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Abstract  10 

Camera traps are increasingly used to answer complex ecological questions. However, the 11 

rapidly growing number of images collected presents technical challenges. Each image must be 12 

classified to extract data, requiring significant labour, and potentially creating an information 13 

bottleneck. We applied an object-detection model (MegaDetector) to camera trap data from a 14 

study of recreation ecology in British Columbia, Canada. We tested its performance in detecting 15 

humans and animals relative to manual image classifications, and assessed efficiency by 16 

comparing the time required for manual classification versus a modified workflow integrating 17 

object-detection with manual classification. We also evaluated the reliability of using 18 

MegaDetector to create an index of human activity for application to the study of recreation 19 

impacts to wildlife. In our application, MegaDetector detected human and animal images with 20 

97% accuracy. The overall time required to process the dataset was reduced by over 500%, and 21 

the manual processing component was reduced by 840%. The index of human detection events 22 

from MegaDetector matched the output from manual classification, with a mean 0.45% 23 

difference in estimated human detections across site-weeks. Our test of an open-source object-24 
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detection model showed it performed well in partially classifying a camera trap dataset, 25 

significantly increasing processing efficiency. We suggest that this tool could be integrated into 26 

existing camera trap workflows to accelerate research and application by alleviating data 27 

bottlenecks, particularly for surveys processing large volumes of human images. We also show 28 

how the model and workflow can be used to anonymize human images prior to classification, 29 

protecting individual privacy.  30 

 31 

Impact Statement 32 

We developed and tested a workflow for classifying camera trap images that integrated an 33 

existing object-detection model with manual image classification. Our workflow demonstrates an 34 

increase in efficiency of 500% over manual labelling, and additionally includes a method to 35 

anonymize human images prior to archiving and classification. We provide an example of the 36 

application of these tools to ease data processing, particularly for studies focused on recreation 37 

ecology which record high volumes of human images. Data lags due to processing delays have 38 

the potential to result in sub-optimal conservation decisions, which may be alleviated by 39 

accelerated processing. To our knowledge, this is the first in-depth assessment of the practical 40 

application of such technology to real world workflows focused on human detections. 41 

 42 

Keywords 43 

Artificial Intelligence; Remote Camera; Computer Vision; Species Classification; Human-44 

wildlife Interactions 45 

 46 

1. Introduction 47 
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In the ongoing quest to better understand and conserve wildlife populations, non-invasive 48 

sampling methods have become increasingly important (Zemanova, 2020). One such method is 49 

the use of motion-activated remote cameras, or camera traps, which allow researchers to collect 50 

extensive observational data while minimally disturbing the wild species of interest, for a 51 

relatively low monetary cost (Burton et al., 2015; Caravaggi et al., 2017; Glover‐Kapfer et al., 52 

2019; Rowcliffe et al., 2014). Common uses of this technology include species inventories, 53 

surveys of occupancy, or calculation of relative abundance indices; however, more recent 54 

techniques include estimation of population density (Augustine et al., 2018; Burgar et al., 2018; 55 

Jacques et al., 2019; Rich et al., 2014) and analysis of animal behaviour (Caravaggi et al., 2017; 56 

Frey et al., 2017). Efforts to standardize camera trap methods and metadata are facilitating cross-57 

project collaboration, paving the way for larger scale syntheses (Forrester et al., 2016; Scotson et 58 

al., 2017; Steenweg et al., 2017).  59 

 60 

One of the strengths of camera traps is that they can also sample human activity, making 61 

simultaneous monitoring of human-wildlife interactions possible. This holds particular promise 62 

for studies of recreation ecology, where cameras distributed throughout networks of trails or 63 

other recreational corridors provide simultaneous insights on human and wildlife use of habitat 64 

in space and time (Baker & Leberg, 2018; George & Crooks, 2006; Kays et al., 2017; Naidoo & 65 

Burton, 2020). With improved reliability, and decreasing costs facilitating increased accessibility 66 

of camera traps, the number of images collected by researchers continues to grow (Glover‐67 

Kapfer et al., 2019; Steenweg et al., 2017). While the use of camera traps provides an excellent 68 

framework for multifaceted investigation of fauna worldwide, a major work bottleneck is 69 

transforming raw images into usable data for statistical analyses: camera traps often produce 70 

high volumes of images, easily reaching terabytes of data.  71 
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 72 

