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Abstract

Motivation: Spatially resolved transcriptomics (SRT) shows its impressive power in yielding
biological insights into neuroscience, disease study, and even plant biology. However, current
methods do not sufficiently explore the expressiveness of the multi-modal SRT data, leaving a
large room for improvement of performance. Moreover, the current deep learning based meth-
ods lack interpretability due to the "black box" nature, impeding its further applications in the
areas that require explanation.
Results: We propose conST, a powerful and flexible SRT data analysis framework utilizing
contrastive learning techniques. conST can learn low-dimensional embeddings by effectively in-
tegrating multi-modal SRT data, i.e. gene expression, spatial information, and morphology (if
applicable). The learned embeddings can be then used for various downstream tasks, including
clustering, trajectory and pseudotime inference, cell-to-cell interaction, etc. Extensive experi-
ments in various datasets have been conducted to demonstrate the effectiveness and robustness
of the proposed conST, achieving up to 10% improvement in clustering ARI in the commonly
used benchmark dataset. We also show that the learned embedding can be used in complicated
scenarios, such as predicting cancer progression by analyzing the tumour microenvironment and
cell-to-cell interaction (CCI) of breast cancer. Our framework is interpretable in that it is able
to find the correlated spots that support the clustering, which matches the CCI interaction pairs
as well, providing more confidence to clinicians when making clinical decisions.

∗Correspondence should be addressed to liyu@cse.cuhk.edu.hk
Code is available at https://github.com/ys-zong/conST
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1 Introduction

Single-cell RNA sequencing (scRNA-seq) technologies have enabled the characterization of the tran-
scriptome of individual cells, yielding cell sub-populations across organs by high-throughput pro-
filing. However, the dissociation step erases the spatial context of cells from their original tissue,
which is of vital importance for understanding cellular functions and organizations.

Spatially resolved transcriptomics (SRT) (1) addresses these limitations by measuring the gene
expression matrix and its corresponding spatial information simultaneously. Current spatial tran-
scriptomics technologies can be mainly divided into two categories: (1) High-plex RNA imaging
(HPRI) methods use probes targeting specific genes to localize mRNA transcripts. This method
includes fluorescence in situ hybridization (FISH) or in situ sequencing (ISS), such as MERFISH
(2), seqFISH (3), seqFISH+ (4), and STARmap (5). (2) Spatial labeling methods utilize spatial
barcodes to capture mRNA transcripts across tissue cross-sections, and then deep sequencing is
performed after detachment. Typical methods include ST (6), slide-seq (7), Slide-seqV2 (8), and
10x Genomics. The data generated from spatial labeling platforms, such as ST, 10x Genomics,
are often accompanied by histology images (morphology) besides gene expression and spatial in-
formation. These two platforms are usually complementary: HPRI methods can achieve single-cell
resolution with greater depth, while spatial labeling methods have greater coverage and are more
accessible (9). In both platforms, mRNA transcripts are captured by the individual coordinates or
spatial barcoding locations. For simplicity, we refer them to spots in the following texts.

The rich information from different modalities of the SRT data sheds light on the biological
insights. A multitude of works utilizes Markov random field to integrate gene expression and
spatial information. (10) proposed a hidden Markov random field (HMRF) model for cell type and
spatial domain identification according to spatial dependency. Giotto (11) analyzes the correlation
of gene expression among its neighbors for spatial domain detection. BayesSpace (12) utilizes the
information of spatial neighborhood to iteratively update the model in a Bayesian manner. While
these methods can achieve state-of-the-art performance on some specific tasks, such as cell type and
spatial domain identification, they are unable to learn a universal embedding for downstream tasks,
thus being less flexible.

Recently, there are some analytical tools that can generate low-dimensional embeddings. Seurat
(13) adopts the single-cell analysis pipeline that is mainly focused on gene expression data while
overlooking the spatial link. SpaCell (14) uses a ResNet (15) pretrained on ImageNet (16) to extract
features from images of each spot and uses autoencoders to learn embedding from the extracted
features and gene expression, where the spatial information is completely ignored. And as it is
only tested on old version SRT data, it is unclear whether this method is effective for SRT of a
higher resolution. stLearn (17) develops a Spatial Morphological gene Expression (SME) normal-
ization method to recompute gene expression values by averaging neighboring spots. It also uses
an ImageNet-pretrained ResNet to extract morphology features to calculate weights for averaging.
The normalized expression values are used for downstream tasks, but containing excessive noise.
SpaGCN (18) applies a graph convolutional network (GCN) to a graph constructed by spatial co-
ordinates and morphological features, where gene expression of each spot is regarded as a node
attribute. SpaGCN only incorporates the simple statistics of morphology during graph construc-
tion, and therefore the morphology may not be fully explored. SEDR (19) learns embeddings by
reconstructing gene expression and spatial information with an autoencoder and a variational graph
autoencoder, respectively. Morphological information is ignored in SEDR pipeline.

To sum up, there are three major limitations that remain unsolved in the previous methods. (1)
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The morphological features are extracted by pretrained CNN or simply ignored. It has not been
involved in the training process for further integration. (2) The biological relationship between
spots, sub-clusters, and the global structure of the SRT data has not been fully explored during
the embedding learning process, remaining a large room for performance improvement. (3) While
the learned embeddings can be used in various downstream tasks, the "black box" model stems the
interpretation of the obtained results.

