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Abstract: 

Amyloid-β plaques and neurofibrillary tau tangles are the neuropathologic hallmarks of 

Alzheimer’s disease (AD), but the spatiotemporal cellular responses and molecular mechanisms 

underlying AD pathophysiology remain poorly understood. Here we introduce STARmap PLUS 

to simultaneously map single-cell transcriptional states and disease marker proteins in brain 

tissues of AD mouse models at subcellular resolution (200 nm). This high-resolution spatial 

transcriptomics map revealed a core-shell structure where disease-associated microglia (DAM) 

closely contact amyloid-β plaques, whereas disease-associated astrocytes (DAA) and 

oligodendrocyte precursor cells (OPC) are enriched in the outer shells surrounding the plaque-

DAM complex. Hyperphosphorylated tau emerged mainly in excitatory neurons in the CA1 region 

accompanied by the infiltration of oligodendrocyte subtypes into the axon bundles of hippocampal 

alveus. The integrative STARmap PLUS method bridges single-cell gene expression profiles with 

tissue histopathology at subcellular resolution, providing an unprecedented roadmap to pinpoint 

the molecular and cellular mechanisms of AD pathology and neurodegeneration. 

Introduction 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common 

cause of dementia in the elderly1. Widespread deposition of extracellular amyloid-β (Aβ) plaques 

and intracellular neurofibrillary tangles (hyperphosphorylated tau deposits), especially in the 

neocortex and hippocampus, are the neuropathologic hallmarks of AD1–4. In addition, AD 

pathology features reactive changes of microglia and astrocytes and white matter abnormalities5–

7. A key question in AD research is how the histopathological hallmarks are correlated with 

molecular disturbance that drives neurodegeneration across different cell populations. 

Conventional experimental approaches are disadvantageous for uncovering the molecular and 

cellular complexity of AD: Bulk-tissue analyses mask the heterogeneity of cell populations in the 
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brain; standard imaging methods visualize only a few genes/proteins and access limited cell types 

and brain regions. The recent application of single-cell RNA sequencing (scRNA-seq) to AD brain 

tissue has been transformative, revealing substantial and heterogeneous changes of gene 

expression in major brain cell types in patients and mouse models8–13. A sub-population of 

microglia with a distinctive transcriptomic state (termed disease-associated microglia or DAM) 

was identified by bulk and scRNA-seq studies of mouse AD models and other neurodegenerative 

disorders10,14–19. Besides DAM microglia, disease-associated astrocytes (DAA) with characteristic 

gene signatures emerge in AD, suggesting a major transcriptional response in AD by multiple cell 

types9,20–25.   

However, there are major limitations of scRNA-seq methods: they cannot preserve the spatial 

pattern of single cells (or their relationships to localized tissue pathology); and the isolation of 

single cells or single nuclei from the brain tissue can introduce significant bias in cellular 

representation and artifactual changes in gene expression26,27. Therefore, a fundamentally 

different technology platform capable of integrating spatially resolved single-cell transcriptomics 

with histology and immunostaining in intact tissue is needed to fully understand the scope and 

heterogeneity of diverse cellular responses to amyloid plaque, tau aggregation, cell death, and 

synapse loss, and to investigate the spatial relationships between the above localized pathologies 

and cellular responses. Successful development and implementation of this technology would be 

highly informative for AD research. 

Spatially resolved transcriptomic technologies are capable of mapping single-cell transcriptomic 

profiles within tissue architecture28–32, but many existing ones are incompatible with protein 

detection in the same tissue sections or limited by the spatial resolution and/or gene coverage. 

For example, a recent study uncovered amyloid plaque-induced genes (PIG) using Spatial 

Transcriptomics with fluorescent staining of adjacent brain sections to correlate the positions of 
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plaques with local gene expression33. However, the resolution was limited to 100 µm and only a 

small set of genes were verified at cellular resolution. 

We previously developed an image-based in situ RNA sequencing method called STARmap 

(spatially-resolved transcript amplicon readout mapping) for single-cell transcriptional state 

profiling in three-dimensional (3D) intact brain tissues34,35. Here we introduce STARmap with 

protein localization and unlimited sequencing (STARmap PLUS), enabling simultaneous high-

resolution spatial transcriptomics concomitantly with specific protein localization in the same 

tissue section. We employed STARmap PLUS to draw a comprehensive transcriptomic atlas of 

AD at 200 nm resolution across all brain cell types during the development of amyloid plaque and 

tau pathology (Fig. 1a). In this study, we applied STARmap PLUS to TauPS2APP triple transgenic 

mice, an established mouse AD model that exhibits both amyloid plaque and tau pathologies. 

TauPS2APP mice express mutant forms of hPresenilin 2 (PS2), hAPP and hTau and show age-

related brain amyloid deposition, tauopathy, gliosis, neurodegeneration and cognitive deficits34,35. 

By mapping a targeted list of 2,766 genes, we created a spatial cell atlas of 8- and 13-month old 

TauPS2APP mice in the context of extracellular Aβ plaques and intracellular hyperphosphorylated 

tau accumulation at subcellular resolution. Single-cell transcriptomic analysis identified disease-

associated gene pathways across diverse cell types in the cortical and hippocampal regions of 

the TauPS2APP model in comparison with control samples. Integrating the spatial maps of 

diverse cell types and states at different disease stages, we propose a comprehensive 

spatiotemporal model of AD disease progression. These studies provide important tools and 

resources for mechanistic understanding of AD and other neurodegenerative diseases at cellular 

and molecular levels. 

Results 

Method development of STARmap PLUS 
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The original STARmap method is incompatible with histological staining (immuno- or chemical 

staining) and limited to detecting 1,024 genes32. To overcome such limitations, in STARmap 

PLUS, we developed the experimental protocol to incorporate antibody staining (in this study, 

AT8 antibody, detecting hyperphosphorylated tau) and dye staining (X-34, detecting Aβ plaque) 

into the library preparation and in situ sequencing steps (Fig. 1b, Extended Data Fig. 1a-b). In 

brief, STARmap PLUS entails the following steps: 1) mRNAs within fixed brain sections are 

detected by a pair of SNAIL (specific amplification of nucleic acids via intramolecular ligation) 

probes (Fig.1b), and enzymatically amplified as cDNA amplicons; 2) specific proteins of interest 

are labeled with primary antibody; 3) the cDNA amplicons, primary antibodies, and endogenous 

proteins (e.g., plaques and tau) are chemically modified and copolymerized in a hydrogel matrix; 

4) each cDNA amplicon contains a gene-unique identifier (barcode) that is read-out through in 

situ sequencing with error-reduction by dynamic annealing and ligation (SEDAL); 5) fluorescent 

secondary antibody and small-molecule dye X-34 are then applied to visualize specific proteins 

and their localization. Besides protein labeling capability, we expanded the gene-coding barcode 

in the DNA probes from 5 to 10 nucleotides (resulting in 106 coding capacity for STARmap PLUS) 

that is sufficient to encode more than 20,000 genes (Fig. 1b). 

We applied STARmap PLUS to investigate how AD-related pathology, including amyloid 

deposition and hyperphosphorylated tau, influences brain cell states at the transcriptomic level at 

single-cell resolution in intact brain tissue in which spatial relationships between protein pathology, 

cell location and mRNA changes are maintained and readily measured. A curated list of 2,766 

genes were extracted from previous bulk and single-cell RNA-seq studies and diverse AD-related 

databases (Supplementary Table 1)8,9,12,13,36–41. We performed 8 rounds of in situ sequencing to 

map RNAs and 1 round of post-sequencing imaging to locate Aβ plaques and 

hyperphosphorylated tau (p-Tau) in coronal sections of the brains from TauPS2APP mice and 

control mice (Fig. 1c and Extended Data Fig. 1c).  
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Transgenic TauPS2APP mice develop progressive amyloid plaques and tau pathology starting at 

4.5 months of age, growing exponentially from 6 to 8 months of age, and rising steadily from 9 

months of age. Prominent neurodegeneration, measured by disintegrative staining or volumetric 

MRI, becomes apparent by 9 months34,35. Thus, brain sections were collected and analyzed at 8 

months (when tau and Aβ pathology have set and are expanding) and 13 months (a more 

advanced disease stage with severe pathology and elevated neuroinflammatory activity)35. We 

focused on the cortex and hippocampus, two of the most susceptible regions in AD. STARmap 

PLUS revealed that Aβ plaques were prominent in both cortex and hippocampus whereas AT8 p-

Tau immunoreactivity was strongest in the CA1 region of the hippocampus (Fig. 1c, Extended 

Data Fig. 1c), which is consistent with previous reports34,35. A total of 19,932 cells from two 

TauPS2APP mice and 17,135 cells from two control mice (non-transgenic littermates) were 

imaged at 200 nm resolution (Fig. 1a). After projecting 3D RNA reads to two-dimensional planes, 

segmenting cells, and filtering single-cell transcriptional profiles by quality control (see Methods), 

the remaining 33,106 cells pooled from all 4 samples were subjected to downstream analysis 

(Extended Data Fig. 1d). 

Hierarchical cell classification and spatial analysis 

To identify cell types from the STARmap PLUS data, we adopted a hierarchical clustering strategy, 

where top-level clustering served to classify cells into common cell types shared by all samples, 

and sub-level clustering served to further identify disease-associated subtypes. During top-level 

clustering, the Leiden algorithm was applied to the Uniform Manifold Approximation and 

Projection (UMAP) representation of all transcriptomic profiles42,43. Through Leiden clustering, we 

identified 13 major clusters and annotated the cell types according to their spatial distribution and 

previously reported gene markers38,39,41(Fig. 2a and Extended Data Fig. 2a). For example, 

excitatory neurons were annotated by their high expression levels of genes related to ion channels 

and synaptic signaling such as Vsnl1, Snap25, and Dnm1. Inhibitory neurons were separated by 
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their enrichment of gamma-aminobutyric acid (GABA) transporters Slc6a1. Other non-neuronal 

cell type specific markers such as Aldoc for astrocyte, Bsg for endothelial cell, Ctss for microglia, 

Plp1 for oligodendrocyte were used to annotate corresponding clusters (Extended Data Fig. 2a). 

The UMAP plots of TauPS2APP samples showed differential distribution of cells within the 

astrocyte, microglia, oligodendrocyte and dentate gyrus (DG) clusters in comparison with controls, 

suggesting possible disease-associated cell subtypes (Fig. 2a). Thus, we further investigated the 

transcriptomic heterogeneity within each major cell type, which further identified 27 sub-level 

clusters based on their transcriptomic signatures (Fig. 2b). 

Because spatial information of RNAs was preserved at subcellular resolution, we were able to 

generate a high-resolution spatial cell atlas of the cortex and hippocampus in conjunction with 

precise localization of AD-related histopathology (Fig. 2c and Extended Data Fig. 2b,c). All spatial 

cell atlases of TauPS2APP and control non-transgenic mice showed similar anatomic structure 

with major cell-type distribution in cortical and hippocampal regions, confirming the robustness, 

reproducibility and reliability of top-level clustering results. In TauPS2APP mice, the percentage 

of plaque area in the whole tissue (cortex and hippocampus) rose from 0.17% (73 Aβ plaques 

identified with an average size of 89 ± 44.9 µm2) in 8-month mouse brains to 0.54% (151 plaques 

identified with an average size of 157 ± 110.7 µm2) in 13-month mouse brains. Meanwhile, no 

plaques were visible in non-transgenic controls (Extended Data Fig. 1c). p-Tau signal was 

observed mostly in the hippocampal region of the TauPS2APP mice at 8 months and became 

more pronounced at 13 months in both hippocampal and cortical regions (Fig. 2c and Extended 

Data Fig. 2c). 