Once collected by cameras, each image must be reviewed and classified by species, and may be 73 

further classified by characteristics of the individual(s) photographed (e.g. age, sex, and 74 

behaviour). With many mid-to-large scale projects amassing millions of photos and reaching 75 

terabytes of data in less than a year, the time committed to processing these data becomes 76 

increasingly unmanageable, ballooning time and monetary budgets. This issue is particularly 77 

prominent in recreation ecology studies, where the number of human images captured may 78 

frequently be in the millions, with the additional concern of respecting human privacy adding 79 

complexity to the issue (Sandbrook et al., 2018, 2021). In some cases, these ethical concerns lead 80 

to deletion of all human images, reducing the possibility for detailed assessment of human-81 

wildlife interactions (Naidoo and Burton, 2020). This loss of information on direct human 82 

pressures on wildlife is particularly relevant when considering the growing impacts of increasing 83 

anthropogenic impacts worldwide (Nickel et al., 2020).  Loss of direct management applicability 84 

due to a time lag between data collection and reporting is an important disconnect which may 85 

result from extensive inefficiencies in processing, limiting an otherwise strong methodology 86 

(Merkle et al., 2019; Norouzzadeh et al., 2021). Common strategies to overcome this bottleneck 87 

include the use of undergraduate volunteers, contract employees, or community scientists (Lasky 88 

et al., 2021; Swanson et al., 2016; Willi et al., 2019). While these strategies assist in accelerating 89 

image processing, they do not address the baseline issue that manual processing of images is 90 

often extremely labour intensive.  91 

 92 

Machine learning methods provide a promising avenue for reducing dependence on manual 93 

classification in camera trap projects. Deep learning, a subclass of machine learning, uses 94 

artificial neural networks to process information (Lamba et al., 2019). Artificial neural networks 95 
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are foundationally based on the neural layout seen in biological systems, allowing computer-96 

based algorithms to “learn” based on training data, in order to accurately process similar yet 97 

distinct data at a later time. A rapidly expanding subfield of this technology is computer vision, 98 

where a multilayered model is trained on a large number of previously classified images, and 99 

then applied to new images in order to assign classifications without human interaction 100 

(Weinstein, 2018). Researchers have proposed the use of machine learning to identify species in 101 

camera trap images (Tabak et al., 2019; Willi et al., 2019; Yu et al., 2013), but tests thus far 102 

show performance of these models is generally unsuitable for robust use in real world ecological 103 

research (Schneider et al., 2020; Tabak et al., 2019). One of the key current shortcomings is low 104 

accuracy when applied to “out-of-pool” samples not seen in training, particularly in new 105 

geographical areas without extensive context specific re-training (Schneider et al., 2020). 106 

 107 

While future directions to overcome such issues appear promising (e.g. active and transfer 108 

learning, Beery et al., 2020; Norouzzadeh et al., 2021), a pragmatic compromise between 109 

entirely manual and entirely automated classification of camera trap data is the use of object 110 

detection models to assist in filtering images into relevant classes, allowing increased efficiency 111 

for manual processing (Beery et al., 2018; Beery, Morris, & Yang, 2019; Greenberg et al., 2019). 112 

A key limit to the widespread adoption of such tools by ecologists is a lack of external validation 113 

of their performance, slowing adoption of new technologies into practice (Christin et al., 2021).  114 

 115 

The release of open-source detection models provides an opportunity for more independent 116 

evaluation and application of these tools. One such model, MegaDetector, is a free, openly 117 

available, system agnostic object detection model created by Microsoft specifically for the 118 

processing of camera trap data (Beery, Morris, & Yang, 2019; Microsoft, 2020). Trained on 119 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2022. ; https://doi.org/10.1101/2022.01.14.476404doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.14.476404
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 6 

millions of images from across the world, this model is designed to detect four classes within 120 

images: humans, animals, vehicles, and blanks (i.e. no objects other than the background). 121 

Automated processing of images into these classes has the potential to be conducted far faster 122 

than could be completed manually by humans and is generally limited only by computer 123 

processing speeds (Microsoft, 2020). While MegaDetector is presented as an effective tool for 124 

accelerating data processing, quantification of performance is crucial prior to widespread 125 

implementation into real-world workflows (Christin et al., 2021). Here we explore the use of 126 

MegaDetector in streamlining camera trap data processing, with a specific focus on projects 127 

wishing to quantify large numbers of human images in the context of recreation ecology. 128 

Through testing this method on a set of manually classified data, we seek to answer the general 129 

question: can existing object detection models assist in accelerating extraction of 130 

ecologically relevant indices from camera trap data? Specifically, we evaluate the 131 

performance of MegaDetector to: i) accurately and precisely classify human and wildlife images; 132 

ii) produce independent human detection events at a scale commonly used in ecological analysis 133 