Here, we present an interpretable multi-modal contrastive learning framework for spatial tran-
scriptomics, conST, to address the above-mentioned problems. For the first concern, conST can
effectively integrate gene expression, spatial information, and morphology (if accessible) to learn
low-dimensional embeddings. A state-of-the-art computer vision model, MAE (20), is used to ex-
tract informative features from the morphology of each spot. The extracted features are then
regarded as an individual node attribute to participate in the training. Our framework is also very
flexible. When morphology is not available, it can take gene expression and spatial information as
input, thus can be applied for both HPRI and spatial labeling data.

As for the second concern, we argue that there are three natural underlying relationships in
SRT data that can be used as supervision signals to guide the network to learn more meaningful
embeddings: (1) local: a small portion of noises does not prevent a spot to be identified by its
distinguishing features, (2) global: as a dataset is taken from the same slice (e.g., same piece of
tissue), the spots within it possess similar globally general features, (3) context: the node features are
more related inside a sub-cluster, e.g., more similar expression pattern and imaging texture. Based
on the above assumptions, we propose to utilize contrastive learning (21; 22) to learn embeddings
by maximizing the mutual information in local-local, local-global, and local-context levels.

In terms of interpretation, we monitor the training process and utilize GNNExplainer (23) to
identify the important subgraphs and node attributes contributing most to the predictions according
to the mutual information. Therefore, we can not only obtain the results, but also know what
contributes to the prediction, i.e., finding the correlated spots that support the clustering, which
matches the CCI interaction pairs as well. The interpretability will give clinicians more confidence
when using conST for the real clinical data analysis. We demonstrate how to analyze the tumour
microenvironment and cell-to-cell interaction of breast cancer tissue with conST, leading to a clear
cancer progression prediction, which will be helpful for making clinical treatment decisions.

The experimental results demonstrate that the learned embeddings can be successfully applied
to many downstream tasks, such as clustering, trajectory inference, spatially variable genes (SVGs)
detection, batch correction, and cell-to-cell interaction, etc. Quantitatively, conST outperforms
other concurrent methods, e.g., by up to 10% increase regarding ARI on clustering tasks. The
qualitative results in both HPRI and spatial labeling platforms demonstrate the superiority of our
method.

conST is user-friendly and flexible. With the standard SRT input, users can obtain the embed-
dings in the commonly-used formats in an end-to-end manner. We also provide detailed tutorials
for downstream analysis with the generated embeddings.

Our main contribution can be summarized as follows:

• We propose conST, a powerful and flexible multi-modal framework that can effectively in-
corporate gene expression, spatial information, and morphology to learn low-dimensional yet
expressive embeddings for downstream tasks.

• To the best of our knowledge, we are the first to introduce contrastive learning in the area of
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spatial transcriptomics analysis, demonstrating its effectiveness in exploring the pattern from
the data itself.

• The use of GNNExplainer enhances the interpretability of conST, giving users more confidence
especially when used in clinical situations by not only telling what, but also why.

• Extensive experiments are conducted using the learned embedding in various datasets. The
experimental results demonstrate the superiority and robustness of the proposed method in
both HPRI and spatial labeling platforms.

2 Methods

2.1 Problem Definition and Framework

The whole framework is presented in Figure 1. Gene expression is undoubtedly the deterministic
factor of the biological property. Besides, the rich information contained in histology images has
been proven to be successful in revealing other important characterizations (24; 25). The spatial
information provided by SRT acts as a bridge linking them together so that gene expression and
morphology can complement each other as well as be more aware of the neighborhood.

Therefore, naturally, their underlying relationship can be modeled by graph structure and pro-
cessed by graph neural networks (GNNs) (26). Hence, we treat the embedding generation process
as a multi-modal self-supervised graph representation learning problem. In our setting, a graph is
constructed based on K-Nearest Neighbor (KNN) distance of the coordinates of each spot, where
the spots are regarded as nodes whose attributes are gene expression and morphology features (if
accessible).

Denote G = (V, E) as a graph with N nodes, where V = {v1, v2, ..., vN} represents the node
set and E ⊆ V × V represents the edge set. The feature matrix of all the nodes is denoted as
X = {x1, x2, ..., xN} ⊆ RN×F , where F is the dimension of node features. If nodes possess multiple
attributes, the t-th feature matrix is denoted as Xt = {x1, x2, ..., xN} ⊆ RN×Ft . The adjacency
matrix is given by A = [0, 1]N×N , of which Aij = 1 if {vi, vj} ⊆ E or 0 otherwise.

Our objective is to learn a general encoder E(X,A) in a self-supervised manner that can produce
node embeddings in the low-dimensional space. Denote the learned embedding H = E(X,A) ⊆
RN×F

′
, where F

′ ≪ F , and hi is the embedding of node vi. We utilize Graph Convolutional
Networks (GCNs), a powerful variants of GNN. Let Â denote the normalized adjacency matrix
and H(l−1) denote the embedding of layer l − 1. The propagation of the GCNs is defined as
H(l) = σ(ÂH(l−1)Wl), where Wl is a learnable weight matrix and σ is a non-linear activation
function. The normalized adjacency matrix is defined as Â = D− 1

2 (A + I)D− 1
2 , where D is the

degree matrix of A, i.e., Dii =
∑

j Aij , and I is an identity matrix for self-loop.
The training can be divided into two stages. In the pretraining stage, gene expression and

morphology features are input into an autoencoder-based network to further reduce dimensions and
initialize the weights of the encoder E . In the major training stage, we focus on contrastive learning
to guide the network to learn more informative and robust embeddings.

