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Abstract 

The rapid accumulation of single-cell RNA-seq data has provided rich resources to 
characterize various human cell types. Cell type annotation is the critical step in 
analyzing single-cell RNA-seq data. However, accurate cell type annotation based on 
public references is challenging due to the inconsistent annotations, batch effects, and 
poor characterization of rare cell types. Here, we introduce SELINA (single cELl 
identity NAvigator), an integrative annotation transferring framework for automatic cell 
type annotation. SELINA optimizes the annotation for minority cell types by synthetic 
minority over-sampling, removes batch effects among reference datasets using a 
multiple-adversarial domain adaptation network (MADA), and fits the query data with 
reference data using an autoencoder. Finally, SELINA affords a comprehensive and 
uniform reference atlas with 1.7 million cells covering 230 major human cell types. We 
demonstrated the robustness and superiority of SELINA in most human tissues 
compared to existing methods. SELINA provided a one-stop solution for human single-
cell RNA-seq data annotation with the potential to extend for other species. 
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Introduction 

Single-cell RNA sequencing (scRNA-seq) can profile thousands of cells to reveal 
heterogeneity within complex tissues. The key step in scRNA-seq data processing is 
cell type annotation, which is vital for interpreting function features for certain cell 
types and is required for many downstream analyses, including trajectory analysis or 
cell-cell interactions. Traditional cell type annotation methods can be roughly divided 
into two categories. Marker gene-based methods including Garnett1 and SCINA2 rely 
on clustering and quality of cell type-specific marker genes. Reference data-based 
methods, such as scmap3, scPred4, SingleR5, CHETAH6, SingleCellNet7, and 
ACTINN8, transfer cell type labels from a reference dataset and are independent of 
clustering results and marker genes. With the continuous accumulation and 
increased throughput of single-cell datasets, reference data-based methods show 
improved accuracy and broader applications compared to marker gene-based 
methods.  
Although reference data-based methods have the above advantages in cell type 
annotation, several challenges remain to be resolved. First, current tools are often 
designed for transferring cell type assignments between single reference data and 
single query data; hence, they cannot leverage the wealthy information hidden in the 
enormous public data. Second, the cell numbers of different cell types are often 
imbalanced; therefore, the minority cell types are always ignored in the modeling 
process. Third, the underlying batch effects between reference data and query data 
are often overlooked, which may greatly hinder accurate label transfer. Last, all these 
methods heavily rely on the quality of reference datasets. However, none of them 
provide users with comprehensive reference datasets. Even though great efforts in 
systematically collecting and curating public datasets have been made to build 
scRNA-seq data portals that involve millions of cells, which spawns Human Cell Atlas 
(HCA)9, Animal Cell Atlas10 (ACA), Single Cell Portal from the Broad Institute11, 
Human Cell Landscape12 (HCL) and Single Cell Expression Atlas from European 
Bioinformatics Institute13 (EMBL-EBL), there still lacks a uniform and comprehensive 
reference atlas due to the inconsistent annotation and large batch effects between 
datasets. 
To address these challenges, we built a comprehensive single-cell transcriptomics 
data atlas consisting of 136 datasets from 35 human tissues ranging from 7 differrent 
platforms. Based on the 1,706,710 uniformly processed cells covering 230 cell types, 
we propose an algorithm that can effectively utilize multiple datasets for single-cell 
assignment. It applies the synthetic minority oversampling technique14 (SMOTE) to 
boost the number of rare cell types and employs multi-adversarial domain 
adaptation15 (MADA) to update the parameters of the supervised deep learning 
framework in the pretraining stage. Furthermore, it utilizes an autoencoder to 
adaptively adjust the pretrained parameters based on the distribution of query data. 
We demonstrated the power of SELINA in batch removal and systematically 
evaluated the performance of SELINA with existing tools on 92 datasets from 17 
tissues. The comprehensive cell type reference of SELINA and its superior ability in 
transferring annotation pave the way for users to accurately annotate single cells. 
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Results 