(site-week), and; iii) increase processing efficiency in comparison to a fully manual workflow. 134 

Finally, we also provide an example of direct use of the MegaDetector output to automatically 135 

anonymize human images to preserve individual privacy.    136 

 137 

2. Methods 138 

 139 

2.1 Manual classification 140 

Images were collected from 36 camera traps in Cathedral Provincial Park, British Columbia, 141 

Canada, that were deployed from July 1, 2019 to October 1, 2020 as part of a project 142 

investigating the impacts of human recreational activity on wildlife habitat use. Fourteen camera 143 
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traps were set on human hiking trails, two were on a private road which also serves as a hiking 144 

trail, and twenty were set off-trail. Off-trail cameras were deployed in locations a minimum of 145 

300 meters from established trails, resulting in very few human detections other than the research 146 

team.  Images were classified to the species level, including humans, by a mix of undergraduate 147 

volunteers, research assistants, and graduate students. All images were classified manually in a 148 

database developed by the UBC WildCo lab. Following initial classification, all classifications 149 

were reviewed by the project leader (author MF) to ensure consistency and accuracy across 150 

individuals and sites. The average number of images classified per hour was recorded across 151 

classifiers to allow comparison to automation assisted approaches. For this analysis, we used 159 152 

272 classified images, of which 74 190 contained humans and 19 120 contained animals, with 153 

the remainder being blank images or vehicles. The ratio of human to animal images was 3.88.  154 

 155 

2.2 Object-identifier assisted classification 156 

The same set of images were processed via MegaDetector in order to identify images containing 157 

humans, vehicles, and animals, to allow comparison to manual classification outputs. 158 

MegaDetector version 4.1 was run either locally on a desktop (Intel i9-9000 series CPU, 32GB 159 

RAM, and an NVIDIA RTX-2080ti GPU), or on a Microsoft Azure NC6s_V3 virtual machine (6 160 

Intel Xeon vCPU’s, 128GB RAM, and an NVIDIA Tesla V100 GPU).  161 

 162 

We additionally developed and deployed a human blurring program, which uses the outputs from 163 

MegaDetector to obscure individual human identities (see: 164 

https://github.com/WildCoLab/WildCo-FaceBlur). This tool uses the output file from 165 

MegaDetector, which provides classifications by category, bounding box coordinates around the 166 

detection, as well as a confidence value for each detection. Using this information, the blurring 167 
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program applies a gaussian blur within bounding boxes classified as human above a user defined 168 

confidence threshold. Users interact with the program via an R (R Core Team, 2020) interface, 169 

which allows specification of a confidence threshold and a level of blurriness, while being 170 

familiar for many ecologists. The blurring process itself occurs via Python (Python Software 171 

Foundation, 2021) to maximize image handling speed, which is called from the R interface via 172 

the package reticulate (Ushey et al., 2021).  173 

 174 

Once images were classified manually and processed via MegaDetector, we tested three aspects 175 

of object-detector performance to determine efficacy, and also compared the time required to 176 

complete processing for each method.  177 

 178 

2.3 Assessing object-detector classification of human and wildlife images 179 

First, we determined whether images classified manually as containing one or more humans were 180 

also classified as “human” by MegaDetector. We summarized classification results as a 181 

confusion matrix of true positive (TP), true negative (TN), false positive (FP) and false negative 182 

(FN), and used these values to calculate accuracy ( !"#!$
!"#!$#%"#%$

), precision ( !"
!"#%"

), recall 183 

( !"
!"#%$

), specificity ( !$
!$#%"

) and F-Score (&×()*+,-,./×)*+011
()*+,-,./#)*+011

	).  The F-Score is the harmonic mean 184 

of the precision and recall, representing a quantification of the tradeoffs between false positives 185 

and false negative results, with scores closer to one representing increased model performance. 186 