2.2 Pretraining stage

Based on the euclidean distance, the adjacency matrix A is constructed, where Aij = 1 if {vj} is
in the KNN of {vi} and 0 else. We filter the genes that have very low expression and use principle

4

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2022. ; https://doi.org/10.1101/2022.01.14.476408doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.14.476408
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1: Framework of conST. conST models the ST data as a graph by treating gene expression and
morphology as node attributes and constructing edges by spatial coordinates. The training is divided into
two stages: pretraining and major training stage. Pretraining stage initializes the weights of the encoder E
by reconstruction loss. In major training stage, data augmentation is applied and then contrastive learning
in three levels, i.e., local-local, local-global, local-context, are used to learn a low-dimensional embedding by
minimize or maximize the mutual information (MI) between different embeddings. The learned embedding
can be used for various downstream tasks, which, when analyzed together, can shed light on the widely
concerned tumour microenvironment and cell-to-cell interaction. GNNExplainer helps to provide more con-
vincing predictions with interpretability.

component analysis (PCA) to reduce the expression matrix to dimention F1, i.e., X1 ⊆ RN×F1 .
The morphological features of each spots are extracted by a pretrained MAE model (20), which

achieves SOTA performance and transferability on various datasets. Due to the small number of the
available Hematoxylin and Eosin (H&E) stain images from ST, MAE is pretrained using ImageNet in
a self-supervised manner. The recent development in computer vision communities has proven that
features extracted by self-supervised models are more robust and transferable (27). MAE contains
an asymmetric encoder-decoder architecture, with a Vision Transformer (ViT) (28) encoder. The
decoder is used for pre-training, and only its encoder is used to extract the morphology features.
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The pre-training process masked a large proportion (75%) of each image for reconstruction with
positional encoding to enable the model to be aware of both the global and local information, while
the large ViT makes the extractor more powerful. The detailed explanation of MAE can be found
in the supplementary material. Compared with supervised pretrained ResNet used in previous
methods (14; 17), we argue that the MAE is more powerful for extracting features of the H&E stain
images. The extracted feature dimension of each spot is F2, and the feature matrix is regarded as
another node attribute X2 ⊆ RN×F2 .

In the pretraining stage, we take advantage of proximity-based learning to initialize the param-
eters and further reduce the dimension of node attributes. For node attribute Xt ⊆ RN×Ft , a deep
autoencoder Φt with an encoder ϕt and decoder of φt is used. The encoder produce a latent em-
bedding Ut = ϕt(Xt) ⊆ RN×Dft , where Dft denotes the dimension of the learned low-dimensional
embedding. After that, a variational graph autoencoder (VGAE) (29) with a encoder f is used
to encode the spatial information into the node features. Depending on whether morphology is
available, denote U = ∥tUt, where ∥ is the concatenation operation. The latent embedding from
the VGAE is obtained by V = f(A,U) ⊆ RN×Dg . The final embedding H is the concatenation of
U and V ⊆ RN×F

′
, where F

′
=

∑
tDft +Dg.

To be more specific, the encoder f of the VGAE is a two-layer GCN whose inference process is
defined as

f(V|A,U) =
∏

f(Vi|A,U), (1)

with
f(Vi|A,U) = N (Vi|µi, diag(σ

2)), (2)

where the µ = GCNµ(A,U) is the matrix of mean vectors µi, log σ = GCNσ(A,U), and N is the
normal distribution.

The decoding part of the autoencoder Φt and VGAE all take the concatenated embedding H as
input, which possesses both spatial information and node attributes. For the autoencoder Φt, the
decoder φt tries to reconstruct the input feature matrix as X

′
t = φt(H) ⊆ RN×Ft . The decoder of

VGAE is given by a simple inner product to generate the reconstructed A
′
= σ(H ·HT ).

The autoencoder Φt is optimized by Mean Squared Error (MSE) between Xt and X
′
t. The VGAE

is optimized by minimizing the standard cross entropy between the input A and reconstructed A
′ ,

as well as Kullback-Leibler (KL) divergence between f(H|A,U) and the Gaussian prior p(H) =∏
i p(hi) =

∏
iN (hi|0, I).

2.3 Major training stage

In the major training stage, the encoder part of the autoencoder and the VGAE are preserved,
and the decoder part is dropped. We hope to learn a general encoder E = {ϕt, f} that produce
the embeddings, i.e., H = E(X,A). Contrastive learning is then used to supervise the network for
better representation learning at three levels: local-local, local-context, and local-global.

Local-local. In the process of sequencing, noises to the gene reads are commonly introduced
by device deficiencies or manual operations. However, experts are still able to identify important
characteristics of a specific spot based on the overview of its gene expression and the marker genes.
Similarly, we hope the network to be able to distinguish a specific node from other nodes even if
there are unwanted noises. Motivated by this and the recent work in node-level graph contrastive
learning (30), the local-local level contrastive learning is utilized to force the network to focus on
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more important features of the node attributes. Two views of the original graphs are created by
masking node attributes. Then, the mutual information of the same node between these two views
is maximized.