Overview of SELINA 

The SELINA workflow is composed of two steps, reference construction and cell 
type prediction. For reference construction, public scRNA-seq data were collected 
from multiple databases and processed with a standardized pipeline from 
MAESTRO16 including quality control, principal component analysis (PCA), batch 
removal within a dataset, unsupervised clustering, cell type-specific marker 
evaluation, and annotation (Supplementary Fig. 1a). Next, the inconsistent 
annotations across datasets are manually unified with the knowledge that the 
corresponding papers provide (Supplementary Fig. 1b). Finally, the curated cell types 
are organized into a cell type ontology tree. 
Based on the uniformed reference data, a cell type prediction algorithm consisting of 
three steps is developed. Usually, the classifier will reach a higher training accuracy 
at the cost of the minority class being misclassified; thus, to increase the sensitivity of 
classifiers to the minority class, SELINA utilizes SMOTE14 to generate synthetic 
samples so that the classifier can pay more attention to the minority cell types. Then, 
SELINA takes datasets from one tissue as input and employs a MADA15 network to 
obtain a pre-trained model. By training the supervised deep learning framework in an 
adversarial way, the underlying common information of the same cells from different 
batches is uncovered. To further remove the batch noise between the reference data 
and query data, an autoencoder is used to adaptively fine-tune the pre-trained 
parameters according to the distribution of query data. Finally, the labels from 
reference datasets are transferred to the query data based on the fully trained model 
(Fig. 1). 

 

SELINA provides rich sources of single-cell expression profiles with a well-
organized cell type ontology tree  

In the reference construction step, a total of 1,706,710 cells from 136 datasets were 
collected to build a single-cell transcriptomic data portal that covered 230 human cell 
types and 7 different sequencing platforms (Supplementary Table 1). The reference 
atlas was expanded on the basis of HCL12 to include more datasets from other 
sequencing platforms. All the datasets were categorized into 35 major tissues 
according to the definition in HCL. We first summarize the dataset features in the 
SELINA reference.The blood (n=14), intestine (n=14), and bone marrow (n=13) 
tissue have the richest dataset number (Fig. 2a). Blood and bone marrow tissue also 
have the largest number of cells, indicating a better characterization of immune cells 
for our reference. Importantly, 27 out of the 35 tissues have two or more datasets in 
the reference, suggesting the universal coverage and depth of our reference (Fig. 
2a). For each tissue, the inconsistent cell type names between different datasets 
were first unified and subsequently divided into major lineages and minor lineages 
based on the literature and Cell Ontology17. Taking the cell type names from the liver 
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as an example, the major lineage has 14 different cell type categories, and only 
dendritic cells (DCs), endothelial cells and epithelial cells have minor lineages (Fig. 
2b). 
Aggregating all tissues together, we constructed a comprehensive human cell type 
ontology tree based on scRNA-seq data. Previous Cell Ontology has presented 
hierarchical relationships between 2331 cell types. However, only a small fraction of 
these cell types can be characterized by scRNA-seq due to experimental capture 
issues and limited cell numbers in each dataset. In addition, the terminology used to 
describe cell types in published single-cell studies does not correspond well with the 
cell type names from Cell Ontology. Therefore, the cell type tree in SELINA only 
defines the parent-child relationship of cell types that are present in scRNA-seq data. 
By incorporating and curating cell types from previous studies, SELINA affords users 
a more unified standard that dictates cell type landscapes in the scRNA-seq data and 
organized this landscape for annotating input scRNA-seq data. 
 

SELINA combines MADA and an autoencoder to transfer labels between 
reference data and query data 

