Running Head: BENCHMARKING AMR SOFTWARE

Benchmarking software to predict antibiotic resistance phenotypes in shotgun metagenomes using simulated data Emily F. Wissel^A, Brooke M. Talbot^B, Bjorn A. Johnson^C, Robert A Petit III^D, Vicki Hertzberg^A, Anne Dunlop^E, Timothy D. Read^{D,F} Author affiliations and ORCID A: Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, US B: Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Science, Emory University, Atlanta, GA, US C: Cockrell School of Engineering, The University of Texas at Austin, Austin, TX D: Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory

- 13 University, Atlanta, GA, US
- 14 E: Department of Gynecology & Obstetrics, Emory University School of Medicine
- 15 **F:** Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, US 16

17 Author Info

1

2

3

4

5

6

7

8

9

10

11 12

- 18 EFW: ewissel@emory.edu https://orcid.org/0000-0003-2275-8456
- 19 BMT: https://orcid.org/0000-0001-5246-7209
- 20 BAJ: https://orcid.org/0000-0002-6460-2444
- 21 RAP: <u>https://orcid.org/0000-0002-1350-9426</u>
- 22 VH: <u>https://orcid.org/0000-0002-8834-4363</u>
- 23 ALD: https://orcid.org/0000-0002-5092-8136
- 24 TDR: tread@emory.edu ORCID:0000-0001-8966-9680

2

25	Abstract
26	The use of shotgun metagenomics for AMR detection is appealing because data can be
27	generated from clinical samples with minimal processing. Detecting antimicrobial resistance
28	(AMR) in clinical genomic data is an important epidemiological task, yet a complex
29	bioinformatic process. Many software tools exist to detect AMR genes, but they have mostly
30	been tested in their detection of genotypic resistance in individual bacterial strains. It is
31	important to understand how well these bioinformatic tools detect AMR genes in shotgun
32	metagenomic data.
33	We developed a software pipeline, hAMRoaster (
34	https://github.com/ewissel/hAMRoaster), for assessing accuracy of prediction of antibiotic
35	resistance phenotypes. For evaluation purposes, we simulated a short read (Illumina) shotgun
36	metagenomics community of eight bacterial pathogens with extensive antibiotic susceptibility
37	testing profiles. We benchmarked nine open source bioinformatics tools for detecting AMR
38	genes that 1) were conda or Docker installable, 2) had been actively maintained, 3) had an open
39	source license, and 4) took FASTA or FASTQ files as input. Several metrics were calculated for
40	each tool including sensitivity, specificity, and F1 at three coverage levels.
41	This study revealed that tools were highly variable in sensitivity (0.25 - 0.99) and
42	specificity (0.2 - 1) in detection of resistance in our synthetic FASTQ files despite similar
43	databases and methods implemented. Tools performed similarly at all coverage levels (5x, 50x,
44	100x). Cohen's kappa revealed low agreement across tools.
45	Importance
46	Software selection for metagenomic AMR prediction should be driven by the context of
47	the clinical/research questions and tolerance for true and false negative results. As the prediction

3

48	software and databases are in a state of constant refinement, the approach used here-creating
49	synthetic communities containing taxa and phenotypes of interest along with using hAMRoaster
50	to assess performance of candidate software-offers a template to aid researchers in selecting the
51	most appropriate strategy.
52	
53	Keywords: antimicrobial resistance, bioinformatics, metagenomics
54	
55	Tweet: Introducing a new pipeline for comparing results from #AMR tools from
56	@emily_wissel @tdread_emory and others!
57	
58	hAMRoaster compares detected AMR genes to known resistance, and returns a table with
59	metrics for comparing results across tools.
60	
61	
62	

BENCHMARKING AMR SOFTWARE

6	\mathbf{a}
n	1
\mathbf{u}	\sim

64

65

66

67

68

Introduction

Antibiotic resistant bacterial infections pose a serious threat to public health. Particularly concerning is that the burden of multi-drug resistant pathogens is increasing globally, creating complex clinical scenarios in which there are limited (if any) therapeutic options. In the United States alone, multi-drug resistant infections cost over \$4.5 billion annually and kill over 35,000 people each year.¹ Genes that confer antimicrobial resistance (AMR) are increasingly present in

69 commensal members of the human microbiome and are recognized as an important reservoir for

70 conferring pathogen resistance through horizontal gene transfer.^{2,3} Detecting AMR potential

71 through non-culture based, high throughput DNA sequencing and bioinformatic approaches is of

72 growing relevance and importance. Two key approaches to mitigating AMR infections are

antibiotic stewardship and AMR surveillance. While antibiotic stewardship focuses on

74 prescribing antibiotics appropriately, AMR surveillance focuses on describing AMR genes

75 already present in a community.

76 AMR surveillance is a key strategy in understanding the threat of AMR. Currently, AMR 77 surveillance typically relies on phenotypic characterization through culture or genotypic 78 characterization through molecular diagnostics based on PCR and hybridization techniques.⁴ However, there is a move toward genome-based methods ⁵ with the Illumina short-read platform 79 being the dominant platform for data generation at the present time.⁶ Direct sequencing of 80 81 clinical samples using shotgun metagenomic approaches is of growing interest for minimizing 82 sample processing and for fully characterizing the commensal members of the microbiome. 83 However, the bioinformatic tools that currently exist to detect AMR have typically not been 84 assessed for their performance on shotgun metagenomic sequence data. Further, as is common 85 with software developed in academic settings, tools are not always maintained or easy to install.

Software managers like conda and docker help to alleviate this problem, however, it can still be

BENCHMARKING AMR SOFTWARE

86

5

87 difficult for those without a bioinformatics background to understand the state of the tools and 88 select the best one for their needs. 89 As shotgun metagenomic sequencing is emerging as a powerful tool for detecting and controlling AMR,⁷ it is essential to understand how well these tools perform with these data. In 90 91 addition to testing these tools against a widely available data type, they should be compared 92 against samples with extensive phenotypic resistance (acquired and mutational AMR genes). 93 This analysis aims to compare a set of existing bioinformatic tools in their ability to 94 accurately identify AMR genes in a community. We describe a software pipeline, hAMRoaster, 95 that provides statistics on accuracy of software when the presence of phenotypes is known. As 96 shotgun metagenomic data is more often used in research and surveillance, and likely soon in clinical diagnostics,⁸ we believe this approach of validating tools using synthetic data will be 97 98 important in selecting the most appropriate software. 99 **Methods** 100 For a schematic overview of the methods, see Supplementary Figure One. 101 Development of a software pipeline, hAMRoaster, to assess results of antibiotic resistance 102 prediction 103 hAMRoaster was written as a Python script to take three inputs: a) the text output of 104 AMR prediction run tool on a FASTQ or FASTA test file, such as a text file processed through hAMRonization,⁹ b) a list of known phenotypes associated with the test file and c) (optional) a 105 106 tab formatted table which matches antibiotic drugs with their drug class. If option c) is not

107 specified a default table is used. The outputs of the program are a set of performance metrics that

108 include sensitivity and specificity. A conda installable version of the software was deposited in

BENCHMARKING AMR SOFTWARE

109 the Bioconda¹⁰ database. The Github site for the software is

110 https://github.com/ewissel/hAMRoaster.

hAMRoaster requires, as input, a formatted results table of runs by AMR detection tools.
This table is identical to that produced by the hAMRonization⁹ software. hAMRonization is
conda installable and can compile the outputs of many AMR tools into a unified format.
shortBRED¹¹ and fARGene¹² are not included in hAMRonization at the time of analysis, so
hAMRoaster can take the path to the raw output for these tools and partially match it to the
hAMRonization output.

117 hAMRoaster requires an input to the "known" phenotypic resistance in the mock 118 community (--AMR_key flag of hAMRoaster), such as a result of susceptibility testing tables 119 that are available from NCBI Biosamples. Antibiotics in the table of known resistances are 120 matched to their respective drug classes. Results classified as "susceptible" or "intermediate" in 121 susceptibility testing are filtered out so only resistant instances are considered. In cases where 122 susceptibility testing occurred with two or more agents, each agent is considered independently 123 (e.g. resistance to "amoxicillin-tetracycline" was treated as resistance to "amoxicillin" and 124 "tetracycline" independently). Each identified AMR gene is labeled with its corresponding drug 125 class for comparison. In instances where a gene confers resistance to multiple drug classes, the 126 detected gene is split into multiple rows so that each conferred resistance can be independently 127 compared to what is known from the susceptibility testing. Gene to drug class linkage is verified using the CARD database¹³ when applicable. Any genes corresponding to 'unknown' or 'other' 128 drug classes (including hypothetical resistance genes) are excluded from further analysis. Genes 129 130 that confer resistance to an antibiotic that was only effective in combination with another drug

BENCHMARKING AMR SOFTWARE

7

131 (e.g. clavulanic acid in amoxicillin-clavulanic acid) are classified as 'Other' and excluded from132 analysis.

