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Abstract 

Phosphorylation forms an important part of the signalling system that cells use for decision making 

and regulation of processes such as celll division and differentiation. To date, a large portion of 

identified phosphosites are not known to be targeted by any kinase. At the same time around 30% 

of kinases have no known target. This knowledge gap stresses the need to make large scale, 

data-driven computational predictions.  

In this paper, we have created a machine learning-based model to derive a probabilistic kinase-

substrate network from omics datasets.  We show that our methodology displays improved 

performance compared to other state of the art kinase-substrate predictions, and provides 

predictions for more kinases than most of them. Importantly, it better captures new 

experimentally-identified kinase-substrate relationships. It can therefore allow the improved 

prioritisation of kinase-substrate pairs for illuminating the dark human cell signalling space. 

 

Introduction 
Cells relay information through intricate signalling networks1 that are typically regulated by  post 

translational modifications (PTM), with phosphorylation being the best studied one among these2. 

Phosphorylation of proteins is catalysed by kinases that target a specific set of substrates, 

changing their state and/or function. The importance of understanding kinase regulatory networks 

is highlighted by the fact that a large portion of targeted therapies that are currently used and 

being developed target kinases3. Despite this, to date only a small portion (~5%) of the more than 

100,000 known phosphosites have a known upstream kinase4. At the same time 150 kinases 

have no known substrate and 90% of the phosphosites are assigned to the 20% of the best 

studied kinases4. Given that several studies have demonstrated that the  understudied kinases 

can be just as important for health as the well-studied ones4, this points to a bias in the literature, 

where researchers prioritise well-studied proteins. In addition, publicly available databases, such 

as KEGG5, Reactome6, Omnipath7 and others,  that describe our current knowledge of cell 

signalling pathways, present a static view that represents the ‘average’ cell and doesn’t capture 
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condition-specific signalling networks. As a result these literature-defined static signalling 

pathways have a limited explanatory value when it comes to the analysis of phosphoproteomics 

data. 

Mass spectrometry-based phosphoproteomics data sets present relatively unbiased views of a 

cell’s signalling state and could be used for extracting unbiased signalling networks from specific 

experimental conditions8,9.  However, most well-performing methods that have been developed 

to this end, base their predictions on prior networks8 in the form of known pathways mentioned 

above thus perpetuating existing literature biases. For example, PropheticGranger, one of the top 

scoring methods in the HPN-DREAM challenge8, applies heat diffusion coupled with L1 penalized 

regression10 on a network based on the Pathway Commons database11. There is thus a need for 

a more unbiased prior network to be used in methods for network inference of signalling networks 

from phosphoproteomics data.  

In previous work, we used a machine learning approach, combining predictors such as co-

phosphorylation, co-expression and kinase specificity models to derive such a data-driven kinase-

kinase regulatory network12. However the resulting network provided predictions only at the 

protein level, whereas it is known that proteins have multiple functional phosphosites, often with 

entirely different or even opposing functions. E.g. phosphorylation of Y530 found on the Src 

kinase leads to its inhibition while dephosphorylation of Y530 and phosphorylation of Y419 leads 

to its activation13.  In addition, while kinase regulatory networks form the ‘skeleton’ of the phospho-

based signalling networks, non kinase substrates are also critical e.g. in the case of adaptor 

proteins forming scaffolds to regulate signal propagation14, for phosphatases removing 

phosphosites to shut signals off, regulation of transcription factor translocation or activities15 and 

others.  

To address these points, in this work, we have extended this machine learning model introducing 

additional predictors to include non-kinase substrates and to provide predictions at the 

phosphosite level. We validate our resulting predictions with recent, independent, experimental 

kinase-substrate predictions and present a list of highly probable novel kinase-substrate 

relationships16,17. Our method, called SELPHI2.0, is able to make predictions for less studied 

kinases and substrates compared to those found in the literature and perform better than 

established kinase-substrate prediction methods18–22. Furthermore, we provide predictions of the 

sign of the kinase-substrate interactions.  Our network’s precision, finally, increases when fitted 

to experimental data, suggesting that it can be used as a prior in data-driven inference of cell 

signalling networks from phosphoproteomics data.  
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Materials and methods 