The annotation algorithm in SELINA comprises three steps, including cell type 
balancing, pretraining, and fine-tuning (Fig. 2c). SELINA first adopts SMOTE to 
oversample the minority cell types. For each cell in a pair of randomly selected cells 
from rare cell types, SELINA multiplies its gene expression vector by a random 
weight and then sums the pair of weighted vectors to obtain a synthetic cell which is 
at a random point on the line connecting the pair of cells. Colloquially, the generated 
cell is the linear combination of original cells. This process will proceed until the rare 
cell types reach the same magnitude as the majority cell types or are not less than 
1000. 
In the pretraining phase, SELINA applies MADA to remove the batch noise caused 
by different sequencing platforms. The architecture of the pretraining framework 
consists of three components: a feature extractor, a cell type discriminator and a 
sequencing platform discriminator. The feature vector generated by the feature 
extractor will flow into the cell type discriminator and platform discriminator 
simultaneously. Different from the conventional adversarial neural network18, the 
platform discriminator in our pretraining framework contains multiple classifiers of 
which the number is equal to the cell types; that is, each classifier is paired with one 
cell type. For a certain platform classifier, the input feature vector will be multiplied by 
the probability of the input cell being assigned to the cell type paired with this 
classifier, and the probability is calculated by the cell type discriminator. During the 
backward propagation of platform predicting errors, the gradient of the feature vector 
will be reversed so that the feature extractor is trained to maximize the loss of the 
domain discriminator; at the same time, the domain discriminator is trained to 
minimize the loss. Thus, as the training proceeds, features generated by the feature 
extractor worsen for the platform classifier to classify; however, even though the 
difference of the input features from different platforms is slight, the platform classifier 
can always manage to distinguish the platform sources until the difference is nearly 
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eliminated. This strategy can enable fine-grained alignment of expression 
distributions from different sequencing platforms by capturing the batch information 
of each cell type separately and training the feature extractor and platform 
discriminator in an adversarial way. 
In the fine-tuning step, an autoencoder is employed to reconstruct the expression 
profile of query data such that the pretrained model can better fit the query data. The 
encoder, combining the feature extractor and cell type discriminator from the 
pretrained model, has learned the transformation from a large amount of reference 
data. By contrast, the decoder still needs to be adjusted due to the random 
initialization of the parameters. SELINA first fixes the encoder and updates the 
parameters of the decoder. Freezing the encoder can prevent the parameters of the 
encoder from changing considerably so that the learned transformation in the pre-
trained model can be well preserved. Once the loss decreases to convergence, the 
decoder can be approximately regarded as the inverse transformation of the 
encoder, that is, training the encoder alone will not significantly change the 
parameters. Thus, SELINA will freeze the decoder and turn to update the parameters 
of the encoder, and to prevent the overfitting, the encoder training only lasts several 
epochs. The reconstruction loss will be further decreased after encoder training so 
that the encoder is shifted based on the distribution of query data, which can reduce 
the batch noise between reference data and query data. 
 
Data augmentation for rare cell types and batch removal in both data 
integration and querying processes improve annotation accuracy 

To validate the improvement of SMOTE in rare cell type annotation, we selected 4 
datasets from the liver as reference data, including 15,859 cells12,19, and the 
remaining dataset was taken as query data20. Seven cell types with limited cell 
numbers that are present in query data are defined as rare cell types, including 
CD4T (n=98), plasma (n=462), mast (n=12), pDC (n=32), cholangiocyte (n=391), 
periportal LSEC (n=358) and portal endothelial cells (n=212). We carried out label 
transfer tests with and without SMOTE and found that implementation of SMOTE 
greatly increase the number of rare cell types that are correctly assigned, obviously, 
nearly 1/3 of CD4 T cells were rescued. In addition, half of the mast cells were 
correctly annotated after using SMOTE, while all of them were misannotated in the 
original transfer (Fig. 3a). We calculated the F1 of these cell types and found large 
improvement except for the peripheral LSEC, of which some were probably 
misannotated in the reference (Fig. 3b). The great improvement indicates that 
SMOTE can remedy the overfitting caused by the limited number of rare cell types. 
To confirm that SELINA can eliminate batch effects in reference data, we applied 
uniform manifold approximation and projection21 (UMAP) to display the features 
transformed by the feature extractor and cell type discriminator. For the liver 
datasets, after the feature extractor transformation, cells of the same cell type from 
different platforms are clustered closer compared to the original embedding, 
suggesting that with the cell type-specific platform discriminators, the feature 
extractor can uncover the underlying common features among different sequencing 
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platforms for each cell type(Fig. 3c, Supplementary Fig. 3a). With the majority of the 
batch effects being removed by the feature extractor, we next evaluated the 
performance of the cell type classifier. Taking CD4+ T-cells, CD8+ T-cells, and NK 
cells as examples, our cell type classifier showed clear separation of these three cell 
types, while the results from the conventional PCA transformation followed by 
Harmony22 failed to distinguish them (Fig. 3d). Interestingly, we noticed that the 
results from cell type classifier showed better integration of CD8T+ cells compared to 
results from feature extractors (Fig. 3c-d, Supplementary Fig. 3a-b), indicating a 
further batch correction. To verify whether fine-tuning using autoencoder can remove 
the batch effects between the reference data and query data, we selected 4 datasets 
from the liver as reference data12,19, and the remaining dataset was taken as query 
data20. For both reference data and query data, we applied UMAP to the features 
transformed by the cell type classifier from the pre-trained model and the encoder in 
the fine-tuned model. Clearly, the fine-tuning decreases the distance between 
reference cells and query cells, indicating that automatic adjustment can fit the pre-
trained model to the query data (Fig. 3e). 
We next investigated whether the performance of SELINA is robust and tested it on 
three different tissues including bladder, brain, and liver. Each time, we selected one 
dataset as query data, and the remaining datasets were merged as reference data. 
MacroF1 is gradually improved with the implementation of SMOTE and autoencoder, 
whereas the accuracy is relatively stable compared to MacroF1 due to the dominant 
improvement of rare cell types, which account for a small percentage of the query 
cells (Fig. 3f, Supplementary Fig. 3c). Moreover, to ensure that effective integration 
of multiple references can improve the performance, we compared the performance 
of SELINA using single and multiple reference datasets in the brain and lung tissue, 
respectively. For single reference tests, each dataset was taken as query data and 
each of the rest datasets was taken as reference data iteratively. The multiple tests 
were carried out in the same way as the validation of the strategies used in SELINA. 
As expected, the performance significantly improves when using multiple reference 
datasets (Fig. 3g, Supplementary Fig. 3d). Taken together, these results 
demonstrate that the features implemented in SELINA are robust in different tissues, 
and an integrated reference will greatly enhance the performance of SELINA. 
 