133 A detected AMR gene is labeled as a true positive by hAMRoaster if the drug class 134 matched to an AMR gene corresponds to a drug class represented in the mock community. 135 Similarly, a false positive is coded as a drug class that is called by the software, but tested as 136 susceptible in the mock community (--AMR key parameter). Observed AMR genes are labeled 137 "Unknown" if the corresponding drug class is not tested in the mock community and not 138 included in the AMR key file. Once true/false positives and true/false negatives are determined 139 per tool, hAMRoaster calculates sensitivity, specificity, precision, accuracy, recall, and percent 140 unknown.

141 Creation of a synthetic mock communities of antibiotic resistance bacteria

142 Bacterial members of the base mock community were chosen from NCBI's BioSample Database¹⁴ and met the following criteria: (1) the strain had extensive antibiotic susceptibility 143 144 testing data using CLSI or EUCAST testing standards as part of the public NCBI BioSample 145 record; (2) the strain was isolated from human tissue; (3) the strain was the cause of a clinical 146 infection; (4) the FASTA was available to download from NCBI BioSample Database.¹⁴ Eight 147 bacteria, each representing a different species, with overlapping resistance to 43 antibiotics 148 across 18 drug classes, were selected for the mock community (**Table 1**). The included taxa were 149 Acinetobacter baumannii MRSN489669, Citrobacter freundii MRSN12115, Enterobacter 150 cloacae 174, Escherichia coli 222, Klebsiella pneumoniae CCUG 70742, Pseudomonas 151 aeruginosa CCUG 70744, Neisseria gonorrhoeae SW0011, and Staphylococcus aureus LAC 152 (Table 1).

BENCHMARKING AMR SOFTWARE

153	Paired-end FASTQs were simulated by ART ¹⁵ using default parameters for HiSeq 2500
154	at three levels of average sequence coverage (5x, 50x, and 100x) and are available on FigShare
155	(https://figshare.com/account/home#/projects/125974). Simulated FASTQs were subsequently
156	concatenated to resemble shotgun metagenomics reads, and metaSPAdes ¹⁶ was used to create
157	assembled contigs. The FASTQs were simulated with approximately equal numbers of reads of
158	each genome.

159 Running antibiotic prediction software on mock communities

160 All tools for AMR prediction were run on the mock community at all coverage levels

161 using default settings for either simulated FASTQ or assembled contigs. When both options were

162 available, assembled contigs were run.

163 Statistical Analysis

Data were analyzed in Python v3.7.7 and plotted in R v4.0.4. In initial runs we found that some tools provided results with a very high number of observed AMR genes because of multiple overlapping matches on the same gene. Because of this, we condensed the results so that the first observed gene is included in the dataset and subsequent genes that start before the observed end of that gene were not included. Unweighted Cohen's kappa was calculated for each pairwise combination of tools to test agreement between tools.

170 Data Availability

- 171 All data and code is available on the hAMRoaster GitHub repository
- 172 (https://github.com/ewissel/hAMRoaster) and figshare (for large FASTQ files;
- 173 https://figshare.com/account/home#/projects/125974)

9

BENCHMARKING AMR SOFTWARE

174	Results			
175	Selection of nine open source, conda-installable tools for detection of antibiotic resistance			
176	phenotypes			
177	To identify tools for antibiotic resistance prediction, we used a multi-headed search			
178	strategy. We searched PubMed using terms "AMR", "antibiotic resistance genes",			
179	"bioinformatics", and "antimicrobial resistance". We also searched GitHub using the same set of			
180	terms. Once an initial list of tools was compiled, we performed a second PubMed literature			
181	review including the search terms from above plus the names of the tools ("tool 1" OR "tool 2").			
182	We also used Twitter to ask the research community what bioinformatic tools they use to			
183	identify AMR (link available in supplementary materials). These searches identified 16 potential			
184	tools to identify AMR genes (Table 2). The search for tools concluded on March 1, 2021.			
185	In order for an identified tool to be considered eligible for comparison, it had to meet the			
186	following criteria: (1) be conda or Docker installable; (2) have source code publicly available in			
187	a data repository and be actively maintained (defined as tool updates or GitHub responses within			
188	the last year); (3) have an open source license; and (4) take FASTQs or FASTAs as input files.			
189	Nine tools met the criteria to be included in this analysis: ABRIcate ¹⁷ , fARGene ¹⁸ ResFinder ¹⁹ ,			
190	shortBRED ¹¹ , RGI ²⁰ , AMRFinderPlus ²¹ , starAMR ²² , sraX ²³ , and deepARG ²⁴ . PointFinder			
191	also qualified ²⁵ , but was a subtool of ResFinder and only identified mutational resistance for			
192	some organisms, so it was excluded from analysis. The code used to install and run all tools is			
193	available on the hAMRoaster GitHub.			
194	Identified tools fell into two groups - those that aligned reads to a database, and those that			

195 compared reads against some model of AMR (Table 2).

BENCHMARKING AMR SOFTWARE

196 ABRIcate

ABRIcate v.1.0.1 took contig FASTA files as inputs and compared reads against a large
 database created by compiling several existing database, including NCBI AMRFinder Plus,²¹
 CARD,²⁰ ResFinder,¹⁹ ARG-ANNOT,²⁶ MEGARES,²⁷ EcOH,²⁸ PlasmidFinder,²⁹ VFDB,³⁰ and
 Ecoli_VF.³¹ ABRIcate reported on acquired AMR genes and not mutational resistance.

201 shortBRED

shortBRED¹¹ v0.9.3 used a set of marker genes to search metagenomic data for protein
families of interest. The bioBakery³² team published an AMR gene marker database built from
849 AR protein families derived from the ARDB³³ v1.1 and independent curation alongside
shortBRED, which is used in this study.

206 **fARGene**

fARGene^{12,18} v.0.1 uses Hidden Markov Models to detect AMR genes from short
metagenomic data or long read data. This was different from most other tools which compare the
reads directly. fARGene has three pre-built models for detecting resistance to quinolone,
tetracycline, and beta lactamases, which were tested in this study.

211 **RGI**

RGI²⁰ v5.1.1 used protein homology and SNP models to predict 'resistomes'. It used
CARD's protein homolog models as a database. RGI predicts open reading frames (ORFs) using
Prodigal,³⁴ detects homologs with DIAMOND,³⁵ and matches to CARD's database and model
cut off values.

BENCHMARKING AMR SOFTWARE

216 **ResFinder**

11

217	ResFinder ¹⁹ v4.0 was available both as a web-based application or the command line. We
218	used ResFinder 4 in this study, which was specifically designed for detecting genotypic
219	resistance in phenotypically resistant samples. ResFinder aligned reads directly to its own
220	curated database without need for assembly.
221	deepARG
222	deepARG ²⁴ v.2.0 used a supervised deep learning based approach for antibiotic resistance
223	gene annotation of metagenomic sequences. It combines three databases—CARD, ARDB, and
224	UNIPROT—and categorizes them into resistance categories.
225	sraX
226	$sraX^{23}$ v.1.5 was built as a one step tool; in a single command, sraX downloads a
227	database and aligns contigs to this database with DIAMOND ³⁵ . By default, sraX uses CARD,
228	though other options can be specified. As we use default settings for all tools, only CARD was
229	used in this study for sraX.
230	starAMR
231	starAMR ^{22,36} v.0.7.2 uses BLAST+ ³⁷ to compare contigs against a combined database
232	with data from ResFinder, PointFinder, and PlasmidFinder.
233	AMR Finder Plus
234	AMR Finder Plus ²¹ v.3.9.3 uses BLASTX ³⁸ translated searches and hierarchical tree of
235	gene families to detect AMR genes. The database was derived from the Pathogen Detection
236	Reference Gene Catalog ³⁹ and was compiled as part of the National Database of Antibiotic

237 Resistant Organisms (NDARO).

BENCHMARKING AMR SOFTWARE

12

238 Performance of selected tools on a mock bacterial community containing 43 laboratory

239 confirmed AMR phenotypes

Each software tool was run against a synthetic mock community of 8 bacteria at three coverage levels that expressed 43 antibiotic resistance phenotypes. To assess sensitivity and specificity, we developed a new software pipeline called hAMRoaster (Harmonized AMR Output compAriSon Tool 'ER').

244 **Range of phenotypes detected**

Overall, the number of AMR genes detected across all tools ranged from 13 to over 700 at 100x coverage (**Table 3**). For some tools, genes detected did not match to a tested phenotype in the mock community, so the prediction fell into the "unknown" category. Among the tools tested, AMR Finder Plus had the highest degree of unclassifiable/unknown results (observed AMR gene not testing in the mock community). An overview of these results are available in **Figure One**.