How are cell distributions and cell states affected by the nearby presence of amyloid plaque and 

tauopathy? First, given the different cell-type compositions in different parts of the brain, we 

analyzed the cell distributions and states in the cortex and hippocampus separately. Next, to 

quantify cell-type distribution in the spatial relationship to Aβ plaque, we calculated the density of 
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different cell types at the first five 10 µm intervals surrounding plaques (Fig. 2d, Methods). Among 

the 13 major cell types, microglia, astrocytes, oligodendrocytes, and oligodendrocyte precursor 

cells (OPC) showed relative enrichment in the vicinity of plaques in comparison with the overall 

density of that cell type in the cortex and hippocampus in TauPS2APP mice (Fig. 2e and Extended 

Data Fig. 2d). The most striking change was detected in microglia: they were the most prevalent 

cell type in the 10 µm ring around the plaque, where they were markedly concentrated compared 

with the normal density in that brain region and often seemed to be in direct contact with the 

plaques. Astrocytes, oligodendrocytes and OPC showed modest but significant enrichment at the 

10-30 µm distance compared to their overall average density but were depleted in the immediate 

neighborhood of plaques (<10 µm), perhaps crowded out by microglia. Both excitatory and 

inhibitory neurons were also depleted within 10 µm around Aβ plaques in comparison with the 

overall density of each neuron type. 

In contrast to the localized macroaggregates of Aβ plaques, p-Tau (AT8) immunoreactivity was 

dispersed throughout neuronal cell bodies and axon bundles. To investigate the spatial correlation 

of p-Tau intensity with different cell types, we divided the spatial atlas into blocks of 20 µm-spaced 

grids (Fig. 2f) and analyzed the covariation of cell-type composition versus p-Tau density. 

Oligodendrocytes were found enriched in the blocks with high p-Tau intensity regardless of the 

presence or absence of Aβ plaques (Fig. 2g). 

The top-level cell clustering and spatial analyses revealed that microglia, astrocytes, OPCs, 

oligodendrocytes, and neuronal cells showed the biggest changes in their transcriptional profiles, 

spatial distributions, or both. These cell types were thus selected for in-depth sub-clustering 

analyses to pinpoint disease-associated subtypes, cell states, and gene pathways in the following 

sections (Figs. 2b and 3-6). 

Disease-associated microglia directly contact Aβ plaques from early disease stage 
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We first investigated the heterogeneity within the microglia population by sub-clustering analysis 

of transcriptomic profiles. Three subpopulations were identified and categorized as Micro1 (45%), 

Micro2 (24%), and Micro3 (31%) (Fig. 3a). Micro1 and Micro2 subtypes were present in both 

TauPS2APP and control samples, while the Micro3 subpopulation cells were almost absent in 

controls and expanded greatly from 8 months to 13 months in the TauPS2APP brains (Fig. 3a). 

Micro1 and Micro2 both express the marker P2ry12 and may correspond to subtypes of 

homeostatic microglia10: Micro1 expresses high levels of P2ry12 whereas Micro2 shows 

downregulation of P2ry12 and upregulation of Tgfbr1 and Gpr34. The Micro3 subtype expressed 

high levels of Cst7, Ctsb, Trem2, and Apoe, which are characteristic of DAM and associated with 

neurodegeneration10 (Fig. 3b). Given their strong association with plaques in the TauPS2APP 

disease model and expression of known DAM gene markers, we believe that Micro3 microglia 

defined in STARmap PLUS are equivalent to DAM microglia previously described in conventional 

single cell RNA-seq studies10,16. 

It is noteworthy that clustering analysis effectively identifies distinct cell subtypes but does not 

capture well multi-step cell-state transitions. To uncover cell-state transitions during disease 

progression and determine the relationship among different subtypes, we deployed Monocle 

pseudotime analysis44, a widely used computational tool for reconstructing cell differentiation 

trajectory, as a complement to subtype analysis in the following sections. We aimed to reconstruct 

the presumptive path along which microglia alter their state by pseudotime trajectory analysis of 

the single cell transcriptomic profiles (Fig. 3c). By this computational approach, the microglia 

population showed a linear pseudotime trajectory that aligned well with the real disease 

progression timeline: microglia in control mice were enriched at the starting point of the trajectory 

while those in TauPS2APP mice shifted along the trajectory from 8 months to 13 months (Fig. 3c). 

Along the trajectory, Micro1 and Micro3 cells are distinctively distributed at the early and late 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2022. ; https://doi.org/10.1101/2022.01.14.476072doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.14.476072
http://creativecommons.org/licenses/by-nc/4.0/


 10 

pseudotime values, respectively, whereas Micro2 cells are more intermediate in pseudotime 

position and blended into Micro1 and Micro3 populations (Fig. 3d). 

Do the three microglia subtypes Micro1-3 show different spatial patterns? In the cortex, all three 

subtypes showed increased cell density at both ages of TauPS2APP mice, while in the 

hippocampus, the density of Micro2 and Micro3 increased at 13 months (Fig. 3e-g). With the cell-

type composition analysis around Aβ plaques, we found: (i) Micro3 is the most predominant cell 

type (>70%) within the 10 µm ring around plaque (Fig. 3h and Extended Data Fig. 3b); (ii) Micro2 

cells were enriched within 10 µm distance around the plaques in both the cortex and hippocampus, 

while Micro1 showed enrichment close to plaque only in the cortex (Fig. 3h, Extended Data Fig. 

3b and Supplementary Table 2); (iii) from 8 months to 13 months, the density of Micro3 drastically 

increased within the 10 µm ring near plaque, whereas the local cell density of Micro1 and Micro2 

near plaque (<10 µm) remained the same or decreased (Fig. 3h and Extended Data Fig. 3b, 

Supplementary Table 2); (iv) the pseudotime distribution of microglia around plaque showed that 

the pseudotime values of microglia cells within 10 µm were higher than those of cells far away 

from plaques and these pseudotime values increased from 8 months to 13 months (Extended 

Data Fig. 3c,d). Together, the spatial analysis of microglia cell subtypes and pseudotime 

distribution suggest that the extent of microglia activation strongly correlates with their close 

association with plaques (<10 µm), suggesting a local transition from Micro1 and Micro2 to Micro3 

near plaque along disease progression. 

To get a more comprehensive understanding of microglia response to AD pathology at the 

molecular level, we analyzed differential expressed genes (DEGs) of microglia along disease 

progression and in relation to plaques (Fig. 3i,j and Extended Data Fig. 3e,f, Supplementary Table 

3). Most of the up-regulated microglial DEGs identified in the TauPS2APP mouse brains overlap 

with Micro3 (DAM) gene markers and with up-regulated “spatial DEGs” near plaques; these genes 

are involved in biological processes such as regulation of immune response (i.e. Apoe, C1qa, 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2022. ; https://doi.org/10.1101/2022.01.14.476072doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.14.476072
http://creativecommons.org/licenses/by-nc/4.0/


 11 

Cd74), regulation of cell activation (i.e, Cd9, Cd83, Cst7), cellular protein catabolic process (i.e. 

Ctss, Ctsb, Sumo2, Cul1) (Extended Data Fig. 3e,f). Notably, relating to a recent study of human 

AD patient samples45, our study revealed that a few upregulated genes (i.e. Ccl3, Trem2, Csf1r) 

in the DAM microglia of the TauPS2APP model may be mediated by the activation of ERK1/ERK2 

cascade (Extended Data Fig. 3f). 

Disease-associated astrocytes emerge near the plaque-DAM complex at a later stage 

Astrocyte was another non-neuronal cell type that showed a significant difference in TauPS2APP 

versus control. Sub-clustering analysis of the astrocytes identified three transcriptionally distinct 

subpopulations Astro1 (37%), Astro2 (44%), and Astro3 (19%) (Fig. 4a). Astro3 cells were rarely 

found in control mice but the Astro3 subpopulation greatly expanded from 8 months to 13 months 

in TauPS2APP mice (Fig. 4a). Transcriptomic changes in Astro3 astrocytes closely resembled 

those of disease-associated astrocytes (DAA) previously described in AD models, characterized 

by upregulation of genes such as Gfap, Vim, Apoe (Fig. 4b)9. Based on this transcriptomic 

similarity and their association with TauPS2APP mice we annotated the Astro3 subtype as DAA. 

Astro1 and Astro2 are present in both control and TauPS2APP mice; their gene markers 

correspond with previously reported low- and intermediate-Gfap cell populations9. In comparison 

with controls, the overall cell density of Astro1 declined in the TauPS2APP mice whereas the 

density of Astro2 increased in the cortex. 

Despite the apparent linear gradient of many ‘marker’ genes across Astro1-3 subtypes, we noted 

a bifurcation path based on pseudotime trajectory analysis of the astrocyte population (Fig. 4c). 

By visualizing the subtype annotation along the pseudotime trajectory, we identified that the 

longest path (lower path) matches with the gradient from Astro1 (the starting point) and Astro 2 

(the ending point) shared by TauPS2APP and control samples. In contrast, the short branch from 

the bifurcation point (labeled as disease-associated trajectory in Fig. 4d) is enriched with Astro3 
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(DAA) from the 13-month TauPS2APP sample and represented the transition from non-diseased 

states (mostly Astro2) to Astro3. 

The spatial cell map of astrocyte subtypes showed that Astro1 cells are preferentially located near 

the cell bodies of cortical and hippocampal neurons, whereas Astro2 cells are more concentrated 

in corpus callosum, hippocampal neuropil layer, and stratum lacunosum-moleculare (Fig. 4e-g 

and Extended Data Fig. 4a). Cell-type analysis in relation to tissue pathology revealed that while 

DAMs closely surround plaque (<10 µm), Astro3 (DAA) cells were enriched around plaque at an 

intermediate distance (10-20 µm in the cortex, 10-30 µm in the hippocampus) in TauPS2APP 

mice at 13 months (2-3 fold increase in Astro3 density in this intermediate shell versus >40 µm 

from plaques) (Fig. 4h, Supplementary Table 2). Astro2 was also enriched near the plaques (10-

20 µm) as the major astrocyte subtype at 8 months, however, they were outnumbered by Astro3 

at 13 months (Fig. 4h, Extended Data Fig. 4b and Supplementary Table 2). The observed shift of 

the astrocyte population around plaque from Astro2 to Astro3 from 8 to 13 months, in combination 

with the disease-associated pseudotime trajectory from Astro2 to Astro3 (Fig. 4d), suggests that 

there might be a conversion of Astro2 to Astro3 (DAA) near plaques during disease progression. 

Spatial analysis of the astrocyte pseudotime distributions near plaques also shows a shift from a 

mixture of low-middle values to a more homogeneous astrocyte population with high pseudotime 

values from 8 to 13 months, especially in the 10-20 µm shell (Extended Data Fig. 4c,d). 

Most of the DEGs from the astrocytes of TauPS2APP versus control samples were related to glial 

cell differentiation and gliogenesis (or astrogliosis, i.e. Gfap, Vim, Clu, Stat3) (Extended Data Fig. 

4e,f and Supplementary Table 3). The gene expression profiles of top DEGs identified on the 

pseudotime embedding showed that the expression pattern of Vim best correlates with the DAA 

population, whereas the molecular gradients of Gfap resembled the disease-associated trajectory 

from Astro 2 to Astro 3 (Fig. 4i). Spatial analysis of gene expression around plaques in the 13-

month TauPS2APP mice further support the spatial enrichment of DAA near plaques (Fig. 4j). 
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OPCs are enriched in the intermediate vicinity of Aβ plaques and oligodendrocyte 

subtypes infiltrate the hippocampal alveus colocalizing with p-Tau. 