Specifically, we first randomly mask the node attributes of each spot at a given ratio to construct
two augmented graphs G̃1 and G̃2, with an unchanged adjacency matrix A and masked feature
matrices X̃1 and X̃2. The masked feature matrix X̃ is computed by

X̃ = [x1 ◦ m̃ ∥ x2 ◦ m̃ ∥ · · · ∥ xN ◦ m̃]T , (3)

where ∥ is concatenation operation and ◦ is the element-wise product. m̃ ⊆ [0, 1]F is a random
sampling vector. Given a node dropping probability pm, each dimension of m̃ is independently
drawn from a Bernoulli distribution, namely, m̃i ∼ B(1− pm).

Denote generated embeddings from the two augmented graph as HU and HV. The con-
trastive objective is to distinguish the embedding of the same node in two augmented views
from that of the other nodes. For node vi, we set its embedding HUi generated in one view
as an anchor. The embedding HVi generated in the other view is treated as a positive sam-
ple, and the rest of nodes are treated as negative samples. Define a similarity measurement as
sim(HU,HV) = θ(p(HU), p(HV)), where θ is the cosine similarity and p(·) is a projection head
constructed by a two-layer multiple layer perceptron (MLP). Formally, for a positive pair (HUi,
HVi) of node vi, the objective is formulized similar to NT-Xent (31). For positive pair, we have
Spos = exp(sim(HUi,HVj)/τ), where τ is the a temperature hyperparameter. For negative pairs
within a same view, i.e., intra-view, we have Sintra-neg =

∑N
l=1 1[l ̸=i] exp(sim(HUi,HUl)), where

1[l ̸=i] ⊆ {0, 1} is the indicator function. And for negative pairs between two views, i.e., inter-view,
we have Sinter-neg =

∑N
l=1 1[l ̸=i] exp(sim(HUi,HVl)). Thus, the objective can be given by

Lpair(HUi,HVi) = log
Spos

Spos + Sintra-neg + Sinter-neg
. (4)

Since the two views are symmetric, the whole objective for local-local contrastive learning is calcu-
lated by averaging all positive pairs as

Ll2l =
1

2N

N∑
i=1

[Lpair(HUi,HVi), Lpair(HVi,HUi)]. (5)

Local-global. For a specific SRT dataset (e.g., a slice), the gene expression or morphology of
spots are intrinsically coherent with the global property, as they are captured from the same section
of the same species. Therefore, it is beneficial to maximize the mutual information between the
embeddings of each individual node and the whole graph summary to endow learned embeddings
with the global structure and more robustness to the neighboring noises.

We adopt a similar method with Deep Graph Infomax (DGI) (32), a commonly used graph
self-supervised method that has shown superior performance. First, a readout function R is used
to obtain the overall summary s of the graph, where R : RN×F

′
→ RF

′
and s = R(E(X,A)). A

corrupted graph G̃ = C(X̃, Ã) is obtained by a corruption function C, which randomly shuffles the
rows of the feature matrix and randomly adds/drops edges. The embeddings obtained from original
graph and corrupted graph are denoted as H and H̃.
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A discriminator DG : RF
′
×RF

′
is employed to assign higher probability scores to positive pairs

(s,hi) than the negative pairs (s, h̃i). The objective is to maximize the Jensen-Shannon-based BCE
as

Ll2g =
N∑
i=1

E(X,A)[logDG(s,hi)] +
N∑
i=1

E
(X̃,Ã)

[log(1−DG(s, h̃i)]. (6)

Local-context. Besides the global property, spots tend to be more similar at the cluster level. For
example, spots may share similar marker genes and morphological texture within the same tissue
type. Hence, we also try to maximize the mutual information between the node attributes and the
cluster-level summary, which is beneficial for learning the embedding with hierarchical structure.

Inspired by Graph InfoClust (33), first, we use a differentiable K-Means clustering algorithm
(34) to obtain M clusters. The centroid of each clusters µm ⊆ R1×F ′ is updated iteratively through
a cluster layer

µm =

∑
i rimhi∑
i rim

,with rim =
exp(−γsim(µm),hi))∑
m exp(−γsim(µm),hi))

, (7)

where m = 1, 2, . . . ,M , and γ is a inverse-temperature hyperparameter. For each node, we maximize
the mutual information between hi and its corresponding cluster summary zi. zi is computed as

zi = σ(
M∑

m=1

rimµm), (8)

where rim is the probability of node vi assigned to cluster m and
∑M

m=1 rim = 1.
Similar to local-global level, another discrimintor DC is used to assign higher scores to the

positive pairs (hi, zi) than the negative pairs (h̃i, zi). Note that we use the same corruption function
C as that in the local-global level. The objective is also to maximize the Jensen-Shannon-based BCE
as:

Ll2c =
N∑
i=1

E(X,A)[logDC(zi,hi)] +
N∑
i=1

E
(X̃,Ã)

[log(1−DC(zi, h̃i)]. (9)

Weighted by λi, the overall contrastive learning objective function is given by

Lcont = λ1Ll2l + λ2Ll2g + λ3Ll2c. (10)

KL Divergence. In addition to contrastive learning, we use a deep clustering method (35) to
further refine the embedding for more compactness. Simply, we use the normal K-means to cluster
the embedding to K clusters. First, a Student’s t-distribution kernel is used to calculate the soft
assignment probability qij of the embedding hi to the cluster centroid νj

qij =
(1 + ||hi − νj ||2)−1∑
j
′ (1 + ||hi − νj

′ ||2)−1)
. (11)

Next, based on qij , a target distribution P is calculated to help learn from the assignments with
higher scores

pij =
q2ij/

∑
i qij∑′

j(q
2
ij′
/)

∑
i qij′

. (12)
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Finally, an auxiliary KL Divergence objective is defined as

LKL = KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

. (13)

Finally, the loss function in the major training stage is

Lmajor = αLcont + βLKL, (14)

where α and β are weight factors.