251 Sensitivity and Specificity

252 The highest sensitivity for phenotype detection ranged from >0.99 (RGI) to 0.23 (sraX) at 253 the lowest coverage levels (Fig. 2). In general, coverage did not greatly affect sensitivity, with 254 the exception of sraX, which increased to 0.53 at the highest level. fARGene and deepARG had 255 a high sensitivity value (>0.90) at all coverage levels. RGI, deepARG, and fARGene are all tools 256 that compare reads to a model of AMR instead of aligning reads directly to a database, indicating 257 that this method may be appropriate when high sensitivity values are preferred. As a note, in this 258 dataset, there were only 2 possible true negatives because only two drug classes were always 259 susceptible to antibiotics in those two drug classes when tested (nitrofuran and polypeptide). 260 When all software predictions were combined we achieved the 0.99 sensitivity across the

coverage (**Supplementary Table 1**). However this came at the cost of low specificity 0.11.

BENCHMARKING AMR SOFTWARE

- 262 Specificity in this study is artificially low for most tools because the number of possible true
- 263 negatives is low (only two). Therefore we did not assess this metric.

264 Condensing Results

All tools provide results in which the detected AMR genes are overlapping, where one 265 266 gene starts between the start and stop codon of another. If we remove overlapping genes so that 267 only the first detected gene was included, and all genes that started before its stop codon were 268 removed, the counts for all tools decrease (**Table 4**). However, this process does not necessarily 269 improve metrics or counts, and it is unclear that such a tactic is useful for real life uses as there is 270 no simple way to determine which detected AMR genes to include and which should be filtered 271 out. 272 **Concordance between tools** 273 An analysis of the agreement between tools of detected AMR genes within drug classes 274 revealed that overall, there was low agreement (<0.50) between tools at all coverage levels 275 (Table 6).

276

Discussion

Development of a framework for assessing AMR prediction software performance using
 synthetic data

There is a considerable research effort to develop new software for predicting AMR using DNA sequence alone. In this dynamic environment, there is a need for researchers and epidemiologists to understand the relative performance of open source software tools within the types of sample they may encounter. While some tools currently exist for compiling the results of several AMR tools together (hAMRonizer and chARMedDb⁴⁰), this study was motivated by

BENCHMARKING AMR SOFTWARE

14

the lack of an open-source pipeline for comparing the results once compiled. hAMRoaster wasbuilt so that several metrics can easily be compared across tools.

286 The central challenge in developing this software was to compare detected AMR genes to 287 resistance phenotypes. Detected AMR genes needed to be classified by their corresponding drug 288 class(es) so they could be matched to the known phenotypically resistant drug classes. One hurdle in this translation is that tools use different databases, and some databases classify genes 289 290 differently. For example, shortBRED classifies gene families, while CARD classifies specific 291 genes. While this analysis checked the drug classification via the DNA/Protein Accession value 292 in CARD, only around 300 of the >1,000 genes detected could directly map to genes in CARD 293 by accession value. The hAMRonization tool overcomes this challenge by providing a drug class 294 column and filling in the values from ChEBI ontology⁴¹ when possible. The hAMRoaster 295 strategy is to assign a CARD drug class value to every detected AMR gene first by accession 296 number, then by gene name. If neither of these methods assign a drug class for an AMR gene, 297 then the drug class provided by hAMRonization is used. Another challenge in converting 298 detected AMR genes to drug classes is that some drugs are only administered in combination, for 299 example clavulanic acid with amoxicillin. For these instances, resistance to the drug only used in 300 combination (e.g. clavulanic acid) is treated as an "other" drug class and excluded from analysis. 301 In these cases, we used the experience of practicing clinicians to identify combination 302 antibiotics.

The analysis presented here used synthetic data to compare tool performance. Synthetic data has the benefit of allowing controlled input with known ground truth. Therefore users can focus on the types of organisms and phenotypes they need to to detect in their own datasets, perform experiments with real samples, and manipulate a range of factors such as relative

BENCHMARKING AMR SOFTWARE

307	abundance and sequencing error. The NCBI BioSample repository (used in this study) is an
308	invaluable resource for creating such datasets as it contains many samples with AMR phenotypes
309	determined by international standards. Researchers could also sequence and phenotype
310	culturable organisms in their own laboratories to provide testing standards to evaluate software.
311	Here, we exclusively examined synthetic short read Illumina data, but this analysis strategy
312	could be adapted to understand the effect of using data generated on long read technologies such
313	as the Pacific Bioscience and Oxford Nanopore platforms.
314	Overall trends in performance and reasons for variability between tools
315	Tools used one of two basic strategies, either aligning reads to a database of AMR genes
316	or using a more complex model of sequenced-based AMR detection (Table 2). The methods
317	appear to lead to the different AMR genes detected across tools, as demonstrated in Figure 1 and
318	summarized in Table 3.
319	We found the sensitivity of almost all tools to be very good (>0.80), with the exception
320	of sraX, which had a proportionally high number of false negatives compared to true positives.

322 associated with a lab-determined phenotype in our mock community. This is a feature of the

323 approach of limiting focus to a specific set of phenotypes in the testing process. In practice,

324 researchers and epidemiologists may be only interested in a narrow range of AMR phenotypes.

hAMRoaster calculates specificity, precision, accuracy, recall, and F1 (Table 3).
However, all of these measures are dependent on false positives and/or true negatives in their
calculations. As these values are inherently low in our mock community due to the robust
resistance profile, these metrics are not particularly informative for understanding how well these
tools detect resistance in this phenotypically resistant sample. Similarly, we calculated all

BENCHMARKING AMR SOFTWARE

16

330 effective metrics when the results of all tools are combined. While sensitivity in the combined 331 data was very high (>0.99), there was a very high number of overall detected AMR genes, 332 including overlapping results between genes, thus, it would be difficult for researchers to 333 meaningfully use this type of result to understand the AMR profile. We calculated Cohen's 334 kappa to capture the agreement at the drug class level between AMR tools to see if all AMR 335 tools detected resistance to the same drug classes. We found that agreement was surprisingly 336 low across all tools (**Table 6**), indicating that some tools may be better suited for detecting 337 different types of resistance. As such, hAMRoaster provides a table with the number of genes 338 detected per drug class for each tool.

339 Finally, this research supports the need for the further development of software tools for 340 the detection of AMR genes in the human microbiome. It is increasingly recognized that the 341 confined location and genetic diversity of this microbial population provides ideal conditions for 342 genetic exchange among residential microbes and between residential and transient, including 343 pathogenic microbes. Notably, rates of horizontal gene transfer among bacteria in the human 344 microbiome (especially the gastrointestinal tract) are estimated to be many times higher than among bacteria in other diverse ecosystems, such as soil.⁴² Refined tools appropriate for use in 345 346 shotgun metagenomic data will be important for tracking the spread of AMR genes from diverse 347 environmental sources to the human microbiome and across sites in the human body and 348 understanding whether AMR genes are derived from vertical inheritance or via horizontal gene 349 transfer, for example.

In conclusion, this study compared bioinformatics tools for detecting AMR genes in a simulated short read metagenomic sample at three coverage levels at one time point. While tools use slightly different methods and databases, these tools overall had high sensitivity for detection

BENCHMARKING AMR SOFTWARE

353	of AMR genes. Moreover agreement between tools was low, indicating the importance of tool
354	selection. In our test set we found starAMR had the highest sensitivity value with fewer than
355	20% unknown detected genes at all coverage levels. We advocate that researchers should test
356	these software tools using pipelines such as hAMRoaster with a synthetic community that
357	highlights the resistance profiles and sample of interest. In particular, this assessment of
358	performance of available tools should take place before the commencement of the study as the
359	set of tools for detecting AMR genes are actively maintained and undergoing further
360	improvements.
361	Acknowledgements
362	We thank Jon Moller for helping to create the hAMRoaster name.
363	Funding
364	EFW is supported by the National Science Foundation Graduate Research Fellowship under
365	Grant No. 1937971.
366	Author Contributions
367	EFW and TDR conceptualized and planned the initial project. TDF, VH, AD, and RAP provided
368	ongoing support in study design and analysis. EFW and BMT processed the data. EFW, BAJ,
369	and BMT analyzed the data. EFW, BAJ, and RAP created the hAMRoaster software. EFW and
370	TDR drafted the initial manuscript. All authors reviewed the final manuscript.
371	