Sub-clustering analysis identified four subtypes within the oligodendrocyte lineage (Fig. 5a,b): 

Oligo1 (78%), Oligo2 (3%), Oligo3 (9%), and OPC (10%). The oligodendrocyte gene marker Plp1 

marks all three oligodendrocyte subtypes (Oligo1-3) whereas differential expression of other 

genes such as Klk6 and Cldn11 mark Oligo2 and Oligo3 populations, respectively (Fig. 5b). All 

four subtypes are present in TauPS2APP and control brains, though the abundance of Oligo2 

and Oligo3 oligodendrocytes increased by a factor of 2-3 (Supplementary Table 2) in response to 

amyloid and tau pathology at 13 months. 

The pseudotime trajectory analysis of the combined population of OPC and oligodendrocyte cells 

recapitulated the known differentiation path from OPC to mature oligodendrocytes (Fig. 5c, lower 

trajectory). Similar to astrocytes, a disease-associated trajectory diverged from the main path 

from OPC to oligodendrocytes (Fig. 5c, upper branch). Oligodendrocytes from 13-month 

TauPS2APP brains were enriched around the disease-associated trajectory branch when 

compared with 8-month TauPS2APP and controls (Fig. 5c). The disease-associated trajectory 

contained all three Oligo1-3 subtypes but with an enrichment of Oligo3 cells (Fig. 5d). 

Around amyloid plaques in TauPS2APP mice, OPCs were enriched in the 10-30 µm ring at both 

8 and 13 months, accumulating to a 40%~140% higher density than its overall density (Fig. 5e-h 

and Extended Data Fig. 5a,b and Supplementary Table 2). Oligo1 is the dominant (>70%) 

oligodendrocyte subtype around plaques among all oligodendrocytes. At 8 months, Oligo1-3 did 

not show a statistically significant enrichment around amyloid plaques (Extended Data Fig. 5a,b 

and Supplementary Table 2).  At 13 months, the density of Oligo1 increased by 58%-80% at the 

10-30 µm distance from the plaques in TauPS2APP mice in comparison with the overall density 

(Fig. 5h); the average densities of Oligo2 and Oligo3 also increased by 1.5-3 fold at the 10-30 µm 
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distance from plaques but they were only sparsely present near (10-30µm) 13-14% of all plaques. 

Spatial analysis of the pseudotime values of oligodendrocytes lineages (mostly Oligo1) showed 

a global upregulation from 8 months to 13 months regardless of their distance to plaques 

(Extended Data Fig. 5c-e), indicating that the shift of cell states in oligodendrocytes is not spatially 

confined near plaques. 

Given that the density of oligodendrocytes is positively correlated with the density of p-Tau (Fig. 

2g), we sought to pinpoint which oligodendrocyte subtype is spatially associated with tauopathy. 

Using the aforementioned grid-based spatial correlation analysis, we found that in the 

TauPS2APP mice, the cell density of Oligo1 and Oligo3 increased by 1.5-3 fold in regions with 

higher p-Tau signals regardless of Aβ pathology (Fig. 5i and Extended Data Fig. 5f). In contrast, 

the cell density of OPC and Oligo2 increased by 30% and 140% respectively only in the presence 

of plaques, suggesting that these oligodendrocyte lineage populations respond to amyloid rather 

than Tau pathology. We observed that p-Tau signals were concentrated in the alveus of the 

hippocampus where axon bundles of hippocampal neurons course (alveus, Extended Data Fig. 

5g). Compared with 13-month control samples, the Oligo1 and Oligo3 densities increased 

markedly (2-4-fold) in the alveus region of 13-month TauPS2APP mice (Fig. 5j). In total, the spatial 

analysis of cells of the oligodendrocyte lineage in relation to p-Tau revealed a strong association 

between tauopathy and the accumulation of Oligo1 and Oligo3 subtypes in the hippocampus 

alveus. 

Through analyzing the DEGs in oligodendrocytes along disease-associated pseudotime trajectory 

and around plaques, as well as DEGs from the TauPS2APP mice versus control mice, we 

identified and verified a group of genes (such as Klk6, C4b, Cd9, Serpina3n) that were strongly 

upregulated in 13-month old TauPS2APP mice compared to the same age control mice 

(Supplementary Table 3). Interestingly, oligodendrocytes near plaques exhibited increased 

expression of these genes, suggesting subpopulation(s) of oligodendrocytes (with elevated 
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expression of C4b, Serpina3n, Cd9) might be responding to plaques or interacting with other cells 

or cellular compartments (microglia, astrocytes and/or dystrophic neurites) that are affected by 

amyloid pathology (Fig. 5l). In contrast, the fold change of DEGs between 8-month old 

TauPS2APP and control mice was less significant (Supplementary Table 3). GO term analysis 

indicated involvement of oligodendrocyte DEGs in cytokine production (i.e. Ndrg2, Serpinb1b) 

and regulation of synaptic plasticity (i.e. Jph4, App, Nrgn) during disease progression. 

Susceptibility of different neuronal types to Aβ plaques and p-Tau. 

Besides cellular changes in glial cells, the transcriptomic responses in neurons are critical for 

understanding the mechanisms of neurodegeneration. Sub-clustering analysis of the neurons in 

cortex and hippocampus identified eight excitatory neuron subtypes and six inhibitory neuron 

subtypes. As visualized in the spatial cell map of neurons (Fig. 6a,b and Extended Data Fig. 6a-

d), the four subtypes of cortical excitatory neurons correspond to different cortical layers (CTX-

Ex1 corresponds to layers 2/3, CTX-Ex2/3 corresponds to layers 4/5, CTX-Ex4 corresponds to 

layer 6.); the excitatory neuronal types in the hippocampal region correspond to the principal cells 

of DG, CA1, CA2 and CA3. Among the four subtypes of inhibitory neurons, Pvalb and Sst neurons 

were present in higher density in cortex while Cnr1 and Lamp5 neurons were more abundant in 

the hippocampus (Extended Data Fig. 6d). 

We investigated neuron subtype compositions and their transcriptomic profiles in relation to Aβ 

plaques. In the cortex, there was a paucity (strong relative reduction) of all types of neurons 

adjacent to plaques (<10 µm, Fig. 6c,d and Extended Data Fig. 6e,f), anti-correlating with the 

large increase in density of microglia close to plaque. In the hippocampus the impact of plaque 

on the density of neuron subtypes was difficult to interpret because of the anatomic organization 

of the hippocampus and because amyloid plaques were concentrated in the neuropil, relatively 
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far from the cell body layers, and mostly in the molecular layer of dentate gyrus (Fig. 6c and 

Extended Data Fig. 6e). 

Pseudotime trajectory analysis of DG neuron transcriptomes showed a bifurcate trajectory (Fig. 

6e,f): At 8 months, when there were very few plaques near DG (1 plaque within the 50 µm distance 

to DG), the pseudotime distribution of DG cells in TauPSAPP and control mice were largely 

indistinguishable (Fig. 6e,g). At 13 months, accompanied by the increased number of plaques (13 

plaques) in DG, the pseudotime trajectory diverged into two branches corresponding to the DG 

populations in TauPS2APP (lower left branch) and control mice (lower right branch) (Fig. 6e). 

DEG analyses on pseudotime trajectory embedding further revealed that Ccnb2, Dapk1, and Tnik 

were upregulated in the TauPS2APP DG neurons versus control, while Ngrn was downregulated 

(Fig. 6f, Supplementary Table 3). Dapk1 is involved in neuronal death regulation whereas Tnik 

has been implicated in dentate gyrus neurogenesis46, so these results may indicate altered 

neurogenesis in DG in TauPS2APP mice, which is related to a recent report showing that the 

adult hippocampal neurogenesis activity in DG sharply declines in human patients of AD47. 

To investigate the neuronal transcriptomic alterations induced by tauopathy, we first quantified 

the ratio of p-Tau positive pixels to the total pixel area of neuronal cell bodies and defined p-Tau 

positive neurons as those in which this ratio is greater than 7% (see Methods). In TauPS2APP 

mice, there were 4 times more p-Tau positive neurons at 13 months than 8 months. At 8 months 

the majority of p-Tau positive neurons were CTX-Ex2 excitatory neurons, whereas at 13 months 

the majority of p-Tau positive neurons were the CA1 excitatory neurons. Inhibitory neurons 

account for <20% p-Tau positive neurons: most of them were Pvalb neurons at 8 months whereas 

at 13 months most of them came from the Sst population (Fig. 6i). We also quantified the p-Tau 

signal around the plaques and found that the p-Tau signal was enriched within 10 µm distance 

near plaques (Fig. 6h). Considering neuronal cell bodies were relatively depleted within the 10 

µm range, the observed p-Tau signals likely correspond to dystrophic (injured) neurites35. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2022. ; https://doi.org/10.1101/2022.01.14.476072doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.14.476072
http://creativecommons.org/licenses/by-nc/4.0/


 17 

We finally examined the DEGs of all neuronal types in response to Aβ plaques and p-Tau. GO 

term analysis of general neuronal DEGs (TauPS2APP versus control) revealed upregulation of 

protein kinase activity, downregulation of protein transport and section, and downregulation of 

mRNA processing (Extended Data Fig. 6g). The DEGs of the dentate gyrus region were related 

to downregulation of brain development (Extended Data Fig. 6h). SynGO analysis36 of DEGs in 

p-Tau positive CA1 neurons at 13 months are clustered in synaptic vesicle cycle, synaptic vesicle 

endocytosis and postsynapse organization (Fig. 6j). Neuron-type resolved DEG analysis 

(Supplementary Table 3) revealed that Ccnb2 (G2/mitotic-specific cyclin-B2) was identified 

among top upregulated DEGs from all neuronal types in TauPS2APP models, as well as genes 

involved in  cell death (i.e. Ddit3, Dapk), suggesting a reactivation of the cell cycle and supporting 

the notion that neuronal reentry into the cell cycle is a mediator of neurodegeneration and cell 

death48,49. 