2.4 GNNExplainer

GNNExplainer (23) is a method for providing explanations for any GNN-based models in a model-
agnostic manner. Here, we use the trained conST model and specific node index we would like to
inspect as inputs. The GNNExplainer can identify an important subgraph and node features that
are most influential to the predictions as an explanation by maximizing the mutual information
between the subgraph and the predictions.

Formally, for a given node vi, GNNExplainer aims to identify a subgraph GS ⊆ G and the
corresponding feature matrix XS = {xj |vj ⊆ GS}. The GNNExplainer can be optimized according
to the mutual information (MI) as:

MAX
GS

MI(Y, (GS ,XS)) = H(Y )−H(Y |G = GS ,X = XS), (15)

where Y is the prediction by conST, and H(), H(|) are the marginal entropy and conditional entropy,
respectively. The mutual information measures whether removing an edge link or a node feature is
determinant to the final prediction results. Thus, by maximizing the MI, the GNNExplainer returns
a subgraph and node features that have the highest mutual information with the original input,
i.e., the returned subgraph and node features can lead to the most similar prediction as the original
input.

For conST, we are not only interested in what predictions it makes, but also why it makes such
predictions. The GNNExplainer can identify which spots have the most important correlation with
the given spot and their correlation can further explain gene expression and cell-to-cell interaction
activities.

3 Experiments

3.1 Datasets and Implementation Details

We use various datasets from both HPRI and spatial labeling platforms to verify the effectiveness
of our method. For HPRI data, we use mouse hypothalamus MERFISH (36), mouse visual cortex
seqFISH (10). For spatial labeling data, we use human dorsolateral prefrontal cortex spatialLIBD
(37) generated by 10x Visium, Human Breast Cancer (Block A Section 1) generated by 10x genomics
(38), and mouse olfactory bulb Stereo-seq (39).

We set K = 20 for KNN graph construction. PCA is used to reduce the dimension of gene
expression to F1 = 300. The dimension of morphological features is F2 = 768. Users can also easily
adjust these parameters accordingly to meet the requirements of specific datasets. The two stages
are trained 200 epochs respectively.
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For downstream tasks, Leiden algorithm (40) is used for clustering; Monocle3 (41) and PAGA
(42) is utilized for trajectory inference and pseudo-time inference; we adopt a similar SVGs detection
method as SpaGCN (18) with our own embedding; Cell-to-cell interaction is performed with TraSig
(43) and Seurat (13) for label transfer. The detailed descriptions of datasets and implementation
can be found in the supplementary material.

Figure 2: Comparison of different methods on slice 151673 of spatialLIBD dataset evaluated by ARI.
conST achieves an ARI of 0.65, around 10% increase compared to other state-of-the-art methods. conST
also achieves the highest mean and median ARI over all the 12 slices.

3.2 Clustering

Accurate clustering of spatial domains or cell types reveals the structure of the SRT data. We
experimented on SRT data produced in different platforms with different resolutions, coverages,
and depths. The results prove that conST is a powerful and generalizable framework that can be
used to cluster both HPRI and spatial labeling data.

As shown in Figure 2, we compare the clustering results of conST with other methods in spa-
tialLIBD dataset and illustrate slice 151673 which has clear layer boundaries. Visually, the results
of conST do not have distinct outliers compared to other methods. Also, although the results of
SpaGCN, SEDR, and BayesSpace all have seven layers that are relatively clear, the white matter
(WM) layer and Layer 1 together (the first two layers in left bottom of the ground truth) they clus-
tered are of the similar size of the WM layer in the ground truth. That will lead to the mismatch
of the following layers, while each of the cluster boundaries of conST aligns well with the ground
truth. conST achieves an ARI of 65%, about 10% higher than the state-of-the-art method. Also,
conST achieves the highest mean and median ARI among all the methods.

For HPRI data, we experimented with MERFISH and seqFISH data. Different from spatial
labeling data, they are captured in a higher resolution but with fewer genes in each spot and no
morphology is available. Even so, conST still demonstrates strong performance. In Figure ??, we
compare the clustering performance of mouse hypothalamus MERFISH data with SpaGCN and
SEDR. Visually, conST produces more consistent clusters. Quantitatively, as there is no ground
truth for MERFISH data, we use three unsupervised metrics to evaluate the quality of the cluster-
ings, i.e., Silhouette Coefficient (SC), Calinski Harabasz Score (CHS), and Davies Bouldin Index
(DBI) (Supplementary material Eq S1, S2, S6). For SC and CHS, the higher the better, while for
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Figure 3: Comparison of the clustering results on MERFISH data. conST produces visually more consistent
clusters and outperforms SpaGCN and SEDR in Silhouette Coefficient (SC), Calinski Harabasz Score (CHS),
and DaviesBouldin Index (DBI). SC and CHS are the higher the better, while DBI is the lower the better.

Case Slice 151673 Mean Median
w/o local-local 0.559 0.410 0.421
w/o local-global 0.615 0.457 0.438
w/o local-context 0.586 0.423 0.419
All 0.650 0.487 0.474

Table 1: Ablation study of different contrastive learning components measured by ARI.

DBI, the lower the better. conST significantly outperforms SpaGCN and SEDR on all the three
metrics.