BENCHMARKING AMR SOFTWARE

372 **References**

- Centers for Disease Control and Prevention (U.S.). Antibiotic Resistance Threats in the
 United States, 2019; Centers for Disease Control and Prevention (U.S.), 2019.
 https://doi.org/10.15620/cdc:82532.
- Nji, E.; Kazibwe, J.; Hambridge, T.; Joko, C. A.; Larbi, A. A.; Damptey, L. A. O.;
 Nkansa-Gyamfi, N. A.; Stålsby Lundborg, C.; Lien, L. T. Q. High Prevalence of
 Antibiotic Resistance in Commensal Escherichia Coli from Healthy Human Sources in
 Community Settings. *Sci. Rep.* 2021, *11* (1), 3372. https://doi.org/10.1038/s41598-02182693-4.
- 381 (3) Brinkac, L.; Voorhies, A.; Gomez, A.; Nelson, K. E. The Threat of Antimicrobial
 382 Resistance on the Human Microbiome. *Microb. Ecol.* 2017, 74 (4), 1001–1008.
 383 https://doi.org/10.1007/s00248-017-0985-z.
- Anjum, M. F.; Zankari, E.; Hasman, H. Molecular Methods for Detection of Antimicrobial Resistance. *Microbiol. Spectr.* 2017, 5 (6). https://doi.org/10.1128/microbiolspec.ARBA-0011-2017.
- 387 (5) Nutrition, C. for F. S. and A. GenomeTrakr Network. FDA 2021.
- (6) Porter, T. M.; Hajibabaei, M. Over 2.5 Million COI Sequences in GenBank and Growing.
 PLOS ONE 2018, *13* (9), e0200177. https://doi.org/10.1371/journal.pone.0200177.
- Oniciuc, E. A.; Likotrafiti, E.; Alvarez-Molina, A.; Prieto, M.; Santos, J. A.; AlvarezOrdóñez, A. The Present and Future of Whole Genome Sequencing (WGS) and Whole
 Metagenome Sequencing (WMS) for Surveillance of Antimicrobial Resistant
 Microorganisms and Antimicrobial Resistance Genes across the Food Chain. *Genes* 2018,
 9 (5), 268. https://doi.org/10.3390/genes9050268.
- 395 (8) Dulanto Chiang, A.; Dekker, J. P. From the Pipeline to the Bedside: Advances and
 396 Challenges in Clinical Metagenomics. *J. Infect. Dis.* 2020, 221 (Supplement_3), S331–
 397 S340. https://doi.org/10.1093/infdis/jiz151.
- 398 (9) Issues · pha4ge/hAMRonization https://github.com/pha4ge/hAMRonization (accessed
 399 2021 -10 -12).
- 400 (10) Grüning, B.; Dale, R.; Sjödin, A.; Chapman, B. A.; Rowe, J.; Tomkins-Tinch, C. H.;
 401 Valieris, R.; Köster, J. Bioconda: Sustainable and Comprehensive Software Distribution
 402 for the Life Sciences. *Nat. Methods* 2018, *15* (7), 475–476.
 403 https://doi.org/10.1029/c41502.018.0046.7
- 403 https://doi.org/10.1038/s41592-018-0046-7.
- 404 (11) Kaminski, J.; Gibson, M. K.; Franzosa, E. A.; Segata, N.; Dantas, G.; Huttenhower, C.
 405 High-Specificity Targeted Functional Profiling in Microbial Communities with
 406 ShortBRED. *PLOS Comput. Biol.* 2015, *11* (12), e1004557.
- 407 https://doi.org/10.1371/journal.pcbi.1004557.
- 408 (12) fannyhb. FARGene; 2021.
- 409 (13) Alcock, B. P.; Raphenya, A. R.; Lau, T. T. Y.; Tsang, K. K.; Bouchard, M.; Edalatmand,
 410 A.; Huynh, W.; Nguyen, A.-L. V.; Cheng, A. A.; Liu, S.; Min, S. Y.; Miroshnichenko, A.;
 411 Tran, H.-K.; Werfalli, R. E.; Nasir, J. A.; Oloni, M.; Speicher, D. J.; Florescu, A.; Singh,
 412 B.; Faltyn, M.; Hernandez-Koutoucheva, A.; Sharma, A. N.; Bordeleau, E.; Pawlowski, A.
- 412 B.; Faityn, M.; Hernandez-Kouloucheva, A.; Sharma, A. N.; Bordeleau, E.; Pawlowski, A 413 C.; Zubyk, H. L.; Dooley, D.; Griffiths, E.; Maguire, F.; Winsor, G. L.; Beiko, R. G.;
- 415 C., Zubyk, H. L., Dobley, D., Grinnus, E., Magure, F., Wilson, G. L., Berko, K. G., 414 Brinkman, F. S. L.; Hsiao, W. W. L.; Domselaar, G. V.; McArthur, A. G. CARD 2020:
- $\begin{array}{c} 414 \\ \text{Brinkman, F. S. L.; Hsiao, W. W. L.; Domselaar, G. V.; McArtnur, A. G. CARD 2020:} \\ 415 \\ \text{Activity of } \mathbf{D} \quad \text{if } \mathbf{f} \quad \mathbf{O} \quad \text{if } \mathbf{f} \quad \mathbf{O} \quad$
- 415 Antibiotic Resistome Surveillance with the Comprehensive Antibiotic Resistance
- 416 Database. *Nucleic Acids Res.* **2020**, *48* (D1), D517–D525.

417		https://doi.org/10.1093/nar/gkz935.
418	(14)	Barrett, T.; Clark, K.; Gevorgyan, R.; Gorelenkov, V.; Gribov, E.; Karsch-Mizrachi, I.;
419		Kimelman, M.; Pruitt, K. D.; Resenchuk, S.; Tatusova, T.; Yaschenko, E.; Ostell, J.
420		BioProject and BioSample Databases at NCBI: Facilitating Capture and Organization of
421		Metadata. Nucleic Acids Res. 2012, 40 (D1), D57–D63.
422		https://doi.org/10.1093/nar/gkr1163.
423	(15)	Huang, W.; Li, L.; Myers, J. R.; Marth, G. T. ART: A next-Generation Sequencing Read
424		Simulator. <i>Bioinforma. Oxf. Engl.</i> 2012 , 28 (4), 593–594.
425		https://doi.org/10.1093/bioinformatics/btr708.
426	(16)	Nurk, S.; Meleshko, D.; Korobeynikov, A.; Pevzner, P. A. MetaSPAdes: A New Versatile
427		Metagenomic Assembler. Genome Res. 2017, 27 (5), 824–834.
428		https://doi.org/10.1101/gr.213959.116.
429	(17)	Seemann, T. ABRicate; 2021.
430	(18)	Berglund, F.; Österlund, T.; Boulund, F.; Marathe, N. P.; Larsson, D. G. J.; Kristiansson,
431		E. Identification and Reconstruction of Novel Antibiotic Resistance Genes from
432		Metagenomes. <i>Microbiome</i> 2019 , 7 (1), 52. https://doi.org/10.1186/s40168-019-0670-1.
433	(19)	Bortolaia, V.; Kaas, R. S.; Ruppe, E.; Roberts, M. C.; Schwarz, S.; Cattoir, V.; Philippon,
434		A.; Allesoe, R. L.; Rebelo, A. R.; Florensa, A. F.; Fagelhauer, L.; Chakraborty, T.;
435		Neumann, B.; Werner, G.; Bender, J. K.; Stingl, K.; Nguyen, M.; Coppens, J.; Xavier, B.
436		B.; Malhotra-Kumar, S.; Westh, H.; Pinholt, M.; Anjum, M. F.; Duggett, N. A.; Kempf, I.;
437		Nykäsenoja, S.; Olkkola, S.; Wieczorek, K.; Amaro, A.; Clemente, L.; Mossong, J.;
438		Losch, S.; Ragimbeau, C.; Lund, O.; Aarestrup, F. M. ResFinder 4.0 for Predictions of
439		Phenotypes from Genotypes. J. Antimicrob. Chemother. 2020, 75 (12), 3491–3500.
440		https://doi.org/10.1093/jac/dkaa345.
441	(20)	Alcock, B. P.; Raphenya, A. R.; Lau, T. T. Y.; Tsang, K. K.; Bouchard, M.; Edalatmand,
442	()	A.; Huynh, W.; Nguyen, AL. V.; Cheng, A. A.; Liu, S.; Min, S. Y.; Miroshnichenko, A.;
443		Tran, HK.; Werfalli, R. E.; Nasir, J. A.; Oloni, M.; Speicher, D. J.; Florescu, A.; Singh,
444		B.; Faltyn, M.; Hernandez, A., Koutoucheva; Sharma, A. N.; Bordeleau, E.; Pawlowski,
445		A. C.; Zubyk, H. L.; Dooley, D.; Griffiths, E.; Maguire, F.; Winsor, G. L.; Beiko, R. G.;
446		Brinkman, F. S. L.; Hsiao, W. W. L.; Domselaar, G. V.; McArthur, A. G. CARD 2020:
447		Antibiotic Resistome Surveillance with the Comprehensive Antibiotic Resistance
448		Database; 2020. https://doi.org/10.1093/nar/gkz935.
449	(21)	NCBI Antimicrobial Resistance Gene Finder (AMRFinderPlus); NCBI - National Center
450		for Biotechnology Information/NLM/NIH, 2021.
451	(22)	Staramr; National Microbiology Laboratory, 2021.
452	(23)	Panunzi, L. G. SraX: A Novel Comprehensive Resistome Analysis Tool. <i>Front</i> .
453	()	<i>Microbiol.</i> 2020 , <i>11</i> , 52. https://doi.org/10.3389/fmicb.2020.00052.
454	(24)	Arango-Argoty, G.; Garner, E.; Pruden, A.; Heath, L. S.; Vikesland, P.; Zhang, L.
455	(= .)	DeepARG: A Deep Learning Approach for Predicting Antibiotic Resistance Genes from
456		Metagenomic Data. <i>Microbiome</i> 2018 , 6 (1), 23. https://doi.org/10.1186/s40168-018-
457		0401-z.
458	(25)	PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance
459	()	associated with chromosomal point mutations in bacterial pathogens Journal of
460		Antimicrobial Chemotherapy Oxford Academic
461		https://academic.oup.com/jac/article/72/10/2764/3979530?login=true (accessed 2021 -10 -
462		12).
		/-