SELINA outperforms other existing tools in the comprehensive performance 
evaluation 

To systematically evaluate the performance of SELINA and other existing annotation 
tools, we selected 92 datasets from 17 tissues covering 185 cell types and 814,788 
cells (Supplementary Table 2). For each tissue, we took one dataset as a query 
dataset each time, and the remaining datasets were merged into one reference 
dataset; thus, for one tissue, we carried out multiple tests and obtained multiple 
accuracies and MacroF1. We calculated the average accuracy and MacroF1 and 
took the highest value in each tissue as 1, and the remaining values from other tools 
were scaled according to the ratio to the highest value. In terms of the scaled 
accuracy, SELINA ranks first with an average of 97.51%, followed by ACTINN 
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(92.04%), SingleCellNet (91.48%), mtSC23 (89.56%), scibet24 (85.98%), singleR 
(81.52%), CelliD25 (78.72%), and scmap (77.17%). For the scaled MacroF1, SELINA 
also ranks first with an average of 0.9874, followed by mtSC (0.9267), ACTINN 
(0.9018), SingleCellNet (0.8690), scibet (0.8622), CelliD (0.8478), SingleR (0.8031), 
and scmap (0.7246). Specifically, among the 17 tissues, the prediction accuracy of 
SELINA ranked first in 11 tissues and second in 3 tissues, and in terms of MacroF1, 
SELINA ranked first in 12 tissues and second in 4 tissues (Fig. 4a-b). The detailed 
performance comparisons for 5 representative tissues are shown in Supplementary 
Fig. 4a-e. All these results suggest the robustness and high accuracy of SELINA in 
annotating unlabeled datasets. In addition, we found that compared to the traditional 
strategies, the deep learning-based model (SELINA, mtSC, ACTINN) exhibited better 
performance, indicating the superior ability of artificial intelligence techniques in 
integrating large-scale data. 
Moreover, we evaluated the training time and querying time of SELINA and the other 
tools. As SELINA, ACTINN and mtSC are deep learning-based methods, they were 
trained with a GPU and tested using a CPU, and the rest of the methods were 
trained and tested using the same CPU as the deep learning model testing used. We 
set various reference cell numbers and query cell numbers to investigate the 
dynamic change in consumption time and found that it was positively correlated with 
the cell number in all methods. Compared to other methods, SELINA exhibit a 
moderate computational efficiency. It takes SELINA approximately 3 minutes to train 
a model on a dataset with 25000 cells and less than 1 minute to fine-tune the 
parameters on a dataset with 10000 cells (Fig. 4c-d). Additionally, the fine-tuning 
step can be largely accelerated by the GPU with a more obvious effect as the cell 
number increases (Supplementary Fig. 4g). In conclusion, SELINA can realize more 
accurate annotation than published tools with an acceptable running time. 
 