We used a MegaDetector confidence threshold of 0.9 based on initial sensitivity testing. Second, 187 

we applied the same comparison to images containing animals. As MegaDetector does not 188 

classify to species beyond detecting an animal, we pooled all animal identifications across 189 

species from the manual set for comparison. While the MegaDetector “animal” output requires 190 
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further manual classification prior to analyses, comparing this class between methods provides 191 

broad insight about performance.  192 

 193 

2.4 Evaluating object-detection based index of human activity 194 

We assessed the reliability of the automated Megadetector classification of human detections as 195 

a replacement for manual classification. Camera traps provide a continuous measure of changes 196 

in human and animal detections over time, which can be used to analyze temporal trends. We 197 

used a time period of 1 week as a relevant index for assessing variation in recreation activity 198 

over time. Raw image detections are commonly summarized into independent detection events 199 

for statistical analyses of camera trap data, with a minimum time threshold specified between 200 

successive images of the same species in order to reduce repeated counting of the same 201 

individuals in consecutive triggers and thereby increase independence of observations (Burton et 202 

al., 2015). In this case, we used five minutes as the independence threshold between successive 203 

events. We grouped the independent events by site-week, resulting in a count of the number of 204 

human detection events at each camera trap site for a total of 2052 site-weeks. We compared the 205 

count of detection events per site-week from the manual classification to the count of detection 206 

events per site-week from MegaDetector to generate an absolute and percent difference for each 207 

site-week, as well as the mean percentage difference across all site weeks. We also calculated a 208 

correlation coefficient for the relationship between the two classification methods.  209 

 210 

2.5 Quantifying gains in efficiency from an object-identifier assisted workflow 211 

To compare efficiency between the manual and automated image classification methods, we 212 

recorded the mean number of images processed per hour in our fully manual workflow by having 213 

five individuals self-report the time to classify 10 000 images and taking the mean rate across 214 
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classifiers. We then compared this classification rate to the same metric for our workflow in 215 

which MegaDetector was used first, followed by manual classification to species of all animal 216 

images. As animal images still require manual classification following detection via 217 

MegaDetector, we calculated the time required for the full dataset to be processed on our local 218 

computer with an NVIDIA RTX 2080ti GPU and added the time to classify the 19 120 animal 219 

images manually at the average manual rate to provide an estimated time for the full workflow.  220 

 221 

3. Results 222 

 223 

3.1 Classification of human images 224 

MegaDetector detected human images with 97.2% accuracy when compared to the manual 225 

classification (Table 1a), showing that 94.7% of images containing a human were correctly 226 

assigned to this class. Precision for human image detection was 0.99, recall was 0.95, and 227 

specificity was 0.99. The F-Score was 0.97, and the misclassification rate was 2.8%. The 228 

correlation coefficient between manually identified and MegaDetector identified human images 229 

was 0.96 (Fig 1a). More error was observed at camera sites with more images, suggesting a 230 

consistent rate of error, with MegaDetector being more likely to undercount the number of 231 

human images (Fig 1a).  232 

 233 

3.2 Classification of animal images 234 

Animal image detection by MegaDetector had an accuracy of 96.6% (Table 1b). Table 1b shows 235 

92.3% of all animal images were correctly identified by MegaDetector. The precision for object-236 

identifier based animal image classification was 0.82, the sensitivity 0.92, and the specificity 237 

0.97. The F-Score was 0.87 and the misclassification rate 3.4%. The correlation coefficient for 238 
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camera site level animal image classification was 0.89 with increased variation per site when 239 

compared to human images (Fig 1b). MegaDetector was once again slightly conservative, more 240 

commonly underestimating the number of true animal images.     241 

  242 
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Table 1. (A) Confusion matrix of object-identifier classification of human images. The 243 

percentage in the top left represents the true positive rate, top right represents the false positive 244 

rate, bottom left is the false negative rate, and bottom right is the true negative rate. (B) 245 

Confusion matrix of object-identifier classification of animal images. The percentage top left 246 

represents the true positive rate, top right represents the false positive rate, bottom left is the false 247 

negative rate, and bottom right is the true negative rate. 248 

A 
 

 Manual 

Human No Human 

M
eg

aD
et

ec
to

r  Human 
70275 

(94.7%) 

617 

(0.7%) 

No 

Human 

3915 

(5.3%) 

84465 

(99.3%) 
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 Manual 

Animal No Animal 

M
eg

aD
et

ec
to

r Animal 
17654 

(92.3%) 

4005 

(2.9%) 

No 

Animal 

1466 

 (7.7%) 

136125 

(97.1%) 
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 251 

Figure 1. (A) Human image detections at each remote camera station. The horizontal axis is the 252 

number of manually identified human images at each site, and the vertical axis is the number of 253 