463 464 465 466	(26)	Gupta, S. K.; Padmanabhan, B. R.; Diene, S. M.; Lopez-Rojas, R.; Kempf, M.; Landraud, L.; Rolain, JM. ARG-ANNOT, a New Bioinformatic Tool To Discover Antibiotic Resistance Genes in Bacterial Genomes. <i>Antimicrob. Agents Chemother.</i> 2014 , <i>58</i> (1), 212–220. https://doi.org/10.1128/AAC.01310-13.
467 468 469 470	(27)	Doster, E.; Lakin, S. M.; Dean, C. J.; Wolfe, C.; Young, J. G.; Boucher, C.; Belk, K. E.; Noyes, N. R.; Morley, P. S. MEGARes 2.0: A Database for Classification of Antimicrobial Drug, Biocide and Metal Resistance Determinants in Metagenomic Sequence Data. <i>Nucleic Acids Res.</i> 2020 , <i>48</i> (D1), D561–D569.
471 472 473 474 475	(28)	https://doi.org/10.1093/nar/gkz1010. Ingle, D. J.; Valcanis, M.; Kuzevski, A.; Tauschek, M.; Inouye, M.; Stinear, T.; Levine, M. M.; Robins-Browne, R. M.; Holt, K. E. In Silico Serotyping of E. Coli from Short Read Data Identifies Limited Novel O-Loci but Extensive Diversity of O:H Serotype Combinations within and between Pathogenic Lineages. <i>Microb. Genomics</i> 2016 , <i>2</i> (7),
476 477 478 479	(29)	e000064. https://doi.org/10.1099/mgen.0.000064. Carattoli, A.; Hasman, H. PlasmidFinder and In Silico PMLST: Identification and Typing of Plasmid Replicons in Whole-Genome Sequencing (WGS). <i>Methods Mol. Biol. Clifton</i> <i>NJ</i> 2020 , <i>2075</i> , 285–294. https://doi.org/10.1007/978-1-4939-9877-7_20.
480 481 482	(30)	Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: Hierarchical and Refined Dataset for Big Data Analysis—10 Years On. <i>Nucleic Acids Res.</i> 2016 , <i>44</i> (D1), D694–D697. https://doi.org/10.1093/nar/gkv1239.
483 484 485 486	(31) (32)	<i>Escherichia Coli Virulence Factors</i> ; National Microbiology Laboratory, 2021. McIver, L. J.; Abu-Ali, G.; Franzosa, E. A.; Schwager, R.; Morgan, X. C.; Waldron, L.; Segata, N.; Huttenhower, C. BioBakery: A Meta'omic Analysis Environment.
486 487 488 489	(33)	<i>Bioinformatics</i> 2018 , <i>34</i> (7), 1235–1237. https://doi.org/10.1093/bioinformatics/btx754. Liu, B.; Pop, M. ARDBAntibiotic Resistance Genes Database. <i>Nucleic Acids Res.</i> 2009 , <i>37</i> (Database), D443–D447. https://doi.org/10.1093/nar/gkn656. Hyatt, D.; Chen, GL.; LoCascio, P. F.; Land, M. L.; Larimer, F. W.; Hauser, L. J.
489 490 491 492	(34)	 Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification. <i>BMC Bioinformatics</i> 2010, <i>11</i> (1), 119. https://doi.org/10.1186/1471-2105-11-119. Buchfink, B.; Reuter, K.; Drost, HG. Sensitive Protein Alignments at Tree-of-Life Scale
493 494		Using DIAMOND. <i>Nat. Methods</i> 2021 , <i>18</i> (4), 366–368. https://doi.org/10.1038/s41592- 021-01101-x. Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.;
495 496 497 498	(36)	Aarestrup, F. M.; Larsen, M. V. Identification of Acquired Antimicrobial Resistance Genes. J. Antimicrob. Chemother. 2012 , 67 (11), 2640–2644. https://doi.org/10.1093/jac/dks261.
499 500 501	(37)	Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T. L. BLAST+: Architecture and Applications. <i>BMC Bioinformatics</i> 2009 , <i>10</i> (1), 421. https://doi.org/10.1186/1471-2105-10-421.
502 503 504	(38)	McGinnis, S.; Madden, T. L. BLAST: At the Core of a Powerful and Diverse Set of Sequence Analysis Tools. <i>Nucleic Acids Res.</i> 2004 , <i>32</i> (suppl_2), W20–W25. https://doi.org/10.1093/nar/gkh435.
505 506	(39)	Reference Gene Catalog - Pathogen Detection - NCBI https://www.ncbi.nlm.nih.gov/pathogens/refgene/# (accessed 2021 -09 -13).
507 508	(40)	Anthony Underwood / chAMReDb https://gitlab.com/antunderwood/chamredb (accessed 2021 -10 -12).