Discussion 

Substantial amounts of well-labeled human single-cell RNA-seq data have been 
generated in the public domain. Previous reference data-based studies utilized 
various strategies to achieve automatic annotation based on annotated reference 
scRNA-seq data. However, existing algorithms do not solve the problems of 
imbalanced cell types and large batch effects between reference and query datasets. 
In addition, due to the huge amount of public scRNA-seq data, a comprehensive and 
uniformed cell type reference is still not available. In this study, we developed an 
accurate deep learning-based framework SELINA for single-cell assignment along 
with a large-scale reference data portal covering 1,706,710 cells and 35 tissues. 
SELINA can handle the imbalance of cell types existing in reference data using 
SMOTE. In addition, SELINA can remove not only the batch effect across reference 
datasets but also the batch noise between the query dataset and the reference 
dataset. We systematically benchmarked the performance of SELINA on 17 different 
human tissues, and demonstrated its superiority in accurate cell type annotation 
compared to existing tools. Our method, combined with the curated reference, 
provides a one-stop solution for human single-cell annotations.  
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Conceptionally, SELINA splits the process of traditional transferring learning15,18,26,27 
into two separate steps and consumes less time due to the separation of source data 
training and target data adaptation. The source data training is assigned to the 
software developer, and the target data adaptation is assigned to users. Thus, users 
can directly use the pretrained model in SELINA, perform an adaptive adjustment 
according to the query data, and accurately annotate the cell types within several 
minutes.  
Despite the fact that our reference contains relatively large-scale datasets, the 
quantity of each dataset in different tissues is still imbalanced. This issue will be 
solved as the amount of data continues to grow or data generation algorithms28,29 
develop. Additionally, different cells belonging to the same lineage with similar 
transcriptomic profiles are often misannotated in the reference data, e.g., CD4+ T 
cells and CD8+ T cells. Recently, CITE-seq30 and REAP-seq31 have been used to 
capture surface proteins that are helpful in distinguishing cells that are similar in 
transcriptomic profiles. By integrating the data from CITE-seq and REAP-seq, we can 
obtain more accurately annotated cell type references. Finally, the deep learning 
model we used only excels at clustering and classification tasks, it lacks biological 
insights, such as the ability to identify novel cell types or key factors. In the future, we 
will use graph-based algorithms to extract the structural information so that the 
association between genes and cell types can be preserved to present more 
explainable knowledge and used for novel cell type identifications. With the presence 
of the above features in the SELINA algorithm and continuous expansion of SELINA 
reference, we anticipate that SELINA to accurately characterize all human cell types 
with the potential to transfer to other species. 
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Methods 

Reference construction 
Based on single-cell relevant keywords, a text-mining-based data parsing procedure 
was created to collect published human disease-free single-cell RNA-seq data from 
several databases, such as GEO, EBI, HCA, and Broad, before 20210531. All of the 
datasets were double-checked to ensure that they met our requirements. Patient ID, 
tissue source, original cell type annotation, cell type markers, literature search number, 
sequencing platform, reference genome version, etc. were collected as well. 
To make these datasets comparable, we created a standardized bioinformatics 
workflow. The data were preprocessed with MAESTRO16, which includes basic quality 
control, cell screening, normalization of expression data, unsupervised clustering, and 
differential expression analysis. Only cells with read count greater than 1000 and gene 
count greater than 500 were preserved. Batch effects from various patients or samples 
frequently affect datasets. To systematically measure the batch effect, each dataset 
was quantified with a metric based on the idea of information entropy and the 
Euclidean distance between cell coordinates in the UMAP graph. The batch effect was 
removed using the conventional correlation analysis32 (CCA) for data with entropy 
levels below the threshold. 
The original cell type annotation taken from the papers was used to assure the 
authenticity and traceability of the data annotation. We used the cell type marker 
genes paper provided (Supplementary Table 3) to annotate datasets without original 
annotation from the corresponding papers. The average logFC of each cell type 
marker gene in each cell cluster was calculated as the cell type score, and the cell 
type with the highest score was assigned to that cell cluster. The annotation results 
were manually validated based on the expression distribution of the marker genes 
after the initial annotation.  
The inconsistent annotations were first manually unified to the same label. Then we 
defined major lineage and minor lineage based on the cell types present in each 
tissue. For the minor lineage annotation unification, the cells assigned to the major 
lineage were divided into different minor lineages. As Supplementary Fig. 1b shows, 
cells belonging to endothelial lineage were extracted and we did PCA analysis, batch 
removal, re-clustering to these cells. Based on the marker genes papers provided, 
we re-annotated the endothelial cells into the sub-lineage cells. Cells without 
expression of any known marker genes were assigned with major lineage label 
attached with the suffix Subset. Finally, the cell type ontology tree was built for each 
tissue. 
 
