample. The user should then inspect whether these selected
bins are also grouped together in other samples. In particular, selected bins
that vary in one sample should be excluded from the current selection, and
are good candidates for a new cluster. Second, the user should also use
the linear plots to inspect whether these selected bins share RDR and
BAF values across the genome. The linear plots are especially helpful to
leverage the intuition that CNAs tend to occur in contiguous segments of
the genome. Third, selected bins which share RDR and BAF values across
samples can be made into a new cluster. This process should be repeated
until each bin has been assigned to a cluster. When all bins have been

clustered, the user can then proceed with the following steps to check an
existing clustering.

Using CNAViz to Refine an Existing Segmentation. We now provide a few
guidelines with which to evaluate and improve upon an existing clustering.
The user should begin by displaying all samples. As a first step, the user
should toggle the plots to show only the bins in one chromosome. This
can be achieved using either the sidebar’s chromosome menu, or via the
zoom selection. The following steps should then be repeated for each
chromosome.

First, if a pair of clusters share both RDR and BAF values across
all samples, these clusters should be merged. The user may find the
following subroutine for merging clusters helpful. (1) Note the cluster IDs
in question. (2) Use the cluster check boxes in the left toolbar to visualize
only the bins in these clusters. (3) Use the ‘Reset View’ button to ensure
all cluster bins are visualized. (4) Select all bins and either assign them to
an existing cluster or create a new cluster as appropriate. (5) Repeat this
process as necessary.

Second, if a single cluster contains different RDR and BAF values, this
cluster should be split into at least two clusters. We suggest the following
procedure for splitting clusters. (1) Note the cluster ID in question, and the
approximate corresponding range of RDR and BAF for each new cluster.
(2) Use the cluster check boxes in the left toolbar to visualize only the bins
in this cluster. (3) Use the ‘Reset View’ button to ensure all cluster bins
are visualized. (4) Select the bins that should be separated, and create a
new cluster. (5) Repeat this process as necessary so that each cluster has
distinct RDR and BAF values.

Third, in an input clustering with several clusters which each have very
few bins, it is often desirable to lessen the number of clusters by absorbing
small clusters into larger ones. This is particularly relevant after inspecting
and splitting each cluster, which results in the creation of several small
clusters. The user should first verify that the largest clusters that incorporate
the majority of bins are appropriately clustered – that is, each cluster’s bins
share a RDR and a BAF value that is distinct from all other bins. Next,
given a small spurious cluster we suggest using the ‘Analytics Tab’ to
identify a candidate largest cluster for merging. Finally, we recommend
the user to iterate through these three steps until convergence.

4 Results
We used published simulated datasets (Zaccaria and Raphael, 2020)
generated from multi-sample DNA sequencing tumor samples to
demonstrate how CNAViz improves upon existing segmentation
algorithms in Section 4.1. Moreover, in Section 4.2 we demonstrate
on a dataset of 6 tumor samples from 2 breast cancer patients that
the novel features of CNAViz allows us to the accurately reveal CNAs
affecting important cancer genes, which were previously missed by
existing segmentation algorithms.

4.1 Validation of CNAViz using Simulations

Experimental Setup. To demonstrate the benefits of CNAViz, we used
previously published data simulated with MASCoTE (Zaccaria and
Raphael, 2020) for which ground truth is available and can be used for
assessing segmentation performance. We considered the published dataset
n2_s4669/k4_01090_02008_00506035_00504055 with m =

4 bulk DNA sequencing samples comprising of 2 tumor clones.
To assess CNAViz’s ability to perform accurate de novo segmentation

as well as to assess improvement upon segmentations produced by existing
methods, we performed three different experiments. First, we ran CNAViz
in de novo mode by providing non-segmented data as input. Second, we
provided CNAViz a segmentation solution generated by HATCHet, which
performs global segmentation (Zaccaria and Raphael, 2020). Third, we
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CNAViz: User-guided segmentation 7

Fig. 3: CNAViz produces more accurate segmentations on simulated data in both de novo mode as well as when refining a given segmentation. (a)
A two-dimensional plot of RDR (y-axis) and allelic imbalance (x-axis, measured as 0.5− BAF) of 50 Kb genomic bins (points). Colors represent the
ground-truth segments/clusters. Table shows performance metrics for each method. (b) Comparison of HATCHet’s global segmentation solution before
(left plots) and after refinement (HATCHet + CNAViz, right plots). (c) Comparison of ASCAT’s local segmentation solution before (left plots) and after
refinement (HATCHet + CNAViz, right plots). In each plot of (b) of (c) respectively, the same genomic bins are displayed, but colored according to each
method’s inferred segmentation.

input a segmentation solution generated by ASCAT, which performs local
segmentation (Van Loo et al., 2010; Ross et al., 2021). We ran ASCAT
in single-sample mode (aspcf) and provided it with ground-truth purity
and ploidy values. We reconciled the sample-specific segmentation into a
single sample-agnostic segmentation solution by retaining all breakpoints.
We refer the reader to https://github.com/elkebir-group/

cnaviz for screencasts describing the specific steps taken for this
simulation instance. These follow the general guidelines described in
Section 3.4.