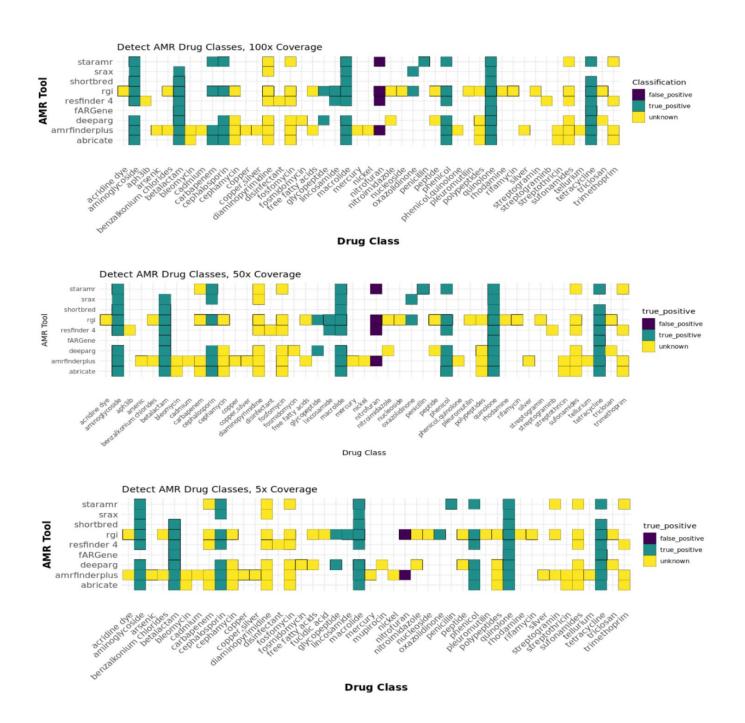
509	(41)	Hastings, J.; Owen, G.; Dekker, A.; Ennis, M.; Kale, N.; Muthukrishnan, V.; Turner, S.;
510		Swainston, N.; Mendes, P.; Steinbeck, C. ChEBI in 2016: Improved Services and an
511		Expanding Collection of Metabolites. <i>Nucleic Acids Res.</i> 2016 , 44 (D1), D1214–D1219.
512		https://doi.org/10.1093/nar/gkv1031.
513	(42)	Huttenhower, C.; Gevers, D.; Knight, R.; Abubucker, S.; Badger, J. H.; Chinwalla, A. T.;
514	()	Creasy, H. H.; Earl, A. M.; FitzGerald, M. G.; Fulton, R. S.; Giglio, M. G.; Hallsworth-
515		Pepin, K.; Lobos, E. A.; Madupu, R.; Magrini, V.; Martin, J. C.; Mitreva, M.; Muzny, D.
516		M.; Sodergren, E. J.; Versalovic, J.; Wollam, A. M.; Worley, K. C.; Wortman, J. R.;
517		Young, S. K.; Zeng, Q.; Aagaard, K. M.; Abolude, O. O.; Allen-Vercoe, E.; Alm, E. J.;
518		Alvarado, L.; Andersen, G. L.; Anderson, S.; Appelbaum, E.; Arachchi, H. M.; Armitage,
519		G.; Arze, C. A.; Ayvaz, T.; Baker, C. C.; Begg, L.; Belachew, T.; Bhonagiri, V.; Bihan,
520		M.; Blaser, M. J.; Bloom, T.; Bonazzi, V.; Paul Brooks, J.; Buck, G. A.; Buhay, C. J.;
520		Busam, D. A.; Campbell, J. L.; Canon, S. R.; Cantarel, B. L.; Chain, P. S. G.; Chen, IM.
522		A.; Chen, L.; Chhibba, S.; Chu, K.; Ciulla, D. M.; Clemente, J. C.; Clifton, S. W.; Conlan,
523		S.; Crabtree, J.; Cutting, M. A.; Davidovics, N. J.; Davis, C. C.; DeSantis, T. Z.; Deal, C.;
523 524		Delehaunty, K. D.; Dewhirst, F. E.; Deych, E.; Ding, Y.; Dooling, D. J.; Dugan, S. P.;
525		Michael Dunne, W.; Scott Durkin, A.; Edgar, R. C.; Erlich, R. L.; Farmer, C. N.; Farrell,
526		R. M.; Faust, K.; Feldgarden, M.; Felix, V. M.; Fisher, S.; Fodor, A. A.; Forney, L. J.;
527		Foster, L.; Di Francesco, V.; Friedman, J.; Friedrich, D. C.; Fronick, C. C.; Fulton, L. L.;
528		Gao, H.; Garcia, N.; Giannoukos, G.; Giblin, C.; Giovanni, M. Y.; Goldberg, J. M.; Goll,
529		J.; Gonzalez, A.; Griggs, A.; Gujja, S.; Kinder Haake, S.; Haas, B. J.; Hamilton, H. A.;
530		Harris, E. L.; Hepburn, T. A.; Herter, B.; Hoffmann, D. E.; Holder, M. E.; Howarth, C.;
531		Huang, K. H.; Huse, S. M.; Izard, J.; Jansson, J. K.; Jiang, H.; Jordan, C.; Joshi, V.;
532		Katancik, J. A.; Keitel, W. A.; Kelley, S. T.; Kells, C.; King, N. B.; Knights, D.; Kong, H.
533		
535 534		H.; Koren, O.; Koren, S.; Kota, K. C.; Kovar, C. L.; Kyrpides, N. C.; La Rosa, P. S.; Lee, S. L.; Lemon, K. P.; Lennon, N.; Lewis, C. M.; Lewis, L.; Ley, R. E.; Li, K.; Liolios, K.;
534 535		Liu, B.; Liu, Y.; Lo, CC.; Lozupone, C. A.; Dwayne Lunsford, R.; Madden, T.;
536		Mahurkar, A. A.; Mannon, P. J.; Mardis, E. R.; Markowitz, V. M.; Mavromatis, K.;
530 537		
538		McCorrison, J. M.; McDonald, D.; McEwen, J.; McGuire, A. L.; McInnes, P.; Mehta, T.; Mihindukulasuriya, K. A.; Miller, J. R.; Minx, P. J.; Newsham, I.; Nusbaum, C.;
539		• • • • • • • • • • • • •
539 540		O'Laughlin, M.; Orvis, J.; Pagani, I.; Palaniappan, K.; Patel, S. M.; Pearson, M.; Peterson, L. Badar, M.; Debl. C.; Pallard, K. S.; Par, M.; Priset, M. E.; Progter, L. M.; Oin, Y.;
540 541		J.; Podar, M.; Pohl, C.; Pollard, K. S.; Pop, M.; Priest, M. E.; Proctor, L. M.; Qin, X.;
541 542		Raes, J.; Ravel, J.; Reid, J. G.; Rho, M.; Rhodes, R.; Riehle, K. P.; Rivera, M. C.; Redriguez Mueller, R.; Beggre, V. H.; Begg, M. C.; Bugg, C.; Sarka, R. K.; Sarkar, R.;
		Rodriguez-Mueller, B.; Rogers, YH.; Ross, M. C.; Russ, C.; Sanka, R. K.; Sankar, P.;
543		Fah Sathirapongsasuti, J.; Schloss, J. A.; Schloss, P. D.; Schmidt, T. M.; Scholz, M.;
544		Schriml, L.; Schubert, A. M.; Segata, N.; Segre, J. A.; Shannon, W. D.; Sharp, R. R.;
545		Sharpton, T. J.; Shenoy, N.; Sheth, N. U.; Simone, G. A.; Singh, I.; Smillie, C. S.; Sobel,
546		J. D.; Sommer, D. D.; Spicer, P.; Sutton, G. G.; Sykes, S. M.; Tabbaa, D. G.; Thiagarajan,
547		M.; Tomlinson, C. M.; Torralba, M.; Treangen, T. J.; Truty, R. M.; Vishnivetskaya, T. A.;
548		Walker, J.; Wang, L.; Wang, Z.; Ward, D. V.; Warren, W.; Watson, M. A.; Wellington,
549		C.; Wetterstrand, K. A.; White, J. R.; Wilczek-Boney, K.; Wu, Y.; Wylie, K. M.; Wylie,
550		T.; Yandava, C.; Ye, L.; Ye, Y.; Yooseph, S.; Youmans, B. P.; Zhang, L.; Zhou, Y.; Zhu,
551		Y.; Zoloth, L.; Zucker, J. D.; Birren, B. W.; Gibbs, R. A.; Highlander, S. K.; Methé, B. A.;
552		Nelson, K. E.; Petrosino, J. F.; Weinstock, G. M.; Wilson, R. K.; White, O.; The Human
553		Microbiome Project Consortium. Structure, Function and Diversity of the Healthy Human
554		Microbiome. Nature 2012 , 486 (7402), 207–214. https://doi.org/10.1038/nature11234.

BENCHMARKING AMR SOFTWARE

555 Figure 1: Antimicrobial Resistance (AMR) Genes Detected By Software Tools by Drug

- 556 Class
- 557 AMR Genes detected by each tool across coverage levels, grouped into drug class to which the
- 558 genes confer resistance with the color coding indicating whether the detection was true positive

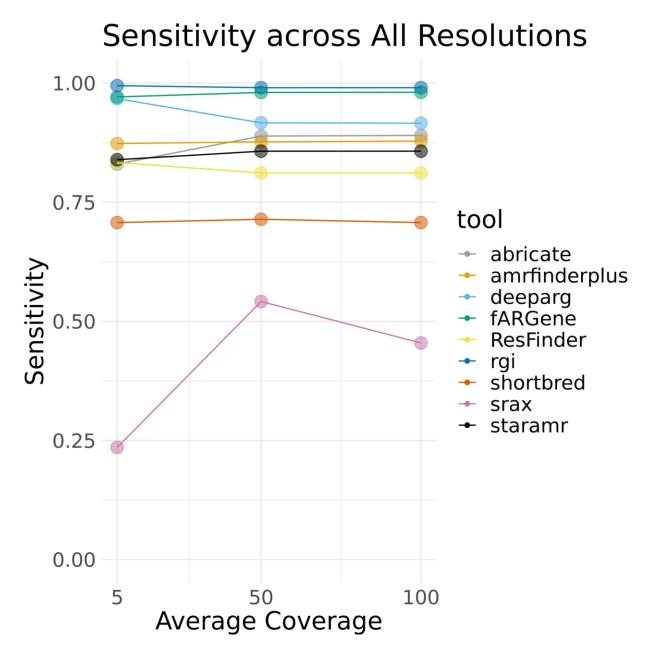
- 559 (green), false positive (purple) or unknown (yellow). Clear spaces in the plot indicate that AMR
- 560 genes were not detected for the drug class on the x-axis by the tool on the y-axis.