Data augmentation of rare cell types 
SMOTE is used to synthesize artificial samples of the minority class. A cell and the 
corresponding 5 nearest neighbors from the minority cell type are randomly chosen, 
and the artificially synthetic cell is generated at a random point on the line connecting 
the anchor cell and one of its selected neighbors. We denote the gene expression 
profiles of the anchor cell and neighboring cell as 𝑥! and 𝑥", respectively, and the 
new cell 𝑥# is calculated using the following formula: 
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𝑥# = 𝑥! + 𝜆(𝑥! − 𝑥") 
where 𝜆 is a random number between 0 and 1. 
 
Training and fine-tuning process of SELINA 
The pretraining framework is composed of a feature extractor, cell type discriminator 
and platform discriminator. We denote the feature extractor as 𝐺$  and the cell type 
discriminator as 𝐺%. Assuming we have 𝐾	cell types, as the platform discriminator has 
an equal number of classifiers to cell types, these classifiers are denoted as 𝐺&' , 𝑘 =
1,… , 𝐾, each one is responsible for matching different platforms associated with one 
cell type. Suppose we have 𝑁 cells; for each cell we have the gene expression vector 
𝑥", we denote the probabilities of one cell assigned to each of the K cell types as 𝑦1", 
which is a vector calculated by 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐺% 8𝐺$(𝑥")9). 

The attention of one certain platform discriminator paid to one cell was calculated by 
weighting the features with the corresponding probability in 𝑦1". The cost function of 
the platform discriminator is calculated as the average of the loss of all classifiers 
within it, and the formula is shown as follows: 

𝐿( =
1
𝑁𝐾

< 	
)

"*+

<𝐿&'
,

'*+

(𝐺&' 8𝑦1"'𝐺$(𝑥")9 , 𝑝-)	 

where 𝐺&' 	is the 𝑘-th platform discriminator with 𝐿&'  as its cross-entropy loss and 𝑝- is 
the platform label. The objective function is the sum of balanced loss from the cell 
type discriminator and platform discriminator, which is calculated using the formula 
listed below: 

𝐶?𝜃$ , 𝜃% , 𝜃&'|'*+, B

=
1
𝑁
(𝜆< 𝐿% 8𝐺% 8𝐺$(𝑥")9 , 𝑦-9

)

"*+

+
1 − 𝜆
𝐾

	< 	
,

'*+

<𝐿&' 8𝐺&' 8𝑦1"'𝐺$(𝑥")9 , 𝑝-9)
)

"*+

. 

𝐿% is the cross-entropy loss of the cell type discriminator, 𝑦- is the cell type label, and 
𝜆 is a hyperparameter that balances the two objectives in the optimization problem. 
The optimization problem is to find the parameters	𝜃C$ , 𝜃C. , 𝜃C&'(𝑘 = 1,2, … , 𝐾), that 
simultaneously satisfy 

(𝜃C$ , 𝜃C%) = arg min
/!,/"

𝐶?𝜃$ , 𝜃% , 𝜃&'|'*+, B 

(	𝜃K&+, … , 𝜃C&,) = arg		 max
/#$,…,/#%

𝐶?𝜃$ , 𝜃% , 𝜃&'|'*+, B. 

The feature extractor and cell type discriminator of the pretrained model are 
connected as the encoder of the autoencoder. We denote the encoder as 𝐺2 and the 
decoder as 𝐺( . We first freeze the encoder and train the decoder and then fix the 
decoder and train the encoder. The objective function is 
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𝐶(𝜃2 , 𝜃() = 	
1
𝑁
<𝐿!?𝐺(?𝐺2(𝑥")B, 𝑥"B
)

"*+

 

where 𝐿! is the mean squared error (MSE) loss of the autoencoder. The optimization 
problem is to find the parameters 𝜃C2 , 𝜃C( satisfying 

?𝜃C2 , 𝜃C(B = arg min
/&,/'

𝐶(𝜃2 , 𝜃() .	