Integrative analysis of disease-associated cells and genes in AD pathology 

The analyses above focused on dissecting disease-associated subtypes and DEGs within major 

brain cell types. In order to synthesize a comprehensive picture of AD gene pathways from 

multiple cell types, we performed cell-type-resolved Gene Set Enrichment Analysis (GSEA)50,51 

using DEGs from four major cell types (microglia, astrocytes, oligodendrocytes, and neurons) 

comparing TauPS2APP versus control. The results (Fig. 7a,b) showed that most of the 

significantly enriched terms of upregulated genes in non-neuronal cell DEGs were in the biological 

processes of inflammatory response, glial cell differentiation, gliosis, cytokine production, and 

regulation of neuronal death, while those of neurons involve synaptic signaling and protein kinase 

activity. Neurons in the TauPS2APP mice also showed significant downregulation of RNA 

processing/splicing and protein transport (Fig. 7a,b). 
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Besides the DEGs defined by comparison of TauPS2APP vs. control samples, we also identified 

plaque-associated spatial DEGs (SDEGs) by clustering genes based on their expression profiles 

as a function of distance from amyloid plaques (Fig. 7c,d). We identified six clusters of SDEGs: 

Clusters 1-3 are specifically upregulated at different distances near plaques, and can be regarded 

as plaque-induced genes (PIGs, listed in Fig. 7e,f); Cluster 4-6 are relatively downregulated near 

plaques and enriched with neuronal genes (Supplementary Table 4). We identified 57 PIGs at 8 

months and 81 PIGs in the TauPS2APP sample at 13 months (Fig. 7g). 37 out of 57 PIGs in the 

8-month TauPS2APP sample were also found in the 13-month samples (Fig. 7g). The PIGs 

enriched within 10 µm distance from plaques were mainly DAM marker genes, such as Trem2, 

Cst7, Ctsb, Apoe and Cd9 (Fig. 7e,f). The DAA marker Vim was upregulated in the regions 10 to 

20 µm away from plaques in AD 13-month samples (Fig. 7f), which is consistent with our previous 

finding that DAA enriched in the 10-20 µm ring (Fig. 4). Although SDEGs in Cluster 4-6 

(Supplementary Table 4) are down-regulated at the 0-30 µm distance from plaques and not 

defined as PIGs, they are also valuable to reveal potential disease mechanisms. For example, an 

interesting set of SDEGs was induced at 8 months with peak expression at 30-40 µm from plaque, 

including Elavl4, an RNA binding protein that is implicated in early dysregulation of splicing in 

frontotemporal dementia52. Comparing our PIGs with previously reported PIGs identified from 18-

month AppNL-G-F mice33, 22 out of 81 and 19 out of 57 PIGs in our AD 8-month and 13-month 

samples, respectively, overlapped with previously reported PIGs (Fig. 7g).  

To validate the findings from the study, we repeated the STARmap PLUS experiment on another 

set of TauPS2APP mice, this time using a focused subset of genes (64 key cell-type marker genes 

and disease-associated genes). This focused 64 gene analysis yielded cell clustering results, 

DEG data and spatial map information that was highly consistent with the major conclusions 

derived from the 2766-gene datasets (Supplementary Tables 1,2, Extended Data Fig. 7) including 

the spatial enrichment of various glial cells surrounding plaques (Extended Data Fig. 7d), the 
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infiltration of oligodendrocytes in hippocampus alveus (Extended Data Fig. 7e), as well as cell-

type and spatially resolved DEGs (Extended Data Fig. 7f-h). 

Discussion 

Here we developed STARmap PLUS for in situ detection of RNAs and proteins in the same tissue 

section at subcellular resolution. Compared to STARmap, we have substantially improved the 

number of in situ sequenced genes and enabled a simultaneous profiling of RNAs and proteins 

in intact hydrogel-tissue scaffolds. This method development enables a multimodal analysis of 

spatially expressed RNAs and proteins, bringing an opportunity to study biological systems in a 

more comprehensive manner. This method is readily applicable to a variety of samples for study 

of physiological and pathological mechanisms in healthy and diseased tissues by integrative 

mapping of single-cell transcriptomic states, tissue morphology and disease markers.  

Analysis framework  

We developed STARmap PLUS to enable high-resolution spatial transcriptomics in combination 

with microscopic protein localization. In a mouse model of AD exhibiting amyloidosis, tauopathy 

and neurodegeneration we applied this high-resolution and multimodal in situ mapping with four 

computational analysis strategies to identify disease-associated cell populations and gene 

programs: (1) hierarchical cell clustering analysis to pinpoint disease-associated cell subtypes, (2) 

pseudotime trajectory analysis to reconstruct the transitions of cell states during disease 

progression, (3) spatial analysis to recognize changes in cell types and cell states in physical 

proximity of Aβ plaques and tauopathy; (4) differential gene expression analysis in spatiotemporal 

relationship with amyloid and p-Tau and disease stage to identify disease-associated gene 

pathways. This analysis framework successfully traced how AD hallmark pathologies correlate 

with gene pathways that drive inflammation, gliosis, and neurodegeneration across different cell 

types. 
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Core-shell structures surrounding plaques and cascades of cell-state transitions 

Applying our methods to the TauPS2APP mouse AD model at two different ages, we have 

constructed a cell-type and cell-state resolved spatiotemporal map of the TauPS2APP mouse 

model (schematized in Fig. 7i). Specifically, in response to the early emergence of Aβ plaques (at 

8 months or earlier), microglia are the primary responders, closely aggregating around plaques 

(<10 µm distance away from plaques, Fig. 7i). Integrative spatial and pseudotime analysis of 

microglia subtypes suggested a cell state transition from Micro1 and Micro2 to Micro3 subtype 

(DAM) associated with microglia cells accumulating around Aβ plaques (Fig. 3 and Extended Data 

Fig. 3). The transition from Astro2 to Astro3 (DAA) in the layer (10-20 µm) next to the DAM 

microglia was seen at a later stage (13 months), which is consistent with an induction of DAA by 

DAM. Indeed, a previous study showed that reactive astrocytes with the high expression of DAA 

marker genes Gfap and Vim, were induced by activated microglia21. Like DAA, Oligo2/3 

accumulation near plaque (10-30 µm) occurred later (13 months) (Fig. 7h).  Interestingly, we 

discovered that OPCs were enriched in the regions 10-30µm away from plaques at both 8-month 

and 13-month stages, indicating potential in situ proliferation and differentiation of OPCs to 

oligodendrocytes. In contrast to glia, neuron density around plaque declined from 8 months to 13 

months (Fig. 7h,i). 

Based on the collective data, we propose a core-shell structure of glial cells surrounding Aβ 

plaques where the DAM emerge early in disease near plaques as the core, and the shell is a 

gliosis zone enriched for DAA, OPC, and oligodendrocytes that develops at a later disease stage, 

perhaps dependent on formation of the inner ring of reactive microglia. Because STARmap PLUS 

only captures snapshots from different disease stages, the dynamic cell-type and state transitions 

inferred from pseudotime trajectory reconstruction and spatial patterns need future verification by 

live-cell imaging or in vivo cell-fate tracing approaches. 
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Oligodendrocytes and tauopathy 

In the TauPS2APP model, hyperphosphorylated tau (as detected with AT8 antibody) was mainly 

found in CA1 excitatory neuronal bodies and its upper layers of axon tracts (alveus), where it is 

strongly associated with the infiltration of Oligo1 and Oligo3 subtypes regardless of the presence 

or absence of plaques (schematized in Fig. 7i). It is unclear whether the infiltration of Oligo1 and 

Oligo3 is a reactive mechanism to support tauopathy-injured axons, repair damaged myelin, or 

whether Oligo1 and Oligo3 instead exacerbate tauopathy. It is possible that Oligo1 and Oligo3 

might feature distinct responses and exert different impacts, for example, Oligo 1 being 

homeostatic and protective while Oligo 3 is detrimental in response to tau-driven changes. The 

reciprocal functional interactions between oligodendrocytes and neurons (beyond 

oligodendrocytes providing electrical insulation and metabolic support for axons) are increasingly 

appreciated and studied53. Single-cell RNAseq studies of human AD brain tissues have noted 

major transcriptomic changes in oligodendrocytes, but without spatial information in relation to 

plaque and p-Tau12. Enabled by high-resolution spatial transcriptomic analysis of 

oligodendrocytes in the TauPS2APP mice, we identified oligodendrocytes subtypes that are 

associated with tauopathy. Further pathway analysis implicated oligodendrocyte DEGs in the 

regulation of neuron death, cytokine production, synaptic plasticity, and anterograde synaptic 

signaling (Extended Data Fig. 5h), pointing to a potential link between inflammation and axonal 

tauopathy mediated by oligodendrocytes. 

Implications for neurodegeneration mechanisms in AD  

The overall density of neuronal cells in cortex declines near Aβ plaques (Fig. 6c,d), implying a 

loss of neurons due directly to Aβ toxicity or indirectly via the effects of amyloid on microglia and 

other glia surrounding the plaque. This notion is supported by the accumulation of p-Tau in 

dystrophic neurites near to plaque. We also cannot exclude that neurons are merely displaced 
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from plaque-adjacent regions by reactive glia; however, we note that the TauPS2APP mice show 

macroscopic brain volume loss by 13 months of age35. Consistent with neuronal loss around 

plaques, we note that neurons in DG, where a large amount of Aβ plaques appeared by 13 months, 

showed altered transcriptional profile in intracellular protein transport, RNA processing and cell 

cycle pathways related to cell stress and neurodegeneration as well as molecular pathways 

related to synapse structure and organization. Meanwhile, all neuronal types examined in cortex 

and hippocampus of TauPS2APP share some common DEGs (i.e. Ccnb2, Ddit3), perhaps 

suggesting a general mechanism of cell cycle reactivation in neurodegeneration. The core-shell 

glial structure around plaques implies that microglia may cause neurodegeneration in part through 

their crosstalk with astrocytes21 and oligodendrocytes. Different subtypes of the oligodendrocyte 

lineage respond differently to plaques and tauopathy, suggesting distinct modes of 

oligodendrocyte recruitments (e.g. microglia-oligodendrocyte/OPC interactions near plaques, 

neuron-oligodendrocyte interactions in tauopathy). Future studies in human patient samples and 

other AD disease models are needed to test the potential pathogenic mechanisms revealed by 

STARmap PLUS analysis of the AD brain. 
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Fig. 1 | Simultaneous mapping of cell types, single-cell transcriptional states, and tissue 

histopathology at 200-nm resolution by STARmap PLUS. 

a, Overview of STARmap PLUS, an integrative in situ method, capable of simultaneously mapping 

thousands of RNA species and protein disease markers in the same intact three-dimensional (3D) 

tissue at subcellular (200 nm) resolution. b, Schematics of STARmap PLUS. After the brain tissue 

is retrieved and fixed, the intracellular mRNAs are targeted by a pair of SNAIL (specific 

amplification of nucleic acids via intramolecular ligation), which are then enzymatically ligated and 

amplified to generate amine-modified cDNA amplicons in situ. Meanwhile, protein markers are 

labeled with primary antibodies. Next, tissues with amine-modified cDNA amplicons, proteins and 

primary antibodies are modified by acrylic acid N-hydroxysuccinimide ester (AA-NHS) and 

copolymerized with acrylamide to generate a hydrogel-tissue hybrid that fixes the locations of 

biomolecules for in situ mapping. Each cDNA amplicon contains a gene-specific identifier 

sequence (orange) that can be read out through in situ sequencing with error reduction by 

dynamic annealing and ligation (SEDAL). Lastly, fluorescent protein stainings (secondary 

antibody and small-molecule dye X-34 stainings) were applied to visualize protein signals. c, 

Representative images showing the simultaneous mapping of cell nuclei, cDNA amplicons, and 

protein signals in the brain slice from a 13-month old TauPS2APP mouse. Left: The 3D projection 

of the raw confocal fluorescence image of the CA1 region of the hippocampus. Middle: A zoom-

in view of the dashed region in the left panel, which shows the last cycle of tissue histopathology 

imaging that detects both protein and cDNA amplicon: red, immunofluorescent staining of p-Tau 

(AT8 primary antibody followed by fluorescent goat anti-mouse secondary antibody); white, X-34 

staining of Amyloid β plaque; green, fluorescent DNA probe staining of all cDNA amplicons; and 

blue, Propidium Iodide (PI) staining of cell nuclei. Right: 8 cycles of in situ RNA sequencing of the 

view in the middle panel; each color represents a fluorescent channel in one round of in situ 

sequencing. 
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Fig. 2 | Top-level cell-type classification and spatial analysis in the brain slices of 

TauPS2AAPP and control mice. 

a, Uniform Manifold Approximation and Projection (UMAP) plot visualization of transcriptional 

profiles of 33,106 cells collected from coronal brain sections of TauPS2APP and control mice at 