MegaDetector classified human images at each site with a 0.9 confidence threshold. The dashed 254 

line is a 1:1 regression, and the solid blue line is the regression between manual and automated 255 

classification at each site (correlation coefficient 0.96). (B)  Animal image detections at each 256 

remote camera station. The horizontal axis is the number of manually identified animal images at 257 

each site, and the vertical axis is the number of MegaDetector classified animal images at each 258 

site with a 0.9 confidence threshold. The dashed line is a 1:1 regression, and the solid blue line is 259 

the regression between manual and automated classification at each site (correlation coefficient 260 

0.89). 261 

 262 

3.3 Independent human events 263 

Object-identifier assisted classification of human image events was highly correlated at the site-264 

week level, showing strong correspondence between manual and MegaDetector based inference 265 
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(Fig. 2). The mean number of independent human events per site-week as determined by manual 266 

classification was 4.45, with a range from 0 to 207 events. The mean difference in human events 267 

identified by MegaDetector was -0.0024 events per site week, with a range from 0 to 4. The 268 

mean percentage difference in the number of independent human detection events across 2052 269 

site-weeks was 0.45%. The correlation coefficient of the relationship between object-detection 270 

and manual classification of independent human detection events was 0.99.  271 

 272 

Figure 2. Independent human detection events across 2052 camera trap site-weeks as manually 273 

classified vs. classified via object-detection. The dashed horizontal line is a 1:1 relationship.  274 

 275 
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3.4 Time benchmarks 276 

For human classifiers, classification speed ranged from 300 to 1000 images per hour, with 277 

experienced classifiers being faster than novice classifiers. The mean rate across five classifiers 278 

was 500 images per hour.  279 

 280 

MegaDetector inference speed is highly hardware dependent, largely related to GPU throughput. 281 

Our local machine with an NVIDIA RTX 2080ti GPU processed images at an average of rate of 282 

1.8 images per second (6480 images/hour), while our virtual machine with an NVIDIA Tesla 283 

V100 GPU processed images at a rate of 2.3 images per second (8280 images/hour). Preliminary 284 

testing subsequent to these analyses with an NVIDIA RTX 3090 GPU produced classification 285 

rates of 2.8 images per second (10 080 images/hour).  286 

 287 

Using the mean manual processing rate of 500 images per hour, our dataset took an estimated 288 

319 person-hours to classify 159 272 images. The time to process the entire dataset via 289 

MegaDetector with our slowest computer was 25 hours, with an additional 38 hours to manually 290 

classify the animal images, for a total of 63 hours for the MegaDetector based workflow. The 291 

MegaDetector based workflow was 506% faster than the entirely manual workflow, with 40% of 292 

the total time not requiring human input or supervision, resulting in an 840% decrease in the 293 

manual processing time.   294 

 295 

3.5 Human-blurring 296 

We deployed our human-blurring tool on all images prior to manual classification to protect 297 

human privacy of recreationists recorded on camera traps. As this tool is dependent on 298 

MegaDetector outputs, our success at blurring these data was the same as those reported above 299 
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(Fig 1a, Table 1a). By providing an optional parameter for the level of blur applied to each 300 

human classified bounding box, we retained the ability to identify humans within images during 301 

manual classification while preventing individual identification, preserving privacy. This process 302 

required very little manual input beyond specifying the file path to the folder containing all 303 

images, as well as an output directory.   304 

 305 

4. Discussion 306 

 307 

This study provides an example of the effective application of an existing open source object-308 

detection model to greatly accelerate the classification of camera trap image data. This will 309 

increase the efficiency of processing large volumes of human detections, which will be 310 

particularly beneficial in studies quantifying effects of human activity on wildlife, such as in 311 

recreation ecology. Where timely data is essential in supporting conservation decision making, 312 

extensive time lags between collection of data and useable recommendations can exacerbate 313 

existing disconnects between research and effective action (Dubois et al., 2020; Habel et al., 314 

2013; Sands, 2012). This acceleration in processing may assist in narrowing gaps between 315 

researchers and managers by providing timely information to support decision making 316 

(Cvitanovic et al., 2016; Lemieux et al., 2018; Merkle et al., 2019).  317 

 318 

Using an object-detection model assisted workflow, we achieved increases in processing speed 319 

of over 500% while maintaining high accuracy and precision of image classification for a 320 

realistic ecological dataset. By implementing an existing tool which is openly available 321 

(Microsoft MegaDetector; Beery, Morris & Yang, 2019; Microsoft, 2020), we were able to 322 

adjust an existing workflow to integrate machine learning for human image detection—a task on 323 
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which current algorithms perform strongly--while continuing manual classification of animal 324 

species identification, for which machine learning performance is currently weaker. While the 325 

field of computer vision is rapidly improving the ability for automated species identification 326 