Generation of kinase-substrate probabilistic network 

Information on known kinase-substrate relationships as well as a list of phosphosites and the 

amino acids sequences surrounding phosphosites was gathered from PhosphoSitePlus23 

(Downloaded on the 2nd May 2021). Functional scores and predictive features on phosphosites 

were downloaded from a recent work by Ochoa and colleagues24. A list of features that are 

considered and included in the predictions can be found in Supplementary table 1. Proteomics 

data sets for co-regulation were downloaded from Mertins and colleagues25 as well as Hijazi and 

colleagues16. Expression data was gathered from the GTEX26 (Downloaded on the 26. April 2018) 

and Human Protein Atlas27 (Downloaded on the	1. December 2017). Experimentally predicted 

kinase-substrate relationships were downloaded from two recent publications16,17.  

Predictions were made between 368 kinases, for which we had previously generated Position 

weight matrices (PWMs)12, and 80,234 phosphosites found on 9,180 proteins that were listed in 

PhosphositesPlus23 and had a functionality score24 assigned to them.          

As a positive training set we used 5,251 kinase-phosphosite relationships extracted from 

PhosphositePlus23 (Downloaded 2. May 2021). As there are no databases with information on 

known negative kinase-substrate pairs and given the fact that biological networks tend to be 

sparse, a random sample of kinase-substrate relationships ten times as large as the positive set 

was used as a negative training set. For the prediction of the regulatory sign of kinase-substrate 

relationships we used 673 activating interactions and 497 inhibiting interactions extracted from 

the SIGNOR38 database and focused only on phosphosites likely to lead to functional changes in 

the protein, i.e. those with a functional score >0.524.   

We created and acquired 49 predictors considering different features that could affect a kinase-

substrate relationship from co-regulation in high throughput datasets to match of a phosphosite 

to a kinase specificity model as described by position weight matrices12 (Supplementary table 1). 

In the case of kinase substrate prediction,to select the most useful predictors we evaluated the 

performance of different feature combinations using 100 training/testing datasets as described in 

Supplementary Information. The predictors used in the final model are annotated in 

Supplementary Table 1. To select the best predictors for the prediction of the sign of kinase 

substrate relationships a single set containing all activating and inhibiting interactions was used 

as a training set.  
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For training the model we used the random forest algorithm28 as implemented in the scikit-learn 

python library29 was trained with the positive set and a random sample one hundred times. 

Parameters were tuned in each run with grid parameter search. Different parameters were 

considered at each run which were listed in the section above and for each of the one hundred 

runs the best parameter sets were used (Supplementary Information). Each model was validated 

by using ten fold cross-validation. In order to balance the training and test set, a stratified K-fold 

split as implemented in the scikit-learn29 python library was used to keep the portion between 

negatives and positives in each split the same. The average probability across the different 

outputs was then calculated to assign probabilities to kinase substrates. 

To further evaluate the performance of our model on novel kinase-substrate relationships we used 

predictions from two recently published studies16,17 and tested whether these relationships were 

assigned a higher probability by our method. To quantify the predictive power of our model in 

each case, the area under the ROC curve was calculated as implemented in the ROCR 

package30. 

Comparison with other methods 

To compare SELPHI2.0 with other state-of-the-art peer reviewed methods we assessed how well 

our method predicted known annotated kinase-substrate relationships (see positive/negative 

training sets described above) and also novel kinase-substrate relationships supported by 

experimental procedures. These were derived from  the recent work of Sugiyama and 

colleagues23, excluding kinase-substrate phosphorylation relationships found in 

PhosphoSitePlus, to limit literature-based biases.  The methods used for this comparison were: 

PhosphoPICK22, GPS v.5.020, KinomeXplorer19, NetPhos v.3.121 and LinkPhinder18. As the 

published methods were able to make predictions for different subsets of kinases, we restricted 

the comparisons to those predictions that were possible by both methods. Details are provided in 

the Supplementary information.  

Evaluation of model fit to phosphoproteomic data 
In order to capture context specific signalling networks, we constructed a reference signalling 

network by linking the kinase-substrate predictions made in this work to a backbone of a 

probabilistic kinase kinase regulatory network that we had previously published12. A probability 

cutoff of 0.5 was applied on both networks to select high confidence edges.    