8 and 13 months. 13 major cell types were identified using the Leiden clustering. Red dashed 

boxes highlight the clusters of cells that show a significant difference between TauPS2APP and 

control samples in the UMAPs. b, Hierarchical taxonomy of cell types showing the 13 top-level 

clusters: Cortex excitatory neuron (CTX-Ex, 8,687 cells), Inhibitory neuron (Inh, 2,005 cells), CA1 

excitatory neuron (CA1-Ex, 2,754 cells), CA2 excitatory neuron (CA2-Ex, 436 cells), CA3 

excitatory neuron (CA3-Ex, 1,878 cells), Dentate Gyrus (DG, 4,377 cells), Astrocyte (Astro, 2,884 

cells), Endothelial cell (Endo, 1,849 cells), Microglia (Micro, 1,723 cells), Oligodendrocyte (Oligo, 

4,966 cells), Oligodendrocyte precursor cell (OPC, 549 cells), Smooth muscle cell (SMC, 877 

cells), Lateral Habenula neuron (LHb, 121 cells) and 27 sub-level clusters (subclusters) identified 

during the cell type classification process according to their representative gene markers. The 

transcriptional profile of each interested top-level cluster was analyzed using Leiden clustering 

again to identify subclusters. c, Representative spatial cell-type atlas with Aβ and tau pathologies 

in cortical and hippocampal regions of TauPS2APP 13-month sample. Top-level cell types were 

color-coded based on the legend (inset). Aβ plaque and p-Tau protein were colored as black and 

magenta, respectively. The imaging area was separated into Cortex, Corpus Callosum (CC), and 

Hippocampus manually with prior knowledge and the boundaries were marked by a black dash 

lines. Scale bar, 100 µm. Zoom-in sections: (I) zoom-in section in the cortical region showing an 

Aβ plaque surrounded by different types of cells; (II) zoom-in section in the hippocampal region 

with p-Tau protein signal; Scale bars, 10 µm. d, Schematics illustrating the spatial patterns 

analysis of cell type compositions around the Aβ plaque. 5 concentric boundaries that are 10, 20, 

30, 40, 50 µm from each plaque were generated to quantify the cell-type composition of each 

layer. When overlapping, two stripes were merged to prevent repetitive counting. Scale bar, 50 
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µm. e, Representative spatial distribution of cell type compositions around Aβ plaque for 

TauPS2APP 13-month sample. Stacked bar plot showing the density (cell count per mm2) of each 

major cell type at different distance intervals (0-10, 10-20, 20-30, 30-40, 40-50 µm) to the Aβ 

plaque. The cell density of each major cell type in each area was included as the reference for 

comparison. f, Schematics illustrating the method used for p-Tau signal quantification. Tissue 

sections were divided into a grid of 20 µm x 20 µm. The color represented integrated intensity of 

p-Tau in each square and was used as a metric to analyze the extent of colocalization of p-Tau 

with different cell types. g, Cell-type composition analysis based on the 20 µm x 20 µm grid in the 

TauPS2APP sample at 13 months ranked by p-Tau density. The blocks divided by the grid lines 

were ranked by the percentage of Tau positive pixels and grouped into 3 bins: 0% (zero p-Tau), 

1-50% (low p-Tau), 51-100% (high p-Tau). The high p-Tau group was further divided by plaque 

positive versus negative groups to dissect the influence of plaque and tauopathy on cell-type 

distribution. Stacked bar plot showing the average number of cells per block for each major cell 

type.  
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Fig. 3 | Spatiotemporal gene expression analysis of microglia in TauPS2APP and control 

samples. 

a, Subclustering of microglia cell population. Top: Zoom-in UMAP visualization of 1,723 microglia 

cells from Fig. 2a showing three subclusters of microglia identified by the Leiden clustering: 

Micro1 (n = 779), Micro2 (n = 415), and Micro3 (n = 529). The Micro3 cluster was considered as 

a disease-associated microglia (DAM) population by its gene markers according to previous 

reports and significant enrichment in diseased samples10. Bottom: UMAP visualization of 

subclusters of microglia populations for each sample (Control 8 month, TauPS2APP 8 month, 

Control 13 month, TauPS2APP 13 month). b, Expression level of representative gene markers 

among different subclusters colored by row-wise z-score. c, UMAP pseudotime trajectory 

visualization of microglia population. Top: UMAP visualization of pseudotime trajectory of 

microglia population generated by Monocle 3. Colormap represents the pseudotime value. A 

corresponding pseudotime trajectory was plotted on the UMAP embedding. Trajectory starting 

anchor was manually selected based on the control sample at 8 months. Bottom: Cells from 

different samples were highlighted separately in UMAP embedding. d, UMAP plots showing 

different types of microglia identified in (a) in pseudotime embedding. e,f, Spatial cell maps of 

microglia in the 13-month control and TauPS2APP samples. Scale bar, 100 µm. Insets show 

zoom-in regions highlighted by black boxes (I, II). Scale bar, 10 µm. Dashed black lines mark the 

boundaries between cortex, corpus callosum and hippocampus. g, Stacked bar chart showing 

the density (count per mm2) of each microglia sub-cluster in the cortex and hippocampus region 

for each sample. The colors in the bar plots correspond to the cell type legend in (e). The plots 

show a significant enrichment of the DAM in both TauPS2APP samples at 8 and 13 months. h, 

Stacked bar chart showing the density (count per mm2) of each microglia sub-cluster in each 

distance interval (0-10, 10-20, 20-30, 30-40, 40-50 µm) centered by the Aβ plaque at 13 months. 

The overall cell density of each subpopulation in each area was included as the reference for 

comparison (Overall). i, DEGs on pseudotime embedding. UMAPs showing the expression of four 
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representative gene markers of microglia subtypes on the pseudotime embedding. The color 

indicates the log10(mean gene expression value) of the gene in each cell. j, Matrix plot showing 

the z-scores of top DEGs and representative markers of microglia across multiple distance 

intervals (0-10, 10-20, 20-30, 30-40, 40-50 µm) from plaques. 
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Fig. 4 | Spatiotemporal gene expression analysis of astrocytes in TauPS2APP and control 

samples. 

a, Subcluster of astrocyte cell population. Top: Zoom-in UMAP visualization of 2,884 astrocytes 

identified from Fig. 2a showing three subclusters of astrocytes identified by the Leiden clustering: 

Astro1 (n = 1,068), Astro2 (n = 1,271), and Astro3 (n = 545). The Astro3 cluster was annotated 

as disease-associated astrocyte (DAA) by its gene markers according to previous reports9 and 

enrichment in diseased samples. Bottom: UMAP plots of subclusters of astrocytes for each 

sample (Control 8 month, TauPS2APP 8 month, Control 13 month, TauPS2APP 13 month). b, 

Expression level of representative markers across different sub-clusters. Colored by row-wise z-

score. c, UMAP pseudotime trajectory visualization of astrocyte cell population. Top: UMAP 

visualization of pseudotime trajectory of astrocytes generated by Monocle 3. Colormap represents 

the pseudotime value. A corresponding pseudotime trajectory was overlapped on the UMAP 

embedding. Trajectory starting anchor was manually selected based on the Astro1 population. 

Red arrow highlights bifurcation point on the trajectory related to the disease-associated gene 

expression changes. Bottom: Cells from different samples were highlighted separately in UMAP 

embedding. d, UMAP plots showing different types of astrocytes identified in (a) in pseudotime 

embeddings. e,f, Spatial cell map of astrocyte population in 13-month control and TauPS2APP 

samples. Scale bar, 100 µm. Insets show the zoom-in regions highlighted by black boxes (I, II). 

Scale bar, 10 µm. Dashed black lines mark the boundaries between cortex, corpus callosum and 

hippocampus. g, Stacked bar chart showing the density (count per mm2) of each astrocyte sub-

cluster in the cortex, Corpus Callosum and Hippocampus region for each sample. The colors in 

the bar plots correspond to the cell type legend in (e). The plots show a significant enrichment of 

the DAA in the cortex, especially at 13 months. h, Stacked bar chart showing the density (count 

per mm2) of astrocyte sub-cluster in each distance interval (0-10, 10-20, 20-30, 30-40, 40-50 µm) 

around the Aβ plaque at 13 months. The cell density of each subpopulation in each area was 

included as the reference for comparison (Overall). i, DEGs on pseudotime embedding. UMAPs 
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showing the expression of four disease up-regulated genes on the pseudotime embedding, the 

color scale of the raw counts was adjusted by log10 transformation.  j, Matrix plot showing the z-

scores of top DEGs and representative markers of astrocytes across multiple distance intervals 

(0-10, 10-20, 20-30, 30-40, 40-50 µm) from plaques.  
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Fig. 5 | Spatiotemporal gene expression analysis of oligodendrocytes and precursor cells 

in TauPS2APP and control samples. 

a, Subcluster of Oligodendrocytes and precursor cell (OPC) population. Top: Zoom-in UMAP 

visualization of 4,966 oligodendrocytes and 549 OPCs identified from Fig. 2a showing three 

subclusters of oligodendrocytes identified by the Leiden clustering: Oligo1 (n = 4,295), Oligo2 (n 

= 181), Oligo3 (n = 490) and OPC (n = 549). Bottom: UMAP plots of subclusters of 

oligodendrocytes and OPCs for each sample (Control 8 month, TauPS2APP 8 month, Control 13 

month, TauPS2APP 13 month). b, Expression level of representative markers across different 

sub-clusters of oligodendrocytes colored by row-wise z-score. c, UMAP pseudotime trajectory 

visualization of oligodendrocyte related cell population. Top: UMAP visualization of pseudotime 

trajectory of oligodendrocytes and OPCs generated by Monocle 3. Colormap represents the 

pseudotime value. A corresponding pseudotime trajectory was plotted on the UMAP embedding. 