We also evaluated conST on Stereo-seq and seqFISH data (Supplementary Figure S2, S3), where
conST produces clear boundaries and biologically meaningful clusters. The statistical results also
prove the superiority of our method.

Ablation Study. Clustering is arguably the most intuitive way to justify the quality of the learned
embeddings. We perform an ablation study to verify the necessity and effectiveness of each of the
contrastive learning components. Results on the spatialLIBD dataset demonstrate that all of the
three levels of contrastive learning are beneficial to embedding learning. It can be seen from Table
1 that the local-local level has the most important influence on the performance, of which the data
augmentation randomly masks some features of the node attributes. It produces a similar effect as
dropout (44) that widely occurs in SRT data as well. Then, by using contrastive learning, conST
can effectively learn to distinguish the more important invariant features among the noising data,
thus obtaining a stronger ability. It achieves the best performance when all of the three contrastive
losses are used together, as shown in Table 1.

3.3 Trajectory and Pseudotime Inference

Trajectory inference infers the pattern of cells in the dynamically developmental progress, and
pseudotime represents the progression through this progress. Monocle3 (41) and PAGA (42) are
used to produce trajectory and pseudotime inference where we replace the default PCs with the
generated embeddings to validate the quality of the learned embeddings. For pseudotime in the
spatialLIBD dataset, white matter (WM) is selected as the starting point.
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Figure 4: a. Comparison of trajectory and pseudotime inference using Monocle3 based on the learned
embeddings of SpaGCN, SEDR, and conST. The trajectory inferred from conST goes through all the layers
consistently and the pseudotime is much smoother with fewer outliers. b. Comparison of PAGA trajectory
and pseudotime inference based on the learned embeddings of SpaGCN, SEDR, and conST. The trajectory
inferred from conST is nearly linear, showing a clear progression process. The pseudotime of conST is also
more consistent compared to SpaGCN and SEDR. c. SVGs detection comparison of SpaGCN and conST.
conST outperforms SpaGCN in both Moran’s I and Geary’s C. The expression pattern of SVGs detected by
conST aligns better with the actual anatomical layers, where the green lines indicate the predicted clustering
boundaries. d. conST can alleviate batch effects. Raw data have apparent batch effects. Compared with
other methods, conST can correct batch effects while preserving the semantic meanings.

As shown in Figure 4a, the trajectory generated from our embeddings are more consistent along
with the clusters, covering almost all the spots, while the embeddings of SpaGCN are rewinded like
a circle and the trajectory of SEDR does not reach Layer 6. Also, our pseudotime is smoother with
much fewer outliers than the other two methods.

In Figure 4b, the trajectory of conST inferred from PAGA is nearly linear, indicating a clear
progression process from the white matter to the layer 6. It is also worth noticing that there are
connections between layer 4 and layer 6 in the trajectory infered from conST, where the layer 4 to
layer 6 are thin and close to each other in the ground truth. It is possible that they are not well
diverged, indicating the biological consistency of our prediction. The trajectories from SpaGCN and
SEDR are disordered with crossing lines between different layers. We also visualized the pseudotime
on embeddings projected by UMAP. conST shows more consistent progression than SpaGCN and
SEDR.

Furthermore, the accurate trajectory and pseudotime inference by conST can be also beneficial
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for more in-depth analysis such as cell-to-cell interaction, as detailed in Section 3.6.

3.4 SVGs Detection

Spatially variable genes (SVGs) have different expression patterns in different spatial locations.
Detection of SVGs is helpful for identifying the tissue structure and clinical phenotypes. The better
clustering performance enables conST to detect SVGs more accurately. For a fair comparison, we
use the same detection method and default parameters as that in SpaGCN.

For slice 151673 in spatialLIBD, we have better performance on two commonly used metrics
Moran’s I and Geary’s C (Figure 4c (ii)), which demonstrates SVGs detected by conST have a
higher spatial autocorrelation. Furthermore, we select gene GFAP and PCP4 for comparison, as
they are all highly expressed and detected by both SpaGCN and conST. While GFAP is detected
in Layer WM by both methods, it can be seen that the boundary of Layer WM of conST aligns
well with the highly expressed area of GFAP than SpaGCN (Figure 4c (iii), 4c (iv)), compared with
the ground truth (Figure 4c (i)). For PCP4 (Figure 4c (v), 4c (vi)), although SpaGCN and conST
all have cluster boundaries aligned well with the highly expressed area, it is however detected at
Layer 3 by SpaGCN, which should be in Layer 2 as shown in ground truth and conST. The wrong
layer could even lead to worse understanding if we want to know the relationship between the layers
and SVGs. Hence, conST can be a more accurate tool for SVGs detection, and it confirms the
superiority of our clustering results in turn.

3.5 Batch Correction

The batch effect refers to the changes to the result data in different experiments caused by non-
biological factors, which can lead to imprecise conclusions. Batch effects are commonly observed in
high-throughput sequencing experiments including SRT data. conST is able to alleviate the batch
effects through contrastive learning. The local-global level contrastive learning enables spots to be
aware of the global property. In this way, the learned embeddings of different slices of the same
species will share similar properties. Furthermore, the local-local level contrastive learning makes
the network more robust to the technical noises introduced by devices or manual operations (45; 46).
Thus, the learned embedding can be projected into a shared latent space, correcting batch effects.