(Beery et al., 2020; Gomez Villa et al., 2017), existing models are not commonly generalizable 327 

to new environments or species, resulting in performance which is not yet acceptable for broad 328 

application by ecologists without significant error checking and correction (Beery, Morris, Yang, 329 

et al., 2019; Glover‐Kapfer et al., 2019; Schneider et al., 2020). The workflow tested here 330 

provides significant increases in processing efficiency while keeping the “human in the loop” for 331 

a quality comparable to fully manual camera trap image processing, with minimal correction 332 

needed, and without requiring extensive model retraining for a geographic region unseen in 333 

training.  334 

 335 

These gains in efficiency are particularly relevant in the context of recreation ecology, where the 336 

number of human images may vastly exceed the number of animal images. Recreation presents a 337 

unique and understudied pressure to wildlife, with species and geographically specific responses 338 

to different activities varying (Baker & Leberg, 2018; Boyle & Samson, 1985; Kays et al., 2017; 339 

Naidoo & Burton, 2020; Nickel et al., 2020). One contributing factor to this knowledge gap is 340 

the difficulty in quantifying recreation pressures, particularly while simultaneously measuring 341 

wildlife (Balmford et al., 2015). Camera traps provide an excellent opportunity to overcome this 342 

issue, though large numbers of human images may be overwhelming for researchers to process 343 

in an effective manner. In the case of our study, the ratio of human to animal images was 3.88, 344 

with our object-identifier assisted workflow resulting in an 840% reduction in manual processing 345 

hours. In cases where this ratio is higher, we predict that the increase in processing efficiency 346 

will be even greater.  347 
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 348 

In addition to the improvement in processing efficiency, we demonstrated that MegaDetector 349 

facilitates the blurring of human images prior to data processing. The human ethics of camera 350 

trapping has received attention recently (Sandbrook et al., 2021; Sharma et al., 2020) and the 351 

ability to anonymize images before they are viewed by human observers or archived is in our 352 

opinion considered best practice. To this end, we provide a script 353 

(https://github.com/WildCoLab/WildCo-FaceBlur) which takes the human-labelled objects 354 

identified by MegaDetector and blurs them using Python via a simple R interface, which is 355 

familiar for many ecologists.  356 

 357 

Potential limitations of using object detection methods are the perceived technical knowledge 358 

required and the need for high-performance computing hardware. Regarding the former, 359 

MegaDetector is accompanied by detailed yet simple instructions to assist practitioners in 360 

applying the model to their own data (Microsoft, 2020). In terms of hardware infrastructure, 361 

these models will run on nearly any modern computer, though inference speed is significantly 362 

increased with the use of a dedicated performance GPU. We suggest two options for access to 363 

such hardware: purchasing or upgrading a computer to use locally, or the use of a virtual 364 

machine such as those hosted by Amazon AWS, Microsoft Azure, Google Cloud, or various 365 

academic institutions. While upfront costs may be high for a suitable computer or GPU, it is 366 

relevant to consider these costs in comparison with the labour wages needed to cover the 367 

increased processing time for entirely manual classification, particularly as applied across 368 

multiple projects over the life of the hardware. Virtual machines (portions of large, high 369 

performing computers allocated and accessed remotely) are an accessible option for short-term 370 

projects which may not warrant the upfront hardware expense, or to initially trial the efficacy of 371 
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integrating these tools with your own workflow. Though this option provides the ability to have 372 

on demand access to high-performance computing, costs can quickly increase and exceed those 373 

of purchasing physical hardware (Tuia et al., 2021).  374 

 375 

The promise of camera traps to provide rapid information for applied management of human-376 

wildlife landscapes is currently limited by the rapid increase in data collected worldwide 377 

(Ahumada et al., 2020; Steenweg et al., 2017). While this issue has presented a potential 378 

limitation to widespread adaptation of this technology, rapid developments in processing 379 

technology, such as those in the field of artificial intelligence provide exciting solutions 380 

(Ahumada et al., 2020; Glover‐Kapfer et al., 2019). Here we provide an example of integrating 381 

such tools into an existing workflow in a recreation ecology context, showing the high 382 

performance of an openly available model on real data, and suggesting application of such 383 

technology by other ecological practitioners. While the future holds further drastic developments 384 

for the applicability of these technologies to camera trap data and research, we propose that there 385 

is no time like the present for ecologists to use all available tools to accelerate their research, 386 

particularly in situations where alleviating data lags may facilitate effective conservation 387 

decisions.  388 
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