High-throughput mass spectrometry-based phosphoproteomic data that had been compiled and 

analysed by Ochoa and colleagues with 436 conditions31 was fitted to our network. We tried all 
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combinations of the of the following parameters of the PCSF algorithm: For the tree parameter, 

b, we tried fitting anything from 1 to 10 trees to the data, for parameter w or the node tuning we 

tried the following values: 0.25, 0.5, 0.75, 1.0, 1.25, 1.5 and for the edge tuning, 𝜇, we tried 

0.000005, 0.00005, 0.0005, 0.005, 0.05.. Edge probabilities subtracted from one were used as 

edge prizes. These parameter combinations generated 436 sub networks that gave the highest 

F1 score. To evaluate the performance of the fitting, the F1 score of kinase-substrate relationships 

included in SELPHI2.0 retained after the fitting was compared with the kinase-substrate 

relationships that were used in the input.  

Counting number of citations related to proteins 

To count the number of citations related to kinases and their substrates we used the  Entrez.elink() 

function from the Biopython module32. We searched for related articles in the Pubmed database. 

Linked publications were retrieved from NCBI Entrez Gene33 database and publications that 

mention more than ten kinases were filtered out.  

 

Results 
Generation of a probabilistic human kinase-substrate regulatory network 
To create a probabilistic network of kinase-substrate relationships we used the random forest 

algorithm to combine various predictive variables ranging from co-phosphorylation and co-

expression in large datasets, to kinase specificities and features related to the functionality of the 

phosphosites as described in the Materials and methods section.  By running the prediction 

algorithm 100 times we achieved an average AUC of 0.96 (Figure 1A). Of the 22,250,869 

predictions made, 286,392 edges were high confidence (probability > 0.5). Of those, around 1.7% 

were found in PhosphoSitePlus23 while 89% of the known interactions found in our network were 

assigned a high (> 0.5) probability. A more comprehensive overview of different precision and 

recall values at different cutoffs can be seen in Supplementary table 2.   

Importantly, our network provides high confidence predictions covering the ‘dark’ or less well 

studied human signalling network. Specifically, kinase-substrate relationships found in 

PhosphositePlus have a median number of 500 citations per phosphorylating kinase and 115 per 

substrate respectively, whereas our high confidence predictions the median number of citations 

are 69 for the kinases and 23 for the substrates. We provide proportionally more predictions 

between kinases and substrates with significantly lower number of citations per protein on 

average (Kinases: W = 2.9 × 107 , p < 2.2 × 10-16 , one-sided Wilcoxon test. Substrate proteins: 
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W= 2.6 × 107 , p < 2.2 × 10-16 , one-sided Wilcoxon test)(Figure 1B). These predictions include 

substrates that have not been mentioned in the literature before and have no known upstream 

kinase, establishing the value of this network as a prior to explore the less studied part of the 

phospho-signalling network.  

 
Figure 1: Precision and recall and different cutoffs (A). The predictive power of our predictive 

method. With AUC under the ROC curve of 0.96 after 100 runs of cross-validation with a random 

set of negatives and a positive set from phosphosite plus. Precision recall curve for the same set 

can be seen below (B). We found that our predictor is able to make high confidence predictions 

for less cited kinases and less cited substrates compared to kinase-substrates found in 

PhosphositePlus (C). Experimentally validated kinase-substrate relationships were assigned a 

higher probability compared to the background with kinase-substrate predictions made by both 

methods being assigned the highest probabilities of all sets (D).   
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SELPHI2.0 can be used to identify high confidence kinase-substrate relationships 
To assess the ability of our method to predict novel kinase-substrates, we looked at how well we 

discerned between a set of experimental kinase-substrate predictions not hitherto found in the 

literature and the rest of the unsupported predictions. To this end, we used experimentally 

predicted kinase-substrate relationships from two recent papers16,17. In short, one publication 

introduces kinases to dephosphorylated peptides from cell lysis while the other data set predicts 

kinase-substrates based on changes in phosphorylation following kinase inhibition.  