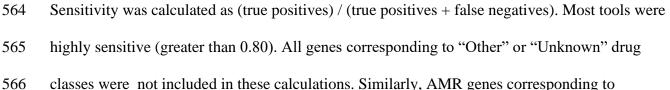


BENCHMARKING AMR SOFTWARE

561 Figure 2 Sensitivity of Software Tools for Detection of Antimicrobial Resistance

562 (AMR) Genes Across Coverage Levels





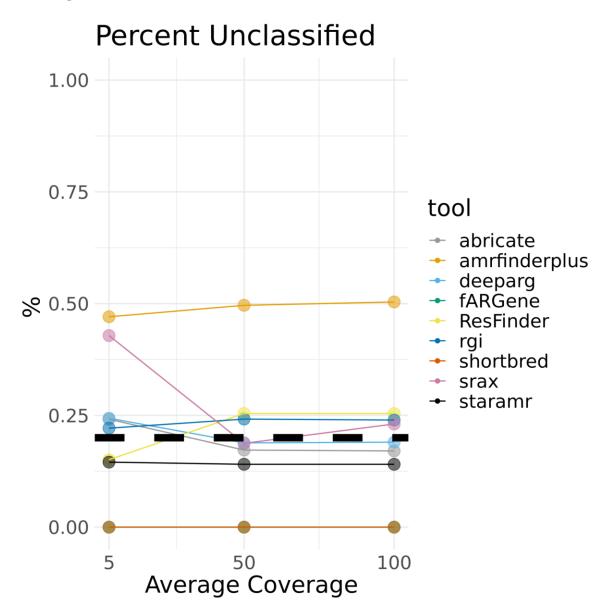
- 567 phenotypic resistance that was not tested in the mock community was considered "Unknown"
- 568 and not included in the sensitivity analysis.

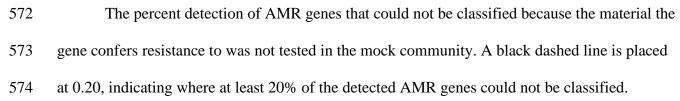
BENCHMARKING AMR SOFTWARE

26

569 Figure 3: Percent Detection of Unknown Antimicrobial (AMR) Resistance Genes Across

570 Coverage

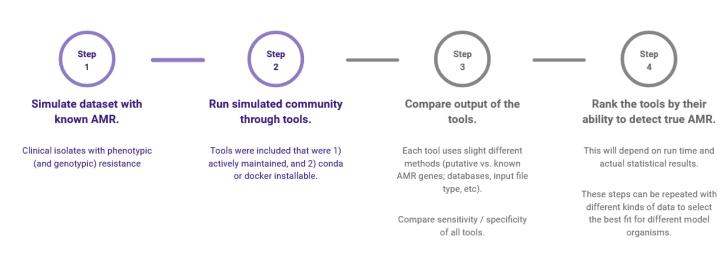




27

BENCHMARKING AMR SOFTWARE

575 Supplementary Figure 1: Pictorial Methods



576

BENCHMARKING AMR SOFTWARE

28

578

579

Table 1: Clinical isolates included in the simulated community. (susceptibility test is in

580 the spreadsheet, will have to be supplemental bc so big)

	Testing Standard		
Strain	(CLSI or EUCAST)	BioSample ID	Link
			https://www.nc
Neisseria gonorrhoeae			<u>bi.nlm.nih.gov/biosam</u>
SW0011	CLSI	SAMN15960549	<u>ple/SAMN15960549</u>
			https://www.nc
Klebsiella pneumoniae			<u>bi.nlm.nih.gov/biosam</u>
CCUG 70742	EUCAST	SAMN07602587	<u>ple/SAMN07602587</u>
Pseudomonas			https://www.nc
aeruginosa CCUG			<u>bi.nlm.nih.gov/biosam</u>
70744	EUCAST	SAMN07602569	<u>ple/SAMN07602569 /</u>
Acinetobacter			https://www.nc
baumannii			<u>bi.nlm.nih.gov/biosam</u>
MRSN489669	CLSI	SAMN12087686	<u>ple/SAMN12087686</u>
			https://www.nc
Enterobacter cloacae			<u>bi.nlm.nih.gov/biosam</u>
174	CLSI	SAMN04456586	<u>ple/SAMN04456586</u>
Citrobacter freundii	CLSI	SAMN13412315	https://www.nc

BENCHMARKING AMR SOFTWARE

MRSN12115			bi.nlm.nih.gov/biosam
			<u>ormining</u> or orobuin
			ple/SAMN13412315
			https://www.nc
Staphylococcus aureus			<u>bi.nlm.nih.gov/biosam</u>
LAC	CLSI	SAMN08391108	ple/SAMN08391108
			https://www.nc
			<u>bi.nlm.nih.gov/biosam</u>
Escherichia coli 222	CLSI	SAMN05194390	<u>ple/SAMN05194390</u>

581

BENCHMARKING AMR SOFTWARE

583 Table 2: Tools identified from search methods with the selection criteria and whether

they subsequently worked or not.

	Conda /	Actively			Implement	
	Docker	Maintaine	Input	Included in	ation	
Tool	Installable?	d?	format?	Analysis?	Method	Database
						NCBI AMRFinder
						Plus, CARD,
						ResFinder, ARG-
						ANNOT,
						MEGARES, EcOH,
						PlasmidFinder,
					Align reads	VFDB, and
ABRIcate	Yes - conda	Yes	FASTA	Yes	to database	Ecoli_VF
						AMR gene marker
						database from 849
						AR protein families
	Yes -					from the ARDB19
	Docker &				Align reads	and independent
shortBRED	conda	Yes	FASTA	Yes	to database	curation

BENCHMARKING AMR SOFTWARE

						Hidden markov
						models for
						quinolone,
					Compare to	tetracycline, and beta
fARGene	Yes - conda	Yes	FASTQ	Yes	AMR model	lactamases
	Yes -					Prodigal predicts
	Docker					ORF and compared
	(conda				Compare to	to CARD and
RGI	outdated)	Yes	FASTQ	Yes	AMR model	WildCARD
	Yes -					
	Docker					
	(conda				Align reads	ResFinder 4
ResFinder 4	broken)	Yes	FASTA	Yes	to database	database
						Supervised deep
						learning compares
						reads to antibiotic
						resistance categories
						created from CARD,
					Compare to	ARDB, and
DeepARG	Yes, Docker	Unclear	FASTA	Yes	AMR model	UNIPROT
					Align reads	
sraX	Yes - both	Yes	FASTA	Yes	to database	CARD by default

						ResFinder,
					Align reads	PointFinder, and
starAMR	Yes - conda	Yes	FASTA	Yes	to database	PlasmidFinder
						Pathogen Detection
AMR					Align reads	Reference Gene
Finder Plus	Yes - conda	Yes	FASTA	Yes	to database	Database
			FASTQ			
ResPipe	No	Yes	or BAM	No		
	Yes -					
PointFinder	Docker	Yes	FASTA	No		
PCM:						
Pairwise						
Comparativ			FASTA			
e Modelling	No	Yes	- protein	No		
SRST2	No	No	FASTQ	No		
			Require			
			s special			
Arg_Ranke	Yes -		metadata			
r	conda	Yes	input	No		
MetaCherc	Yes -		FASTA			
hant	conda	No	-	No		

BENCHMARKING AMR SOFTWARE

-	
\mathbf{a}	\mathbf{r}
1	1
\mathcal{I}	\mathcal{I}

			genomic		
			Paired		
	Yes -		end		
ARIBA	Docker	No	FASTQ	No	
ARG-					
ANNOT	No	No	Unclear	No	
kmerresista					
nce	No	No	-	No	
				No - could	
				not track	
			Unkno	down	
c-sstar	No	No	wn	github	

585

BENCHMARKING AMR SOFTWARE

Table 3: Summary Statistics from hAMRoaster: These are the counts and metrics as
calculated by the hAMRoaster pipeline. Formulas for all metrics are as follows:
Specificity = $TN / (TN + FP)$

- 590 Sensitivity = TP / (TP + FN)
- Precision = TP / (TP + FP)
- Accuracy = (TP + TN) / (TP + FP + TN + FN)
- 593 Recall = true pos / (true pos + false neg)
- F1 = 2 * (precision * recall) / (precision + recall)
- 595 Percent_unknown = unknown / (true_positives + false_positives + unknowns)