Trajectory starting anchor was manually selected based on the OPC population. Red arrow 

highlights bifurcation point on the trajectory related to the disease-associated gene expression 

changes. Bottom: Cells from different samples were highlighted separately in UMAP embedding. 

d, UMAP plots showing different types of oligodendrocytes and OPCs identified in (a) in 

pseudotime embeddings. e,f, Spatial cell map of oligodendrocyte related population in 13-month 

control TauPS2APP samples. Scale bar, 100 µm. Insets show the zoom-in regions highlighted by 

black boxes (I,II). Scale bar, 10 µm. Dashed black lines mark the boundaries between cortex, 

corpus callosum, hippocampus and alveus. g, Stacked bar chart showing the density (count per 

mm2) of each oligodendrocyte sub-types and OPC in both the cortex, corpus callosum and 

hippocampus region for each sample. The colors in the bar plots correspond to the cell type 

legend in (e). h, Stacked bar chart showing the density (count per mm2) of each oligodendrocyte 

sub-cluster and OPC in each distance interval (0-10, 10-20, 20-30, 30-40, 40-50 µm) around the 

Aβ plaque at 13 month. The overall cell density of each subpopulation in each area was included 

as the reference for comparison (all). i, Cell-type composition analysis of oligodendrocyte lineages 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2022. ; https://doi.org/10.1101/2022.01.14.476072doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.14.476072
http://creativecommons.org/licenses/by-nc/4.0/


 37 

in relation to p-Tau pathology. The tissue region was divided by the 20 µm x 20 µm grid in the 

TauPS2APP sample at 13 months ranked by p-Tau density. The blocks divided by the grid lines 

were ranked by the percentage of p-Tau positive pixels and grouped into 3 bins: zero (0%), low 

(1%-50%), high (50%-100%). The high p-Tau bin is further divided into two groups based on 

presence or absence of Aβ plaques. Stacked bar plot showing the average number of cells per 

block for each oligodendrocyte subtype. j, Cell density and subtype composition of 

oligodendrocyte and OPC in the hippocampal alveus region. k, Pseudotime embedding of cells 

expressing marker genes. UMAPs showing the pseudotime distribution of cells expressing 

representative markers. l, Matrix plot showing the z-scores of top DEGs and representative 

markers of oligodendrocytes across multiple distance intervals (0-10, 10-20, 20-30, 30-40, 40-50 

µm) from plaques.  
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Fig. 6 | Spatiotemporal gene expression analysis of neurons in TauPS2APP and control 

samples.  

a,b, Top: Spatial map of Aβ plaque and p-Tau with excitatory (a) and inhibitory (b) neuron in the 

TauPS2APP 13 month sample. Scale bar, 100 µm. Total cell counts: CTX-Ex1: 2,292; CTX-Ex2: 

2,766; CTX-Ex3: 1,184; CTX-Ex4: 2,445; CA1: 2,754; CA2: 436; CA3: 1,878; DG: 4,377; Cnr1: 

224; Lamp5: 196; Pvalb: 831; Pvalb-Nog: 74, Sst: 508. Vip: 172. Bottom: high magnification views 

of areas indicated in the black boxes on the top panel. Scale bar, 10 µm. c,d, Stacked bar charts 

showing the density (count per mm2) of each subcluster of excitatory (c) and inhibitory (d) neuron 

population from different brain regions at different distance intervals (0-10, 10-20, 20-30, 30-40, 

40-50 µm) to the Aβ plaque of the 13-month TauPS2APP sample. The overall cell density of each 

subpopulation in each area was included as the reference comparison standard (Overall). e, 

UMAP of dentate gyrus (DG) cell population labeled with pseudotime trajectory showing divergent 

paths of TauPS2APP and control samples at 13 months. Colormap represents the pseudotime 

value. Trajectory starting anchor was manually selected based on the control sample at 8 months 

and labeled by the black circles. f, UMAPs showing the expression of four significantly 

altered genes from differential gene expression (DEG) analysis of DG neurons on the 

pseudotime embedding, the color scale of the raw counts was adjusted by log10 

transformation.  g, Spatial cell map colored by pseudotime for DG region. Scale bar, 100 µm. h, 

p-Tau signal quantification around plaques. p-Tau+ pixels (intensity > threshold, see Method) 

were quantified at different distance intervals (0-10, 10-20, 20-30, 30-40, and 40-50 µm) to the 

Aβ plaque in the cortex and subcortical regions of the TauPS2APP 13 month sample. Y-axis 

values were normalized by the total p-Tau signal of each brain region. i, Stacked bar chart 

showing the composition of p-Tau positive excitatory neurons and inhibitory neurons in each AD 

sample defined by the ratio of tau positive pixels to the area of each cell (see Methods). j, Synaptic 

gene ontology term enrichment of DEGs (p-value < 0.05) identified from the p-Tau positive CA1 
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neurons versus p-Tau negative CA1 neurons (Methods) using SynGO. Color of the sunburst plot 

represents enrichment -log10 Q-value at 1% FDR. 
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Fig. 7 | Integrative spatiotemporal analysis of disease-associated cell types and gene 

programs. 

a,b, GSEA heatmap showing the significant (nominal p-value < 0.05) biological process related 

terms enriched in DEGs of each interested cell type in TauPS2APP samples at 8 months (a) and 

13 months (b). Terms are filtered by term size: 20-1000, Color of the tiles represents normalized 

enrichment score. c,d, Matrix plot showing the gene clustering results in each distance interval 

(0-10, 10-20, 20-30, 30-40, >40 µm) around the Aβ plaque in TauPS2APP 8-month sample (c) 

and TauPS2APP 13-month sample (d). Colored by row-wise z-score. e,f, Matrix plot showing the 

Plaque Induced Genes (Enriched in 0-40 interval, adjusted p-value < 0.01) in each distance 

interval (0-10, 10-20, 20-30, 30-40, >40 µm) around the Aβ plaque in TauPS2APP 8-month 

sample (e) and TauPS2APP 13-month sample (f). Colored by row-wise z-score. g, Venn Diagram 

highlighting the overlap of SDEGs in the TauPS2APP 8- and13-month samples with SDEGs in 

TauPS2APP and previously reported PIGs in 18 month AppNL-G-F mice33. h, Spatial histograms of 

Micro3 (DAM), Astro3 (DAA), Oligo2/3, OPC and neuronal cells around Aβ plaque in the 

TauPS2APP 8-month sample (left) and 13-month sample (right). i, Schematic diagram showing 

the spatial distribution of different cell types around Aβ plaque and oligodendrocyte subtypes in 

hippocampal alveus in the TauPS2APP mouse model. The number of cells in the schematic 

diagram represents the approximate ratio of cell number for each cell type. 
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Methods 

Mice 

All animal procedures followed animal care guidelines approved by the Genentech Institutional 

Animal Care and Use Committee (IACUC) and animal experiments were conducted in compliance 

with IACUC policies and NIH guidelines. The mice used for STARmap PLUS include the pR5-183 

line expressing the P301L mutant of human tau and PS2N141I and APPswe (PS2APPhomo; P301Lhemi) 

and non-transgenic control. 

 

Tissue collection and sample preparation for STARmap PLUS. 

Animals were anesthetized with isoflurane and rapidly decapitated. Brain tissue was removed, 

placed in O.C.T, then frozen in liquid nitrogen and kept at -80 °C. For the tissue sectioning, mouse 

brains were transferred to cryostat (Leica CM1950) and cut into 20 µm thick slices in coronal 

sections at -20 °C. The slices were attached to each well of glass-bottom 12-well plates pre-

treated by methacryloxypropyltrimethoxysilane (Bind-Silane) and poly-D-lysine (PDL). The brain 

slices were fixed with 4% PFA in 1X PBS buffer at room temperature for 15 min, then 

permeabilized with -20 °C methanol and placed at -80 °C for an hour before hybridization. 

 

STARmap PLUS to detect spatial RNA and protein signals. 

The samples were taken from -80 °C to room temperature for 5 min and then washed with PBSTR 

buffer (0.1% Tween-20, 0.1 U/µl SUPERase·In RNase Inhibitor in PBS). After washing, the 

samples were incubated with 300 µl of 1X hybridization buffer (2X SSC, 10% formamide, 1% 

Tween-20, 0.1 mg/ml yeast tRNA, 20 mM Ribonucleoside vanadyl complexes, 0.1 U/µl 

SUPERase·In RNase Inhibitor and pooled SNAIL probes at 1 nM per oligo) in a 40 oC humidified 

oven with shaking and parafilm wrapping for 36 h. The samples were washed by PBSTR twice 

and high-salt washing buffer (4X SSC dissolved in PBSTR) once at 37 oC. Finally, the samples 

were rinsed with PBSTR once at room temperature. The samples were then incubated with a 
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ligation mixture (1: 10 dilution of T4 DNA ligase in 1X T4 DNA ligase buffer supplemented with 

0.5 mg/ml BSA and 0.2 U/µl of SUPERase·In RNase inhibitor) at room temperature for two hours 

with gentle shaking. After ligation, the samples were washed twice with PBASR buffer and then 

incubated with rolling circle amplification (RCA) mixture (1: 10 dilution of Phi29 DNA polymerase 

in 1X Phi29 buffer supplemented with 250 µM dNTP, 20 µM 5-(3-aminoallyl)-dUTP, 0.5 mg/ml 

BSA and 0.2 U/µl of SUPERase·In RNase inhibitor) at 30 oC for two hours with gentle shaking. 

Subsequently, the samples were washed twice with PBST (0.1% Tween-20 in PBS) and blocked 

with blocking solution (5 mg/ml BSA in PBST) at room temperature for 30 min. The samples were 

then incubated with Phospho-Tau (Ser202, Thr205) Antibody (Thermo, MN1020B, 1:100 dilution 

in blocking solution) for 2 hours at room temperature. The samples were washed with PBST three 

times for 5 min each. Next, the samples were treated with 20 mM Acrylic acid NHS ester in PBST 

for 1 hour and rinsed once with PBST. The samples were incubated in the monomer buffer (4% 

acrylamide, 0.2% bis-acrylamide in 2X SSC) for 15 min at room temperature. Then the buffer was 

aspirated, and a 35 µl polymerization mixture (0.2% ammonium persulfate, 0.2% 

tetramethylethylenediamine dissolved in monomer buffer) was added to the center of the sample 

and immediately covered by Gel Slick-coated coverslip. The polymerization reaction was 

undergone for 1 hour at room temperature (N2) and washed by PBST twice for 5 min each. 

Subsequently, the samples were treated with dephosphorylation mixture (1:100 dilution of Shrimp 

Alkaline Phosphatase in 1X CutSmart buffer supplemented with 0.5 mg/ml BSA) at 37 oC for 1 

hour and washed by PBST three times for 5 min each. 

For SEDAL sequencing, each cycle began with treating the sample with stripping buffer (60% 

formamide and 0.1% Triton-X-100 in H2O) at room temperature for 10 min twice, followed by 

PBST washing for three times, 5 min each. The sample was incubated with a sequencing mixture 

(1: 25 dilution of T4 DNA ligase in 1X T4 DNA ligase buffer supplemented with 0.5 mg/ml BSA, 

10 µM reading probe, and 5 µM fluorescent oligos) at room temperature for at least 3 hours. The 

samples were washed by washing and imaging buffer (10% formamide in 2X SSC) three times, 
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10 min each, then immersed in washing and imaging buffer for imaging. Images were acquired 

using Leica TCS SP8 confocal microscopy. Eight cycles of imaging were performed to detect 

2,766 genes. 

After 8-round in situ sequencing for 2766-gene samples and 4-round in situ sequencing for 64-

gene samples, the sample was incubated in X-34 solution (10 µM X-34, 40% ethanol and 0.02 M 

NaOH in 1X PBS) at room temperature for 10 min, followed by quick washing with 1X PBS for 3 

times. The samples were incubated 80% EtOH for 1 min and then washed with PBS 3 times, 1 

min each. Then the samples were incubated with the Goat anti-Mouse IgG (H+L) Cross-Adsorbed 

Secondary Antibody, Alexa Fluor 488 (Thermo, A-11001, 1:80 dilution in blocking solution) at 

room temperature for 12 h. The sample was washed three times with PBST for 5 min each. The 

samples were incubated with the 500nM 19-nt fluorescent oligo complementary to DNA amplicon 

in PBST at room temperature for 1h, then washed by PBST three times for 5 min each. Propidium 

Iodide (PI) staining was performed following the manufacturer's instruction for the purpose of cell 

segmentation. Another round of imaging was performed to detect spatial protein signals. 

 

STARmap PLUS Image Processing 

All of the image processing steps were implemented using MATLAB R2019b and related open-

source packages in Python 3.6 and applied according to32. 

 

Image Preprocessing 

A multi-dimensional histogram matching was performed on each tile with MATLAB function 

`imhistmatchn`. It used the image from the first color channel in the first sequencing round as a 

reference to uniform the illuminance and contrast level of all other images in the current imaging 

position. Additionally, a customized tophat filtering was applied to the sequencing images to 

further enhance the signal and suppress the background noise. 
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Image Registration 

Image registration was applied according to32. Global image registration was accomplished using 

a three-dimensional fast Fourier transform (FFT) to compute the cross-correlation between two 

image volumes at all translational offsets. The position of the maximal correlation coefficient was 

identified and used to translate image volumes to compensate for the offset. Then a non-rigid 

registration was applied with MATLAB function `imregdemons` to further align images in different 

sequencing rounds. 