We found that the overlap between the three sets, the two experimental sets and the SELPHI2.0 

predictions, was relatively low (Figure 1C). Due to the difference between the two experimental 

methods we reasoned that kinase-substrate relationships identified by both studies should have 

higher levels of confidence. Our method assigned significantly higher probabilities to 

experimentally supported edges compared to the rest in the network (Figure 1D).  Furthermore, 

we found that kinase-substrate relationships supported by edges found in both data sets had an 

even higher probability assigned to them (Figure 1D) compared to edges supported by either. 

The complete list of kinase-substrate predictions with indicators can be found in Supplementary 

table 3.  

 

SELPHI2.0 outperforms the state-of-the-art methods for kinase-substrate 

prediction  
In comparison to 5 state-of-the-art kinase-substrate prediction methods (PhosphoPICK22, GPS 

v.5.020, KinomeXplorer19, NetPhos v.3.121 and LinkPhinder18), SELPHI2.0 performs generally 

better on identifying known kinase-substrate interactions (Supplementary figure 1), while making 

predictions for more kinases, with the exception of GPS v.5.020 which includes 479 kinases. When 

comparing the performance of these methods using an independent dataset of experimentally 

supported kinase-substrate pairs17, having removed those that already exist in PhosphositePlus 

to remove the effect of literature bias on the methods, we found that our network performs much 

better than the others with NetPhos3.1 performing the closest with AUC=0.69 compared to our 

method’s 0.74, but making predictions for only 17 (38 kinase genes) kinases. KinomeXplorer 

achieved AUC of 0.61 compared with SELPHI2.0’s AUC of 0.78 for the same set. Other methods 

performed close to random (Figure 2). Overview over the number of kinase substrate 

relationships, kinases and the size of the positive set can be seen in Supplementary table 4. 
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Figure 2: Comparison between SELPHI2.0 (solid lines) and other state of the art kinase-substrate 

prediction methods (dashed). The ability of each method to discern between experimentally 

supported kinase-substrate relationships and the rest of the relationships unsupported by the 

experiments. In all cases SELPHI2.0 performed better than the state of the art methods. 

Prediction of regulatory status of kinase-substrate relationships 

To our knowledge, earlier kinase-substrate prediction methods have not predicted the sign of the 

relationships. In vivo, phosphorylation may lead to functional changes in the phosphorylated 

protein.  We wanted to capture this behaviour of kinase-substrates by predicting the sign of their 

interactions (Materials and methods). For this prediction we selected highly functional (functional 

score > 0.5) phosphosites. We found that our classifier was able to discriminate between kinase-

substrate relationships that lead to activation or inhibition of the substrate with AUC of 0.83 from 

10-fold cross-validation. Importantly, due to the fact that the SIGNOR training set had a large 

portion of the signed relationships between kinases we looked at how well the  classifier discerned 

between kinase non-kinase-substrates and saw only a modest decrease with AUC of 0.80 from 

10-fold cross-validation (Figure 3). 
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Figure 3: The AUC from 10-fold cross-validation of signed 

predictions of kinase-substrates. Using signed kinase-

substrate relationships found in SIGNOR as a training set 

we were able to make high confidence predictions. This 

high predictive power was retained after kinase non-

kinase substrate relationships were assessed.  

 

Extraction of dataset-specific networks from our prior network selects for known 

interactions 

We fitted our network to a set of mass spectrometry-based global phosphoproteomic data sets 

generated under different conditions. We used a compilation of mass spectrometry data sets 

compiled and reanalyzed downloaded from an earlier publication34. To fit our predictions to high-

throughput data, the predicted kinase-substrate edges were combined with a kinase-kinase 

regulatory network that we had generated previously12, forming a network of kinase-kinase 

regulatory relationships with phosphosites as nodes without outgoing edges (Materials and 

Methods). In order to select high confidence edges, we used edge probability of 0.5 as a threshold 

for both the kinase-kinase regulatory network and the kinase-substrate predictions.  