Full	Full Results, 100x Coverage													
tool	False positive	True positive		False negative	True negative	sensitivity	specificity	precision	accuracy	recall	Percent unclassified			
abricate	0	66	22	9	2	0.8800	1.0000	1.0000	0.8831	7.3333	0.2500			
amrfinderpl us	2	62	71	9	1	0.8732	0.3333	0.9688	0.8514	5.6364	0.5259			
deeparg	0	98	23	8	2	0.9245	1.0000	1.0000	0.9259	12.250 0	0.1901			
fARGene	0	713	0	13	2	0.9821	1.0000	1.0000	0.9821	54.846 2	0.0000			
resfinder 4	1	43	15	9	1	0.8269	0.5000	0.9773	0.8148	4.3000	0.2542			
rgi	4	559	255	6	1	0.9894	0.2000	0.9929	0.9825	55.900 0	0.3117			
shortbred	0	29	0	11	2	0.7250	1.0000	1.0000	0.7381	2.6364	0.0000			
srax	0	10	3	11	2	0.4762	1.0000	1.0000	0.5217	0.9091	0.2308			
		5				0.8	0.5	0.9	0.8		0.17			
staramr	1	2	11	9	1	525	000	811	413	.2000	19			
Full	Results,	50x Cov	erage				1	I			I			
	False	True		False	True						Percent			
tool	positive	positive	unknown	negative	negative	sensitivity	specificity	precision	accuracy	recall	unclassified			

tool abricate	positive 0	positive 9	unknown 39	negative 19	-	-	specificity 1.0000	precision 1.0000	accuracy 0.8200	recall 4.3333	unclassified 0.3276
	False	True		False	True						Percent
Full	Results,	5x Cove	rage								
staramr	1	52	11	9	1	0.8525	0.5000	0.9811	0.8413	5.200	0.1719
srax	0	13	3	10	2	0.5652	1.0000	1.0000	0.6000	1.300	0.1875
shortbred	0	30	0	11	2	0.7317	1.0000	1.0000	0.7442	2.727	0.0000
rgi	4	557	254	6	1	0.9893	0.2000	0.9929	0.9824	55.700	0.3117
resfinder 4	1	43	15	9	1	0.8269	0.5000	0.9773	0.8148	4.300	0.2542
fARGene	0	702	0	13	2	0.9818	1.0000	1.0000	0.9819	54.000	0.0000
deeparg	0	99	23	8	2	0.9252	1.0000	1.0000	0.9266	12.375	0.1885
amrfinderpl us	2	62	67	9	1	0.8732	0.3333	0.9688	0.8514	5.6364	0.5115
abricate	0	66	21	9	2	0.8800	1.0000	1.0000	0.8831	7.333	0.2414

										33.375	
deeparg	0	8	267	86	2	0.9709	1.0000	1.0000	0.9711	0	0.2436
										36.153	
fARGene	0	13	470	0	2	0.9731	1.0000	1.0000	0.9732	8	0.0000
resfinder 4	0	9	43	10	2	0.8269	1.0000	1.0000	0.8333	4.7778	0.1887
										56.388	
rgi	12	6	1015	418	1	0.9941	0.0769	0.9883	0.9826	9	0.2893
shortbred	0	11	29	0	2	0.7250	1.0000	1.0000	0.7381	2.6364	0.0000
srax	0	12	4	3	2	0.2500	1.0000	1.0000	0.3333	0.3333	0.4286
staramr	0	9	44	11	2	0.8302	1.0000	1.0000	0.8364	4.8889	0.2000

BENCHMARKING AMR SOFTWARE

38

- 599
- 600 **Table 4:** Condensed Summary Statistics: This table contains the counts and metrics if the
- 601 data were condensed so that overlapping genes are excluded from the count data (i.e. genes that
- 602 start between the start and stop codon of another gene are not considered in analysis).

Conde	Condensed Results, 100x Coverage													
	False	True		False	True						Percent			
tool	positive	positive	unknown	negative	negative	sensitivity	specificity	precision	accuracy	recall	unclassified			
abricate	0	21	5	0	2	1	1	1	1	1	0.1923			
amrfinderplus	0	22	23	0	2	1	1	1	1	1	0.5111			
deeparg	0	2	1	0	2	1	1	1	1	1	0.3333			
fARGene	0	713	0	0	2	1	1	1	1	1	0			
resfinder 4	0	12	5	0	2	1	1	1	1	1	0.2941			
rgi	1	77	38	0	1	1	0.9872	0.5	0.9872	1	0.32769			
shortbred	0	29	0	0	2	1	1	1	1	1	0			
srax	0	10	3	0	2	1	1	1	1	1	0.23078			
staramr	1	36	6	0	1	1	0.9730	0.5	0.9737	1	0.1395			
Condensed I	Results	, 50x Cov	erage	1		I	·	1	1		L			
	False	True		False	True						Percent			
tool	positive	positive	unknown	negative	negative	sensitivity	specificity	precision	accuracy	recall	unclassified			

abricate	0	22	3	0	2	1	1	1	1	1	1
amrfinderpl											
us	0	20	27	0	2	1	1	1	1	1	1
deeparg	0	1	1	0	2	1	1	1	1	1	1
fARGene	0	702	0	0	2	1	1	1	1	1	1
resfinder 4	0	11	7	0	2	1	1	1	1	1	1
							0.98684210				
rgi	1	75	38	0	1	1	53	0.9868	0.5000	0.9870	1
shortbred	0	30	0	0	2	1	1	1	1	1	1
srax	0	13	3	0	2	1	1	1	1	1	1
							0.96666666				
staramr	1	29	7	0	1	1	67	0.9667	0.5000	0.9677	1
Condensed I	Results	, 5x Cove	rage								
	False	True		False	True						Percent
tool	positive	positive	unknown	negative	negative	sensitivity	specificity	precision	accuracy	recall	unclassified
abricate	0	4	3	0	2	1	1	1	1	1	0.4286
amrfinderpl											
us	0	7	11	0	2	1	1	1	1	1	0.6111

BENCHMARKING AMR SOFTWARE

deeparg	0	42	7	0	2	1	1	1	1	1	0.1429
fARGene	0	470	0	0	2	1	1	1	1	1	0.0000
resfinder 4	0	6	2	0	2	1	1	1	1	1	0.2500
rgi	1	48	30	0	1	1	0.9796	0.5000	0.9800	1	0.3797
shortbred	0	29	0	0	2	1	1	1	1	1	0.0000
srax	0	4	3	0	2	1	1	1	1	1	0.4286
staramr	0	33	8	0	2	1	1	1	1	1	0.1951

BENCHMARKING AMR SOFTWARE

Table 5: Kappa Values: Kappa values (agreement) between tools across coverage levels

609 calculated in R using the kappa2 function

5X Kappa	amrfinder	deeparg	fARGene	resfinder 4	rgi	shortbred	srax	staramr
abricate	0.49231	0.48069	0.22703	0.74419	0.20532	0.36649	0.36649	0.64186
amrfinderp	0	-0.00797	0.08027	0.30483	-0.1448	0.13652	0.13652	0.30483
deeparg	0	0	0.17564	0.42232	0.3901	0.28868	0.28868	0.32604
fARGene	0	0	0	0.29712	0.07293	0.72671	0.18012	0.15655
resfinder 4	0	0	0	0	0.19561	0.46828	0.46828	0.78164
rgi	0	0	0	0	0	0.12438	0.12438	0.19561
shortbred	0	0	0	0	0	0	0.54872	0.33535
srax	0	0	0	0	0	0	0	0.46828

50X Kappa	amrfinder	deeparg	fARGene	resfinder 4	rgi	shortbred	srax	staramı
abricate	0.50185	0.56961	0.22925	0.45902	0.25277	0.36943	0.38964	0.64567
amrfinderp	0	0.11929	0.08313	0.13699	-0.13445	0.14108	0.12511	0.31513
deeparg	0	0	0.21053	0.32258	0.4548	0.34146	0.35867	0.40529
fARGene	0	0	0	0.25	0.08313	0.72727	0.33824	0.1588
resfinder 4	0	0	0	0	0.13699	0.4	0.30769	0.5862
rgi	0	0	0	0	0	0.14108	0.20118	0.2345
shortbred	0	0	0	0	0	0	0.61702	0.3382
srax	0	0	0	0	0	0	0	0.3732

100X Kappa	amrfinder	deeparg	fARGene	resfinder 4	rgi	shortbred	srax	staramr
abricate	0.50185	0.56961	0.22925	0.45902	0.25277	0.36943	0.32331	0.64567
amrfinderp	0	0.11929	0.08313	0.13699	-0.13445	0.14108	0.09548	0.31513
deeparg	0	0	0.21053	0.32258	0.4548	0.34146	0.29603	0.40529
fARGene	0	0	0	0.25	0.08313	0.72727	0.39024	0.15888
resfinder 4	0	0	0	0	0.13699	0.4	0.35294	0.58621
rgi	0	0	0	0	0	0.14108	0.17085	0.23456
shortbred	0	0	0	0	0	0	0.68966	0.33824
srax	0	0	0	0	0	0	0	0.29185

BENCHMARKING AMR SOFTWARE

616 Supplementary Table 1: Summary Statistics when results of all tools are combined.

Combined Stats								
	100x 50x		5x					
true_positive	1703	1624	1971					
unknown	329	394	605					
false_positive	8	8	13					
true_negatives	1	1	1					
false_negatives	6	6	6					
sensitivity	0.996	0.996	0.996					
specificity	0.111	0.111	0.071					

BENCHMARKING AMR SOFTWARE

44

- 621 Supplementary table 2: link to tweet
- 622 https://twitter.com/emily_wissel/status/1336013892116488195

- 624 Supplementary table 3: tidy table of data
- 625 <u>https://docs.google.com/spreadsheets/d/1bfACqEh0nkS65vCUj5DfMg4PvW0fHxbtrv0P</u>
- 626 gKt1gT4/edit#gid=53644837