Results. We evaluated the different clustering solutions using three
performance metrics. These include the Adjusted Rand Index
(ARI) (Hubert and Arabie, 1985), the V-measure (Rosenberg and
Hirschberg, 2007) and the silhouette score (Rousseeuw, 1987). The ARI
equals 0 when points are assigned to clusters randomly, and equals 1 when
the inferred and ground-truth clustering solutions are the same. Likewise,
the V-measure ranges from0 (poor clustering) to1 (matching ground-truth)
(Rosenberg and Hirschberg, 2007). We refer to Section 3.3 for further
details on interpreting the silhouette score.

We assessed the performance of five different segmentation solutions
produced by (i) CNAViz, (ii) HATCHet, (iii) HATCHet + CNAViz, (iv)
ASCAT, (v) ASCAT + CNAViz (Fig. 3a). Notably, the segmentation
produced in CNAViz’s de novo mode achieved the best overall clustering
performance in terms of ARI and V-Measure (0.99553 and 0.97048,
respectively). Given an existing solution, CNAViz also produced consistent
improvements when compared to the original solution. Specifically,
CNAViz produced the greatest improvement in terms of both ARI and
V-measure (0.07376 to 0.99509 for ARI, and 0.21984 to 0.96804 for

V-measure) when applied to the ASCAT solution. We also see modest
improvements in these metrics for HATCHet.

Next, we present two specific examples of typical errors made in
existing methods that CNAViz is able to fix (Fig. 3). First, CNAViz
enables the user to improve the HATChet solution by splitting a cluster. By
visualizing the HATCHet solution using CNAViz’s integrated scatter and
linear plots, we can observe an orange cluster containing bins that separate
into two distinct genomic segments along the genome (Fig. 3b). Therefore,
we split the orange cluster into two separate clusters (Fig. 3b), matching
ground truth (Fig. 3a). Second, CNAViz enables the user to combine
distinct segments from across the genome into a single cluster. As a local
segmentation method, ASCAT overclusters a single ground-truth cluster
into 22 separate segments. ASCAT produces this clustering because the
bins occur non-contiguously (Fig. 3c). With CNAViz’s interactive scatter
plot, we are able to both identify and reassign the cluster of bins (Fig. 3c),
producing a cluster that matches ground truth (Fig. 3a).

4.2 Application of CNAViz to Real Data.

To investigate the impact of CNAViz’s novel features, we applied CNAViz
to DNA sequenced from six tumor samples across three breast cancer
patients (P5, P6, P10) analyzed in the previous study of Casasent et al.
(2018). In addition to standard bulk DNA sequencing of each tumor
sample, the authors also performed matched high-resolution single-cell
sequencing of every sample. As such, we can use these single-cell data to
validate the CNAs inferred from the bulk sequencing data. Specifically, we
plan to assess whether performing segmentation using CNAViz produces
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Fig. 4: CNAViz results in more accurate identification of CNA status of breast cancer driver genes compared to an existing segmentation algorithm.
(a) CNAViz has been applied on the DNA sequencing data of two tumor samples (DCIS and INV) obtained from each of three breast cancer patients
(P5, P6, and P10) analyzed by Casasent et al. (2018). (b) The number of correctly identified CNAs for breast cancer driver genes (y-axis) is reported
across all samples of the three patients when using either the existing segmentation algorithm HATCHet (yellow) or refining its results with CNAViz
(green). The number of correct driver genes is listed above each bar. (c) The number of breast-cancer driver genes with different types of CNAs inferred
by either HATCHet (columns in top table) or HATCHet + CNAViz (columns in bottom table) is compared with the high-resolution CNAs measured by
the matched classification in single-cell sequencing data (rows in both tables). (d) The CNAs (y-axis) inferred by HATCHet + CNAViz for two distinct
sub-populations of cancer cells identified in Patient 10 are shown in orange and purple, with 0.15 separation for visual clarity.

downstream CNA calls that better match the single-cell data compared to
using an existing segmentation method (Fig. 4a).