To fit the combined network to the high-throughput data sets, we used Prize collecting Steiner’s 

forest as implemented in the R package PCSF31. We found that by optimizing the edge cost 

against the node prizes we were able to select for edges found in the literature. The F1 scores of 

the fitted subnetworks (n = 415) were 0.18 compared to  the unpruned input with a F1 score of 

0.033. The improvement in precision was even greater with the mean precision of the pruned 

subnetworks being 0.22 while the precision was 0.017 for the unpruned input networks.  Both 

comparison yielded a significant difference (F1 score: W= 1.72 × 105, p < 2.2 × 10-16 , precision: 

W = 1.72 × 105, p < 2.2 × 10-16), indicating this combination of kinase-kinase regulatory network 

and kinase-substrate predictions can be used to extract high probability context-specific 

subnetworks (Figure 4). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2022. ; https://doi.org/10.1101/2022.01.15.476449doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.15.476449
http://creativecommons.org/licenses/by/4.0/


 

Figure 4: A Fitting the kinase-substrate 

predictions to experimental data selects for 

known kinase-substrate relationships with 

median F1 score of 0.18 for the fitted sub 

network compared to 0.033 for unfitted input.    

 

 

 

 

Discussion  

Kinase-substrate networks form the backbone of cell signalling responses and are critical for cell 

function in health and disease35. It is, therefore, important to accurately annotate kinase-substrate 

relationships but the vastness of the potential kinase-substrate interaction space makes 

computational means necessary for their prioritisation. Here, we have used a machine learning 

model, integrating information largely from high throughput datasets, to generate a probabilistic 

human kinase-substrate network at the phosphosite level that includes 368 kinases and 80,234 

phosphosites.  

Our method, called SELPHI2.0, performs better than the five state-of-the-art methods tested18–22, 

not only on the benchmark set but importantly on entirely new experimentally supported data17. 

This is true despite including predictions for more kinases than most other methods except for 

GPSv5.020 (479), which however performs worse on the benchmark dataset and close to random 

in the prediction of new experimentally supported relationships(Fig. 2). This suggests that our 

network is a good starting point for prioritisation of new kinase-substrate relationships. When 

overlaying our predictions with the two experimentally supported datasets, the resulting 24 high 

confidence kinase-substrate relationships are supported by both in vitro and cell line-based 

experimental data, and our data-driven machine learning approach, giving them particularly high 

confidence.  In addition, no other kinase-substrate prediction method, to our knowledge, provides 

signed relationships. We provide these for both other kinases and non kinase substrates, making 

the network suitable for use as a prior not only in standard network inference method, but also in 

studies of mathematical modelling of signal transduction.    

Although we use kinase specificity in the form of PWMs as a predictor, which is a metric that 

inevitably is somewhat biassed by the literature, most predictors were based on unbiased, high 
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throughput datasets including global phosphoproteomics datasets. This, in combination with the 

coverage of the dark space that our method affords, is a step towards reducing the bias in cell 

signalling studies. NetPhos21 proved to be an exception, performing well both at discerning 

between known positives and negatives as well as experimentally validated edges. It should be 

kept in mind though that NetPhos only makes predictions for 17 kinases.  

Our network provides much wider coverage of the kinase signalling space than current knowledge 

and most other available kinase-substrate prediction methods and is more accurate. 

With the median citation number for both kinases and substrates in the network being more than 

5 times less than the PhosphositePlus database, our network forms a springboard for the 

exploration of the dark human cell signalling space. Given the importance of a prior network in 

methods of signalling network inference, this network will significantly contribute to a better 

understanding of the role of the understudied space in the context of our current knowledge, and 

will allow methods to generate networks that more accurately reflect the data. 

Accumulation of false positives is a persistent problem when kinase-substrates are predicted. 

This is partly due to the large fraction of the signalling network that is currently unknown or 

understudied but a fraction of these predictions can be assumed to be false positives, even though 

this can’t possibly be confirmed. This is likely true for our method as well and users of the network 

should take this into consideration when interpreting the results of their analysis. Nevertheless, 

the vast understudied signalling space requires computational approaches for prioritisation of 

hypotheses and the performance of our network compared to the state of the art indicates that it 

provides a good starting point.  As more high quality high throughput phosphoproteomic data sets 

become available our model can be further improved.  

We expect that SELPHI2.0 will allow the improved prioritisation of kinase-substrate pairs for 

illuminating the dark human cell signalling space, both through smaller scale signalling studies 

and through acting as a relatively unbiased prior in signalling network inference approaches.   
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