  

Spot Calling 

After registration, individual dots were identified separately in each color channel on the first round 

of sequencing. For this experiment, amplicon dots were identified by finding local maxima in 3D 

with MATLAB function `imregionalmax`. Dots with intensity at their centroids less than the 

threshold were removed. Because the dot was approximately 6 pixels in diameter on the xy plane, 

the dominant color for that dot across all four channels on each round was determined by a 5x5x3 

voxel volume surrounding the dot centroid. The integrated intensity of the voxel volume in each 

channel was used for color determination. In this case, each dot in each round had a L2 

normalized vector with four elements. The color of each dot was determined by the corresponding 

channel with the highest value in the vector. Dots with multiple maximum values in the vector 

were discarded. 

  

Barcode Filtering 

Dots were first filtered based on quality scores (average of -log(color vector value in dominant 

channel) across all sequencing rounds). The quality score quantified the extent to which each dot 

on each sequencing round came from one color rather than a mixture of colors. The barcode 

codebook was converted into color space based on the expected color sequence following the 2-

base encoding of the barcode DNA sequence. Dot color sequences that passed the quality 
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threshold and matched sequences in the codebook were kept and identified with the specific gene 

that that barcode represented; all other dots were rejected. The high-quality dots and associated 

gene identities in the codebook were then saved for downstream analysis. 

  

2D Cell Segmentation 

Nuclei were automatically identified by applying a pre-trained 2D machine learning model from 

the StarDist package54 to a maximum intensity projection of the stitched DAPI channel following 

the final round of sequencing. Then the cell locations were extracted from the segmented DAPI 

image and used as markers for cell body segmentation. Cell bodies were represented by an 

overlay of stitched Nissl staining and merged amplicon images. Finally, a marker-based 

watershed transform was applied to segment the thresholded cell bodies. Points overlapping each 

segmented cell region in 2D were then assigned to that cell, to compute a per-cell gene 

expression matrix. 

  

Protein image preprocessing 

p-Tau images were processed using a customized Fiji macro55. A rolling ball background 

subtraction with a radius equal to 5 was applied to each image. Then each image was processed 

with a Gaussian filter with a sigma value equal to 2 and followed by a maximum entropy 

binarization. 

  

Cell type classification 

A two-level clustering strategy was applied to identify both major and sub-level cell types in the 

dataset. Processing steps in this section were implemented using Scanpy v1.4.656 and other 

customized scripts in Python 3.6 and applied according to Wang et al (2018)32. After filtration, 

normalization, and scaling, principal component analysis (PCA) was applied to reduce the 

dimensionality of the cellular expression matrix. Based on the explained variance ratio, the top 
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PCs were used to compute the neighborhood graph of observations. Then the Leiden algorithm 

was used to identify well-connected cells as clusters in a low dimensional representation of the 

transcriptomics profile. The cells were displayed using the Uniform Manifold Approximation and 

Projection (UMAP) and color-coded according to their cell types. The cells for each interested top-

level cluster were then extracted and sub clustered using the same workflow again. 

  

Pseudotime and Trajectory Analysis 

An R package Monocle344 (https://cole-trapnell-lab.github.io/monocle3/) was utilized for 

pseudotime calculation. Monocle3 firstly learned a principal graph (via learn_graph() function) in 

the three-dimensional UMAP space using a dimensionality-reduced representation of original 

data. In detail, Monocle3 ran a k-means clustering algorithm and selected “landmark cells” by first 

mapping cells to their nearest k-means points, then choosing the cell with highest local density 

as landmark cell. A principal graph was learned within these landmark cells rather than the whole 

dataset to reduce running time using simplePPT algorithm57!"After generating the principal graph, 

the graph was refined by initially performing a depth-first visitation of the nodes in the graph. For 

nodes with degree (the number of edges connected to this node) ≤ 2, no operation was performed. 

For nodes with degree > 2, Monocle3 computed the diameter path for each subtree of the node 

not visited, and removed the subtree if its path length is less than a dedicated length specified by 

the user. 

To compute pseudotime from the principal graph, firstly all cells were mapped to their nearest 

principal points based on Euclidean distance in the UMAP embedding. Next, for each edge in the 

graph, all cells mapped to the endpoints were orthogonally projected to the nearest points on the 

graph edge. Based on the projected position of cells, suppose the endpoints are a and b and here 

we have cells named ci , cj , with projection p(ci ) , p(cj ) . We can order the cell projections on the 

edge and suppose the order is a < p(ci ) <  p(cj ) < b. Then edge (a,ci ) and (b,cj ) will be added 
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to the final graph. After specifying the root node(s) by user, the pseudotime for each cell can be 

assigned by calculating the geodesic distance from root node to the cell node. In this case, raw 

expression matrix of each cell type: Microglia, Astrocyte, Oligodendrocyte/Oligodendrocyte 

precursor cell (OPC) and Dentate gyrus (DG), was used separately as the input of Monocle3. To 

visualize the results, we used the Monocle3-generated UMAP embedding with palettes 

representing normalized pseudotime (rescaled to 0 ~ 1), cell types, and sample identities. 

  

Spatial Analysis 

Plaque Segmentation 

The plaques were segmented from the thresholded image of plaque channel by using the 

`bwlabel` function in EBImage package58. Then, the size and the center of each plaque were 

calculated by using `computeFeatures.moment` and `computeFeatures.shape` functions 

respectively. Finally, plaques with an area greater than 400 pixels (~ 40 µm2) were kept for the 

downstream analysis. 

  

Cell Composition around Plaques 

As filtered plaques were acquired in the last step, we dilated the plaque images 5 times with steps 

of 10 microns. Next, we counted the number of cells for every cell type that fall into different 

intervals. The ranges were set from 0-10µm (Ring 1) to 40-50µm (Ring 5). The statistics were 

normalized by calculating the percentage and density of each cell type in a ring. The graphical 

explanation of this analysis is shown in Fig. 2d. For the overall statistics, we calculated the 

percentage of each cell type in the whole sample. To test the significance of cell enrichment in 

both density and proportion aspects in specific intervals, two kinds of statistical tests: one sample 

t-test and chi-square test (Fisher’s Exact test) were utilized. One sample t-test was used to 

compare the density values for each cell type in one interval around every plaque with the average 

density. According to the difference of mean value of density sequence and the average density, 
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an alternative hypothesis was set correspondingly to test whether the density was significantly 

higher or lower. For the chi-square test, raw cell counts in each interval were used for the test. 

  

Differential Expression Analysis 

Before performing DE analysis, the dataset was normalized according to the following steps: 1. 

Divide the gene counts in a sample by the median of total counts per cell for that sample and 

multiply by the scale factor, which was defined as the mean value of median of total counts per 

cell for all samples; 2. Perform log2 transformation by adding a pseudo-count of one. DE genes 

were identified by performing Wilcoxon-Rank Sum test between two groups of cells using the 

`FindMarkers` function in Seurat. For ‘disease vs. control’ comparison of specific cell types, the 

two groups of cells were extracted from TauPS2APP and control samples and compared. As for 

the comparison between cells close to plaque versus cells far away from plaque, the cell was 

defined as ‘near plaque’ if its distance to the nearest plaque was less than 25µm and all other 

cells with distance to plaque greater than 25µm were defined as 'away from plaque'. In the 

comparison of ‘CA1 Tau+ vs Tau-’, Tau+ CA1 cells were defined according to the fraction of Tau 

signal area to the cell body's area. The threshold was set to 0.07. 

In order to filter out lowly expressed genes, genes that were expressed by less than 10% of cells 

in either group of the comparison were excluded. We also applied the following threshold values 

on the generated gene list to filter out non-significant genes: absolute value of log fold change > 

0.1, p-value < 0.05. 

  

To visualize the DE result, we used the `EnhancedVolcano` package 

(https://github.com/kevinblighe/EnhancedVolcano) to generate the volcano plot. DE genes with 

logFC > 0 were colored in red while others were colored in blue. For those significant genes (p-

value < 0.05) but failed to pass the LogFC threshold were green tinted. All other non-significant 
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genes were colored in gray. Note, some genes with extremely high -log(P-value) or logFC were 

capped. 

  

Gene Set Enrichment Analysis 

Gene Set Enrichment Analysis (GSEA v4.1.0)50,51 was used to perform pathway analysis for each 

cell type with a LogFC ranked gene list whose genes were detected in a minimum fraction of 5% 

cells in the targeted cell type. Gene Ontology Biological Processes (GO:BP) database was 

selected as the gene sets database to perform GSEA. To limit the size of gene sets subjected to 

enrichment analysis, the minimum and maximum size of gene sets were set to 20 and 1000. 

Number of permutations was set to 1000. Results were exported in tab-delimited format to be 

used as input for further functional enrichment analysis. The SynGO enrichment tool36 was used 

to further characterize the synapse functions enriched in DEGs from excitatory neurons, inhibitory 

neurons, and CA1 cells with Tau pathology. Brain expressed genes were used as the background 

gene list. 

  

Grid Analysis 

To analyze the scattered p-Tau signal, we firstly performed rasterization on p-Tau images with 

resolution at 20µm (See heatmap Extended Data Fig. 5f). For each block, we counted the number 

of cells for each major cell type and the p-Tau signal intensity. Based on the distribution of p-Tau 

intensity and the existence of plaque, blocks were classified into 4 groups: No p-Tau, Low p-Tau 

(intensity of p-Tau in 1 to 50% range of population with non-zero p-Tau signal), High p-Tau w/ 

plaque (51-100% range with plaque) and High p-Tau w/o plaque (51-100% range without plaque). 

The significance of cell type enrichment was tested using one-sample t-test comparing the density 

values of each group with average density. 

  

Plaque Induced Genes 
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To identify potential gene expression patterns around plaque, we firstly calculated the average 

expression value for each gene in 5 intervals: 0-10µm, 10-20µm, 20-30µm, 30-40µm, >40µm. 

The averaged expression matrix was calculated separately for disease samples in 8 months and 

13 months. Next, K-means clustering was applied on the matrix respectively and 6 clusters were 

obtained in each sample. We tested whether the averaged expression level of the cells within the 

high expression interval was significantly higher than that of other cells outside the interval using 

Wilcoxon signed-rank test (With p-value < 0.05, Supplementary Table 4). Plaque induced genes 

(PIGs) were defined as significantly enriched genes within the 0-30 µm distance surrounding 

plaques (Cluster 1-3). ‘ComplexHeatmap’ package59 is utilized for heat map visualization. 

  

Quantification and Statistical analysis 

The statistical tests and number of independent replicates per experiment are indicated in the 

Figure legends. The statistical significance from STARmap PLUS sequencing experiments are 

detailed in the Method details section. 

One-sample t-test was used to test the significance of cell type enrichment by comparing the 

density values of each cell type in each interval with average density. 

 

Data availability 

The STARmap PLUS sequencing data are available on Single Cell Portal 

(https://singlecell.broadinstitute.org/single_cell/study/SCP1375). 