We select three slices showing substantial batch effect (19) in spatialLIBD dataset for illustration.
We project the learned embeddings to 2-D space by UMAP (47). As shown in Figure 4d, the raw
data demonstrate distinct batch effects. conST effectively corrects the batch effects with more
compact and mixed embeddings, compared with SpaGCN and SEDR.

3.6 Cell-to-cell Interaction

For a tumour tissue, normally it can be grouped into 4 main morphotypes: Ductal Carcinoma in Situ
(DCIS), healthy tissue (Healthy), Invasive Ductal Carcinoma (IDC), and tumor surrounding regions
with low features of malignancy (Tumor edge) (48). DCIS consists of the proliferation of malignant
cells which do not invade the basement membrane of the breast ducts. It is a nonobligate precursor
to IDC and a large amount of DCIS lesions remain indolent in practice. However, currently, almost
all the DCIS lesions are treated in practice to prevent further invasion, and the treatment comprises
either mastectomy or breast-conserving radiotherapy surgery that will be harmful to the patients
(49).
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Figure 5: Cell-to-cell interaction and GNNExplainer. a. GO term analysis for cluster c2, c6 and c10 using
Trasig based on embedding from conST. b. Representative L-R pairs of cell-to-cell interaction analysis. (i)
Three clusters obtained by conST. (ii) (iii) (iv) representative L-R pairs of DCIS, Tumor edge, and IDC
region respectively. c. GNNExplainer can identify subgraphs that contribute most to the predictions. Node
971 and 1765 in cluster boundary are selected as anchor nodes for illustration, whose identified subgraphs
are plotted with bold lines. The color of nodes represents the clustering label. Most of the nodes in the
subgraph belong to the same cluster as the anchor node, indicating conST can aggregate information from
spots with similar attributes. d. GNNExplainer can further support the identified active L-R pairs in cell-
to-cell interaction. All the spots are selected from the same cluster c10 of BRCA in b. We set a threshold
of interaction value to define spots as active in yellow, and inactive in green. The nodes in the identified
subgraph of node 3278 all have active L-R pairs interaction as node 3278.

To counter the overtreatment, we predict the potential cancer progression by conST, hoping to
provide more insights for clinical decision-making. First, the clinically potential target receptors on
breast cancer cells are detected. Then, we analyze the neighbor-spreading trend for the IDC region
and evaluate the risk for developing invasive breast cancer with a tool of cell-to-cell interaction
(CCI).

We obtained the embeddings of the dataset of Human Breast Cancer (Block A Section I) (38)
with conST, in short as BRCA. With the learned embeddings, we cluster them into 20 regions
(Supplementary Figure S4). Given the heterogeneity of the tissue, we specifically focus on the
obvious lesion area, i.e., cluster c2, c6, and c10 (Figure 5b (i)). Trajectory inference is applied to
these three clusters to gain pseudotime ordering (Supplementary Figure S10) as we did in section
3.2 and 3.3. Then, by detecting SVGs, we find some highly expressed genes, including IGFBP2,
PVALB, RABEP1, RAB11FIP1, LINC00645, etc. (Supplementary Figure S8, S9).

We demonstrate how to analyze the tumour microenvironment for evaluating neighbor-spreading
risk with the above-mentioned downstream tasks, which is divided into cross-clusters CCI analysis
and within-cluster CCI analysis.
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3.6.1 Cross-clusters: Morphotype Prediction

By inputting the cluster prediction, trajectory and pseudotime inferred from our embeddings to
TraSig (43), an analyzing tool for cell-to-cell interaction, we identify the interacting cell-type pairs
and active ligand-receptor (L-R) pairs for the tumour tissue.

Cluster c2 and c10 demonstrate more active breast-cancer-related genes interactions, such as
BRCA1, BRCA2, BRCC3, and TP53 (50). Cluster 6, as an inactive region, represents the tumour
edge. Also, according to GO enrichment analysis (Figure 5a) obtained from TraSig, c10 performs
the highest potential on cell migration, cell motility, and regulation of the multicellular organismal
process. Strong locomotion ability is one of the most representative phenomena for the IDC region
to be distinguished from DCIS regions (48). Therefore, we deduce that clusters 2, 6, and 10 are
IDC region, tumor edge, and DCIS region, respectively.

3.6.2 Within-cluster: Neighbor-spreading Risk Evaluation

With the property of breast cancer invasive progression, the within-cluster analysis focuses on the
interaction-specific function on cell migration, locomotion, and cell proliferation as shown in the
GO term analysis (Figure 5a). We used label transfer from Seurat (13) to annotate spots of the
given tissue and obtain the probability distribution of spots related to inferred clusters. Then, we
scored the spatial L-R co-expression at every spot and its neighbors.

IDC Region (c2): For the IDC region, cell migration and invasion related to miR-205-3p have
been recently reported (51). Upregulated LINC00645 significantly influences the progression of cells
in vivo as miR-205-3p was a target of LINC00645 and LINC00645, modulating TGF-β-induced cells
locomotion via miR-205-3p (52). Here we detect the interaction between SMAD5, which belongs to
the TGF-β superfamily of modulators, and LINC00645. As Figure 5b (iv) shows, the interaction is
much more active in IDC regions.

Also, it is reported that at least 50% of breast tumours have an activated type 1 insulin-like
growth factor-1 receptor (IGF-1R). The active interaction of IGF-1R with its two natural ligands,
insulin-like growth factor-1 (IGF-1) and IGF-2, has been associated by many investigations, as one
primary risk factor in breast cancer (53). The receptor system is complex since IR and IGF-1R
genes can form several types of hybrid receptors. Here we detect the activities of some highly
expressed IGFs, such as IGFBP2-IGF1, IGFBP2-IGF1R, and IGFBP2-TUBGCP5 (Supplementary
Figure S11). It also performs not only an upregulated expression within IDC spots but also a more
active interaction than DCIS and tumor edge regions.