We processed the raw sequencing reads using the same pipeline
reported in Casasent et al. (2018). After downloading the DNA sequencing
data from the Sequence Read Archive (accession numbers SRP114962
and SRP116771), we aligned the reads to the human reference genome
(hg19) using BWA (Li and Durbin, 2009). Then, the aligned sequencing
reads were provided as input to HATCHet (Zaccaria and Raphael, 2020).
Similar to other methods for copy number calling, HATCHet first performs
segmentation before outputting copy number calls. Due to its modular
design, it is possible to provide HATCHet with a custom segmentation.
We created two sets of CNA calls for each patient. One set was obtained
by running HATCHet end-to-end with its built-in global segmentation
(denoted as ‘HATCHet’). We extracted HATCHet’s global segmentation
and refined it using CNAViz (following the guidelines in Section 3.4). This
enabled us to obtain a second set of CNA calls from HATCHet using the
refined segmentation (denoted as ‘HATCHet + CNAViz’).

For each patient, Casasent et al. (2018) reported a small number of
relevant breast cancer driver genes (ranging from 13 to 20). Using the
single-cell CNA calls reported by the authors, we classified the driver genes
of each patient as either unaffected, deleted, or amplified due to CNAs. We
designated a driver gene as correctly classified if the CNA state inferred
from bulk data matched the single-cell CNA state. We found that HATCHet
+ CNAViz classified a total of 44/86 genes (51%) correctly compared
to 60/86 genes (70%) correctly classified by HATCHet (Fig. 4b). In

particular, for sample P10 DCIS (ductal carcinoma in situ) HATCHet
+ CNAViz inferred 16 genes correctly compared to 15 genes correctly
inferred by HATCHet. Further inspection reveals that HATCHet alone
identified no amplified genes, and instead identifies 7 driver genes as
neutral and 13 driver genes as deletions (Fig. 4c,d). By contrast, HATCHet
+ CNAViz identified 4 amplifications among driver genes, matching the
ground-truth single-cell data. Among these, three are known oncogenes:
TRIM24 (Pathiraja et al., 2015), MYCN (Schwab, 1991) and MLLT11 (also
known as AF1q) (Park et al., 2015). Generally, we expect oncogenes to
be amplified within tumor cells, as these mutations prove beneficial to
tumor cells. Thus, the literature provides further evidence corroborating
HATCHet + CNAViz’s classification of these genes. Another difference
between both approaches is the classification of the driver gene LIFR,
which is a known tumor suppressor gene (Chen et al., 2012). While
HATCHet classified this gene as unaffected by CNAs, HATCHet + CNAViz
classified the gene as affected by a deletion. This matches the expected
behavior for tumor suppressor genes, which are frequently affected by
deletions.

In summary, significant improvements in the accuracy of downstream
copy-number analyses are possible with more accurate upstream
segmentation. Here, we have illustrated improvements in the use case
of driver gene classification, which were made possible by using CNAViz
to refine the segmentation prior to copy number calling.
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5 Discussion
Many cancer genomes are affected by copy-number aberrations
(CNAs), making accurate characterization a critical step in improving
our understanding of tumorigenesis as well as identifying treatment
opportunities. Current CNA callers typically perform segmentation, either
merging neighboring bins into segments (local segmentation) or clustering
bins from across the genome (global segmentation). Importantly, both
approaches suffer from limitations which result in either too many clusters
in the case of local segmentation, or the omission of clusters corresponding
to focal CNAs in the case of global segmentation. Here, we introduced
CNAViz, a web-based tool to perform user-guided segmentation while
taking both local and global perspectives into account. Thus CNAViz
acquires the advantages of both approaches while overcoming their
respective limitations. On simulated data, we demonstrated that CNAViz
produces more accurate segmentations regardless of whether it is run in de
novo mode or used to refine local or global segmentations. On real data,
we demonstrated an example of how CNA analyses are afforded tangible
downstream improvements by CNAViz.

There are several avenues for future research. First, while the ‘Cluster
Analytics’ tab provides static feedback on the current segmentation, we
envision the tool could provide real-time suggestions to further improve
segmentation. Second, CNAs are often recurrent across patients with the
same tumor type. Presently the tool operates on samples from one tumor
at a time. In the future, we may consider generating suggestions based
on segmented data from tumors in the same cohort. This will help further
automate the process of generating and improving segmentation. Third,
we propose an opt-in way for users to contribute segmentation solutions
akin to crowd-sourcing efforts like FoldIt, enabling future developments of
automated segmentation algorithms that incorporate successful strategies
employed by expert users (Cooper et al., 2010).
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