Once the fine-tuning step is finished, the decoder is removed, and the encoder is 
used to predict for unlabeled datasets. 
 
Model parameters 
The neural network was implemented with PyTorch. The feature extractor contains 
three layers: one input layer with the same number of nodes as the gene number, 
one output layer with 100 nodes followed by a dropout layer. The cell type 
discriminator has four layers: a 100-node input layer, a 50-node hidden layer 
followed by a dropout layer, and an output layer with a number of nodes equal to cell 
types. Each platform discriminator unit contains three layers: a 100-node input layer, 
a 25-node hidden layer, and an output layer with a number of nodes equal to 
sequencing platforms. 
 

The Rectified Linear Units (ReLU) was used as activation function. The Adam 
optimizer was used as the optimizer with default settings. The learning rates of 
pretraining and encoder training were set to 0.0001. For decoder training, the 
learning rate was set to 0.0005. The epoch numbers of pretraining and decoder 
training were set to 50, whereas the epoch number of encoder training was set to 20. 
The dropout layers' parameters were set to default. 
 
Benchmark of SELINA and existing tools 
For all datasets in each tissue, we iteratively took one dataset as a query and 
merged the remaining datasets as a reference dataset. The extremely large datasets 
that consume vast amounts of memory were downsampled with all cell types intact. 
The expression profiles of the reference data and query data were scaled to 10000 
and log-transformed. The querying process used common genes between query and 
reference data. 
For all benchmarks, scmap-cell, singleR, SingleCellNet, scibet and CelliD were 
trained and tested with CPU AMD EPYC 7552 2.2 GHz. SELINA, ACTINN, and 
mtSC, which are deep learning-based frameworks, were trained with GPU GTX960 
and tested with AMD EPYC 7552 2.2 GHz. All the parameters were the defaults or 
set as recommended in the corresponding documentations. 
 
Evaluation metrics 
The accuracy was defined as the ratio of corrected assigned cells over all cells. The 
MacroF1 score was calculated as listed below: 
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𝑀𝑎𝑐𝑟𝑜𝐹1 = 	
1
𝐾
<

2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛' ∗ 𝑅𝑒𝑐𝑎𝑙𝑙'
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛' + 𝑅𝑒𝑐𝑎𝑙𝑙'

,

'*+

 

K represents the number of cell types in the query dataset. 𝑅𝑒𝑐𝑎𝑙𝑙' and 𝑅𝑒𝑐𝑎𝑙𝑙' are 
the recall and precision of the k-th cell type. 
 
Data and codes availability 
For added convenience, we provide both the SELINA Python package and the pre-
trained models covering 134 datasets (Supplementary Table S1). The source code of 
SELINA is deposited on GitHub (https://github.com/wanglabtongji/SELINA) and can 
be easily installed via conda. The pretrained models are available from 
(https://github.com/wanglabtongji/SELINA_reference) 
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Figure Legends 

Figure 1 Overview of SELINA.  

SELINA consists of two sections: reference construction and cell type prediction. 
Public data were collected from various databases and uniformly processed based 
on a two-step approach containing within datasets processing and across datasets 
unification (Methods). For each tissue, a well-organized cell type classification tree 
was built, and the expression profiles were merged as the algorithm input. The 
algorithm consists of three steps: cell type balancing, training and fine-tuning. First, 
the rare cell types from the merged training data are oversampled. Second, the 
training data is pretrained with a supervised deep learning framework containing a 
gradient reversal layer. Third, the parameters of the pretrained model are adjusted 
according to the distribution of query data. Finally, the adjusted model takes query 
data as input and assigns the cells with cell types from reference data. 