With a higher chance, LINC00645 and IGF families are potentially well-applied targets in clinical
trials on breast cancer, especially for IDC region.

Tumor Edge Region (c6): Genes are considered as “amplified” when the ratio of their copy
number in tumour and normal samples is greater than two. Estrogen receptor gene amplification is
very frequent in breast cancer. It is reported that more than 20% of breast cancers harbor genomic
amplification of the ESR1 gene1 (54). We detect the interaction of some top amplified genes such as
ERBB2 (Figure 5b (iii)), ESR1, and CCND1 (Supplementary Figure S12). The result shows that
these genes, such as ERBB2-CCND1, have a very active interaction on the border of tumor edge
(c2) and IDC region (c6). The overexpression of these amplified gene enhances metastasis-related
properties (invasion, angiogenesis, increased survival) of cancer cells that might lead to increased
cancer metastases (55). It is very possible that cancer cells from the IDC region are invading the
tumor edge, and the tumor edge area will decrease after several cell cycles.
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DCIS Region (c10): We further evaluate the following stage of the DCIS region. RAB4A is
an essential regulator as it is functional for the fast recycling of integrin β3. Integrin β3 regulates
cell polarity and migration when localized appropriately to the plasma membrane, thereby having
an essential role in cancer metastasis (56). Also, GGA2 functions in recycling endosomes to retrieve
endocytosed EGFR, thereby sustaining its expression on cell surface, and consequently, cancer cell
growth (48). We detect the interaction of LR-pairs RABEP1-GGA2 (Figure 5b (ii)), RABEP1-
GGA1, RABEP1-RAB4A, RABEP1-RAB5A, etc (Supplementary Figure S13). These pairs show a
more obvious interaction, with a strong possibility indicating that the DCIS region is deteriorating
and heading to the next stage: Invasive Ductal Carcinoma.

Knowing when a lesion will or will not be life-threatening is essential and requires a thorough
understanding of the tumour microenvironment and cancer progression. Here, with the learned
embeddings from conST, we can perform more accurate evaluations of the cell-to-cell interactions
about IGF-related genes, top amplified genes, and cell metastasis. We conclude the high risk on
neighbor-spreading for the IDC region in this special case and ensure that the outcome knowledge
will contribute to the decision-making for clinicians in general.

3.7 Interpretability

3.7.1 Clustering Explanation

While conST demonstrates strong performance on clustering tasks, we are also interested in why
it clusters a specific spot into a specific layer, i.e., which neighboring spots contribute most to the
prediction. Thus, given a spot, we utilize GNNExplainer to identify a subgraph that contributes
most to the prediction results.

In Figure 5c, we select nodes 971 and 1765 near the cluster boundary of slice 151673 in spa-
tialLIBD for illustration, where the subgraphs are plotted in bold lines and node color represents
the predicted clustering labels. In Figure 5c (i), all the nodes in the subgraph are in the same
cluster with node 971, suggesting node 971 is predicted based on the node attributes of those nodes.
In Figure 5c (ii), although most of the nodes in the subgraph are in the same cluster with node
1765, node 1577 is in the other cluster. However, the ground truth label shows node 1577 and node
1765 are in the same layer, which means the subgraph we generate is reasonable. Thus, when the
subgraph does not match the predictions, it provides further information and helps to identify the
reason, which would be helpful in practice. Also, it demonstrates that conST is still able to learn
how to aggregate the information and recognize the underlying important relationship among spots
in difficult decision boundaries. The use of GNNExplainer points out a way to better refine the
network.

3.7.2 CCI Explanation

GNNExplainer can also provide interpretability to CCI on a more fine-grained scale. We select
spots all from the same cluster c10 of BRCA (Figure 5b (i)) and inspect the interaction in IDC of
pair SMAD5-LINC00645 (Figure 5b (iv)). We set a threshold of interaction value to define spots as
active in yellow, and inactive in green (Figure 5d). Setting node 3278 as input, the nodes involved
in the subgraph all have active L-R interactions. It demonstrates that conST can not only identify
clusters, but also the predictions made by conST are supported by the realistic biological process.

16

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2022. ; https://doi.org/10.1101/2022.01.14.476408doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.14.476408
http://creativecommons.org/licenses/by-nc/4.0/


4 Conclusion

We propose conST, a powerful and flexible framework for SRT data analysis with contrastive learn-
ing. conST can learn low-dimensional embeddings by effectively exploring the multiple modalities
of SRT data, including gene expression, spatial information, and morphology (if accessible). The
learned embeddings can be utilized in various downstream tasks and the performance surpasses
other concurrent methods. Furthermore, we utilize conST to study the tumour microenvironment
and cell-to-cell interaction of a breast cancer dataset in detail. conST reveals the cancer develop-
ment stages and ligand-receptor pairs that reflect the cancer progression. It proves that conST can
be used in more complex scenarios, providing more insights for future treatment.

The GNNExplainer explains which neighboring spots contribute to the prediction that conST
makes, which is also biologically consistent with the interaction of the L-R pair identified in CCI.
The interpretability will enable conST to be used in complex clinical situations with more convincing
predictions.
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