 

Code availability 

The code for the STARmap PLUS image analysis is available on Zenodo  

(https://zenodo.org/record/5842625#.YeAvYljML0o) 
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Extended Data Fig. 1 | Development of the STARmap PLUS method.  

a,  STARmap PLUS procedure where p-Tau primary antibody staining was performed after mRNA 

in situ hybridization and amplification. The imaging results showed strong signals from both cDNA 

amplicons and proteins. b, Alternative procedure where the p-Tau primary antibody staining was 

conducted before mRNA in situ hybridization and amplification. The imaging results showed much 

weaker signal from cDNA amplicons, suggesting RNA degradation during antibody incubation 

and washing steps. PI staining, propidium iodide staining of cell nuclei. c, The ninth round of the 

imaging detected cell nuclei, cDNA amplicons, and protein signals in the 13-month control mouse 

brain (left) and TauPS2APP mouse brain (right). Blue, Propidium Iodide (PI) staining of cell nuclei. 

Green, fluorescent DNA probe staining of all cDNA amplicons. White, X-34 staining of Amyloid β 

plaque. Red, immunofluorescent staining of p-Tau (AT8 primary antibody followed by fluorescent 

goat anti-mouse secondary antibody). d, The flowchart of the STARmap PLUS data analysis 

pipeline. 
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Extended Data Fig. 2. | Top-level cell type classification. 

a, Stacked violin plot for representative gene markers aligned with each top-level cell type of 

2,766 genes dataset. b, Gene expression heatmaps for representative markers aligned with each 

top-level cell type of 2,766-gene datasets. Expression for each gene is z-scored across all genes 

in each cell. c, Spatial atlas of top-level cell types in cortex and hippocampus regions of 4 samples 

in the 2,766-gene dataset. Scale bars, 100 µm. d, Representative spatial distribution of cell type 

compositions around Aβ plaque for TauPS2APP 8-month sample in both cortex and hippocampus. 

Stacked bar plot showing the density (cell count per mm2) of each major cell type at different 

distance intervals (0-10, 10-20, 20-30, 30-40, 40-50 µm) to the Aβ plaque. The cell density of 

each major cell type in each area was included as the reference for comparison. e, Cell-type 

composition around Aβ plaque at different distance intervals in both 8- and 13-month samples of 

the 2,766-gene dataset. Stacked bar plot showing the averaged density (count per mm2) of major 

cell types in the cortex and hippocampus from different distance intervals (0-10, 10-20, 20-30, 30-

40, 40-50 µm) around the Aβ plaque. The overall cell density of each cell type in each region was 

included as the reference for comparison(overall). 
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Extended Data Fig. 3 | Additional gene expression and spatial analysis of microglia. 

a, Spatial map of microglia subtypes in control and TauPS2APP samples at 8 months. Scale bar, 

100 µm. Two magnification sections (I, II) on the right side. Scale bar, 10 µm. b, Cell-type 

composition around Aβ plaque in different distance intervals for the TauPS2APP sample at 8 

months. Stacked bar plot showing the density (count per mm2) of each microglia sub population 

in each distance interval (0-10, 10-20, 20-30, 30-40, 40-50 µm) around the Aβ plaque. The overall 

cell density of each subpopulation in each region was included as the reference for comparison. 

c, Spatial map of microglia colored by pseudotime. Scale bar, 100 µm. Two magnification sections 

(I, II) on the right side. Scale bar, 10 µm. d, Box plots showing the distribution of the pseudotime 

values of microglia in each distance interval (0-10, 10-20, 20-30, 30-40, 40-50 µm) around the Aβ 

plaque. A distribution of all the microglia was included as a reference. Box colors represent 

median pseudotime. e, Volcano plots for microglia differential expression. Plots showing the gene 

expression of microglia across AD and control samples in 8 and 13 months (y-axis: -log adjusted 

p-value, x-axis: average log fold change). Differentially expressed genes (p-value < 0.05, absolute 

value of logFC > 0.1) are marked in red (up-regulated) or blue (down-regulated). f, Gene set 

enrichment analysis (GSEA) result of differentially expressed genes (DEGs). Colored by sign of 

statistical significance (Nominal p-value < 0.01) enrichment score, Terms are filtered by term size: 

20-1000. 
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Extended Data Fig. 4 | Additional gene expression and spatial analysis of astrocytes. 

a, Spatial map of astrocyte subtypes in Control and TauPS2APP samples in 8 month. Scale bar, 

100 µm. Two magnification sections (I, II) on the right side. Scale bar, 10 µm. b, Cell type 

composition around Aβ plaque in different distance intervals for the TauPS2APP sample at 8 

months. Stacked bar plot showing the density (count per mm2) of each astrocyte sub population 

in each distance interval (0-10, 10-20, 20-30, 30-40, 40-50 µm) around the Aβ plaque. The overall 

cell density of each subpopulation in each region was included as the reference for comparison 

(Overall).c, Spatial map of astrocytes colored by pseudotime for astrocyte population. Scale bar, 

100 µm. Two magnification sections (I, II) on the right side. Scale bar, 10 µm. d, Box plots showing 

the distribution of the pseudotime values of astrocytes in each distance interval (0-10, 10-20, 20-

30, 30-40, 40-50 µm) around the Aβ plaque. A distribution of all the astrocytes was included as a 

reference. e, Volcano plots for astrocytes differential expression. Plots showing the gene 

expression of astrocytes across AD and control samples in 8 and 13 months (y-axis: -log adjusted 

p-value, x-axis: average log fold change). Differentially expressed genes (p-value < 0.05, absolute 

value of logFC > 0.1) are marked in red (up-regulated) or blue (down-regulated). f, Gene set 

enrichment analysis (GSEA) result of differentially expressed genes (DEGs). Colored by sign of 

statistical significance (Nominal p-value < 0.01) enrichment score, Terms are filtered by term size: 

20-1000. 
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Extended Data Fig. 5 | Additional gene expression and spatial analysis of oligodendrocytes and 

OPC. 

a, Cell-resolved spatial map for the oligodendrocyte and OPC population of Control and 

TauPS2APP mice at 8 months. Scale bar, 100 µm. Two magnification sections (I, II) on the right 

side. Scale bar, 10 µm. b, Cell type composition around Aβ plaque in different distance intervals 

for the TauPS2APP sample at 8 months. Stacked bar plot showing the density (count per mm2) 

of each oligodendrocyte sub-population and OPC in each distance interval (0-10, 10-20, 20-30, 

30-40, 40-50 µm) around the Aβ plaque. The overall cell density of each subpopulation in each 

region was included as the reference for comparison (Overall).c, Spatial map colored by 

pseudotime for oligodendrocyte related population. Scale bar, 100 µm. Two magnification 

sections (I, II) on the right side. Scale bar, 10 µm. d, Pseudotime for oligodendrocytes in relation 

to plaque. Box plots showing the distribution of the pseudotime for oligodendrocytes in each 

distance interval (0-10, 10-20, 20-30, 30-40, 40-50 µm) around the Aβ plaque. A distribution of all 

oligodendrocytes was included as a reference. e, Pseudotime for OPC in relation to plaque. Box 

plots showing the distribution of the pseudotime for OPCs in each distance interval (0-10, 10-20, 

20-30, 30-40, 40-50 µm) around the Aβ plaque. A distribution of all OPCs was included as a 

reference. f, Cell compositions in grid regions of the TauPS2APP sample at 8 month. Grid regions 

were ranked by the percentage of Tau positive pixels and fall into three bins: zero (0%), low (50%), 

high (100%). Stacked bar plot showing the average number of each sub-cluster of 

oligodendrocytes. g, Heatmap showing p-Tau quantification of each grid in TauPS2APP sample 

at 13 months. h, Gene set enrichment analysis (GSEA) result of differentially expressed genes 

(DEGs). Colored by sign of statistical significance (Nominal p-value < 0.01) enrichment score, 

Terms are filtered by term size: 20-1000. 
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Extended Data Fig. 6 | Additional gene expression and spatial analysis of neurons. 

a,b, Spatial maps for excitatory (a) and inhibitory (b) neuron populations of the 4 samples. Scale 

bar, 100 µm. c,d, Neuron density in each region. Stacked bar charts showing the density (count 

per mm2) of each sub-cluster of excitatory (c) and inhibitory (d) neuron population from the Cortex 

and Hippocampus region of all four samples. e,f, Neuron composition around plaque. Stacked 

bar charts showing the density (count per mm2) of each sub-cluster of excitatory (e) and inhibitory 

(f) neuron population from different brain regions at each different distance intervals (0-10, 10-20, 

20-30, 30-40, 40-50 µm) to the Aβ plaque from the Cortex and Hippocampus region of 

TauPS2APP 8-month sample. The cell density of each subpopulation in each area was included 

as the reference for comparison (Overall). g, Gene set enrichment analysis (GSEA) results from 

differentially expressed genes (DEGs) in neurons. Colored by sign of statistical significance 

(Nominal p-value < 0.01) enrichment score, Terms are filtered by term size: 20-1000. h, Gene set 

enrichment analysis (GSEA) result of differentially expressed genes (DEGs) in neurons from 

Dentate Gyrus region. Colored by sign of statistical significance (Nominal p-value < 0.01) 

enrichment score, Terms are filtered by term size: 20-1000. 
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Extended Data Fig. 7 | Validation of cell-type composition and spatial gene expression in 

TauPS2APP mice. 

a, Gene expression heatmaps for representative markers aligned with each top-level cell type of 

64-gene (validation) datasets. Expression for each gene is z-scored across all genes in each cell. 

b, Uniform Manifold Approximation and Projection (UMAP) plot visualizing a non-linear 

dimensionality reduction for the transcriptomic profiles of 36,625 cells from 4 samples of the 

validation dataset. Plot showing the 13 top-level clusters: Cortex excitatory neuron (CTX-Ex, 

8,640 cells) Inhibitory neuron (In, 2,858 cells), CA1 excitatory neuron (CA1-Ex, 2,967 cells), CA2 

excitatory neuron (CA2-Ex, 331 cells), CA3 excitatory neuron (CA3-Ex, 1751 cells), Dentate 

Gyrus (DG, 4,560 cells), Astrocyte (Astro, 3,423 cells), Endothelial cell (Endo, 1,661 cells), 

Microglia (Micro, 2,183 cells), Oligodendrocyte (Oligo, 5,268 cells), Oligodendrocyte precursor 

cell (OPC, 711 cells), Smooth muscle cell (SMC, 1,146 cells), Mixed unidentified cells (Mix, 1,126 

cells). c, Spatial atlas of top-level cell types in cortex and hippocampus regions of 4 samples in 

the 64-gene dataset. Scale bars, 100 µm. d, Cell-type composition around Aβ plaque at different 

distance intervals in both 8- and 13-month samples of the 64-gene validation dataset. Stacked 

bar plot showing the density (count per mm2) of each top-level cell type in each distance interval 

(0-10, 10-20, 20-30, 30-40, 40-50 µm) around the Aβ plaque. The overall cell density of each cell 

type in each region was included as the reference for (Overall). e, Barplot showing the cell density 

of astrocyte, microglia, oligodendrocyte and OPC in hippocampus alveus region in the 2,766-

gene samples and validation samples. f, Matrix plot showing the row-wise scaled expression 

values of top significantly altered (rank by p-value) DEGs of glial cells and neuronal cells from 

TauPS2APP versus control samples. g,h, Matrix plot showing Plaque-Induced Genes (PIG, 

enriched in the 0-40 µm region, adjusted p-value < 0.01) that overlapped with 64-gene in each 

distance interval (0-10, 10-20, 20-30, 30-40 µm) around the Aβ plaque in the 8-month (H) and 

TauPS2APP 13-month sample (I) of the 64-gene validation dataset. Colored by row-wise z-score. 
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