 

Figure 2 Reference data and algorithm of SELINA.  

a. Datasets number of different tissues collected in SELINA reference. Different 
colors represent different sequencing platforms.  

b. Cell type classification tree from liver with two levels of annotation.  

c. Annotation algorithm of SELINA. First, the rare cell types are oversampled with 
SMOTE. The green dots are cells from the original minority cell types, and the 
orange dots are the synthetic cells. The balanced data are fed into the pretraining 
framework, which is trained using MADA. Then the pretrained model is fine-tuned 
using an autoencoder. The feature extractor and cell type discriminator are extracted 
to construct the encoder, and the decoder is randomly initialized with the structure 
symmetrical to that of the encoder. The decoder is trained with the encoder fixed; 
similarly, the encoder is trained with the decoder fixed. Finally, the decoder is 
removed, and the encoder is used to classify query cells. 

 

Figure 3 Intrinsic features of SELINA.  

a. The prediction result of rare cell types in query data with and without SMOTE 
synthesizing new cells in reference data. The height of the bars and linkage lines 
represents the cell number. The bars on the left are the original labels provided by 
the corresponding paper, and the bars on the right represent the prediction result of 
SELINA.  

b. The F1 scores calculated for rare cell types with SMOTE and without SMOTE 
(Base).  

c. Low-dimensional representation of the reference data from liver before (up) and 
after (bottom) feature extractor transformation.  
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d. Low-dimensional representation of the reference data from liver after cell type 
classifier transformation and PCA transformation combined with harmony batch 
removal.  

e. Low-dimensional representation of the query data and reference data before and 
after fine-tuning.  

f. Mean MacroF1 (3 repeats) of different strategies. Base represents the situation in 
which the data is not oversampled and the pre-trained model is used without fine-
tuning. SMOTE represents the results when SMOTE is additionally implemented to 
oversample rare cell types. SMOTE+Autoencoder shows the results when SMOTE 
and autoencoder are both implemented.  

g. Performance test of multiple datasets and a single dataset used as reference data 
in brain. 

 

Figure 4 Performance evaluation of SELINA and existing annotation tools.  

a. The normalized accuracy for 17 tested tissues. The highest value in each tissue is 
regarded as 1, and other values are scaled according to the ratio to the highest 
value. On the top shows the average of all the tissues.  

b. The normalized MacroF1 for 17 tested tissues. Scales in the same way to the 
accuracy.  

c. Mean training time (3 repeats) for increasing training cell numbers.  

d. Mean testing time (3 repeats) for increasing testing cell numbers. 
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Supplementary information 

Supplementary Figure 1 Pipeline for data processing and cell type curation.  
a. The processing procedure for the individual data. First the low quality cells are 
filtered and the dimension of the expression profiles from the remaining cells are 
reduced with PCA. The batch effect across different samples or patients within a 
dataset is removed. Then the cells are clustered and assigned with cell types based 
on either the original annotation or the marker genes papers provided.  
b. Annotation harmonization across datasets in each tissue. Here we take the 
endothelial cells as the example. Cells belonging to endothelial lineage are extracted. 
Then PCA analysis, batch removal and re-clustering are applied. Based on the 
marker genes papers provided, the endothelial cells are re-annotated into its sub-
lineage cells. Cells without expression of any known marker genes are assigned with 
major lineage label attached with the suffix Subset.  
 
Supplementary Figure 2 Data summary of the reference data atlas.  
Cell number (a) and cell type number (b) for each tissue. 
 
Supplementary Figure 3 Validation of the strategies used in SELINA.  
a-b. Low-dimensional representation of the reference data from liver after feature 
extractor transformation (a) and cell type classifier transformation (b).  
c. Mean accuracy (3 repeats) of different strategies. Base represents the situation in 
which the data is not oversampled and the pre-trained model is used without fine-
tuning. SMOTE represents the results when SMOTE is additionally implemented to 
oversample rare cell types. SMOTE+Autoencoder shows the results when SMOTE 
and autoencoder are both implemented. 
d. Performance test of multiple datasets and a single dataset used as reference data 
in lung.  
 
Supplementary Figure 4 Performance evaluation of SELINA and existing 
annotation tools.  
a-e. Performance of tested tools on tissues with a large number of datasets.  
f. Benchmark for the time consumption using CPU and GPU in fine-tuning step. Each 
point represents the mean value of three replicates. 
 
Supplementary Table 1 Datasets collected in the SELINA reference atlas 
Supplementary Table 2 Datasets used in the benchmark of SELINA and 
existing annotation tools 
Supplementary Table 3 Marker genes from the original papers  
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