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Abstract 25 

The use of shotgun metagenomics for AMR detection is appealing because data can be 26 

generated from clinical samples with minimal processing. Detecting antimicrobial resistance 27 

(AMR) in clinical genomic data is an important epidemiological task, yet a complex 28 

bioinformatic process. Many software tools exist to detect AMR genes, but they have mostly 29 

been tested in their detection of genotypic resistance in individual bacterial strains. It is 30 

important to understand how well these bioinformatic tools detect AMR genes in shotgun 31 

metagenomic data.  32 

We developed a software pipeline, hAMRoaster ( 33 

https://github.com/ewissel/hAMRoaster), for assessing accuracy of prediction of antibiotic 34 

resistance phenotypes. For evaluation purposes, we simulated a short read (Illumina) shotgun 35 

metagenomics community of eight bacterial pathogens with extensive antibiotic susceptibility 36 

testing profiles. We benchmarked nine open source bioinformatics tools for detecting AMR 37 

genes that 1) were conda or Docker installable, 2) had been actively maintained, 3) had an open 38 

source license, and 4) took FASTA or FASTQ files as input. Several metrics were calculated for 39 

each tool including sensitivity, specificity, and F1 at three coverage levels.  40 

This study revealed that tools were highly variable in sensitivity (0.25 - 0.99) and 41 

specificity (0.2 - 1) in detection of resistance in our synthetic FASTQ files despite similar 42 

databases and methods implemented. Tools performed similarly at all coverage levels  (5x, 50x, 43 

100x). Cohen’s kappa revealed low agreement across tools.  44 

Importance  45 

Software selection for metagenomic AMR prediction should be driven by the context of 46 

the clinical/research questions and tolerance for true and false negative results. As the prediction 47 
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software and databases are in a state of constant refinement, the approach used here—creating 48 

synthetic communities containing taxa and phenotypes of interest along with using hAMRoaster 49 

to assess performance of candidate software—offers a template to aid researchers in selecting the 50 

most appropriate strategy.  51 

 52 

Keywords: antimicrobial resistance, bioinformatics, metagenomics 53 

 54 

Tweet:  Introducing a new pipeline for comparing results from #AMR tools from 55 

@emily_wissel @tdread_emory  and others! 56 

 57 

hAMRoaster compares detected AMR genes to known resistance, and returns a table with 58 

metrics for comparing results across tools. 59 

 60 

 61 

  62 
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Introduction 63 

Antibiotic resistant bacterial infections pose a serious threat to public health. Particularly 64 

concerning is that the burden of multi-drug resistant pathogens is increasing globally, creating  65 

complex clinical scenarios in which there are limited (if any) therapeutic options. In the United 66 

States alone, multi-drug resistant infections cost over $4.5 billion annually and kill over 35,000 67 

people each year.1 Genes that confer antimicrobial resistance (AMR) are increasingly present in 68 

commensal members of the human microbiome and are recognized as an important reservoir for 69 

conferring pathogen resistance through horizontal gene transfer.2,3 Detecting AMR potential 70 

through non-culture based, high throughput DNA sequencing and bioinformatic approaches is of 71 

growing relevance and importance. Two key approaches to mitigating AMR infections are 72 

antibiotic stewardship and AMR surveillance. While antibiotic stewardship focuses on 73 

prescribing antibiotics appropriately, AMR surveillance focuses on describing AMR genes 74 

already present in a community.  75 

AMR surveillance is a key strategy in understanding the threat of AMR. Currently, AMR 76 

surveillance typically relies on phenotypic characterization through culture or genotypic 77 

characterization through molecular diagnostics based on PCR and hybridization techniques.4  78 

However, there is a move toward genome-based methods 5 with the Illumina short-read platform 79 

being the dominant platform for data generation at the present time.6  Direct sequencing of 80 

clinical samples using shotgun metagenomic approaches is of growing interest for minimizing 81 

sample processing and for fully characterizing the commensal members of the microbiome. 82 

However, the bioinformatic tools that currently exist to detect AMR have typically not been 83 

assessed  for their performance on  shotgun metagenomic sequence data. Further, as is common 84 

with software developed in academic settings, tools are not always maintained or easy to install. 85 
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Software managers like conda and docker help to alleviate this problem, however, it can still be 86 

difficult for those without a bioinformatics background to understand the state of the tools and 87 

select the best one for their needs. 88 

 As shotgun metagenomic sequencing is emerging as a powerful tool for detecting and 89 

controlling AMR,7 it is essential to understand how well these tools perform with these data.  In 90 

addition to testing these tools against a widely available data type, they should be compared 91 

against samples with extensive phenotypic resistance (acquired and mutational AMR genes).  92 

This analysis aims to compare a set of existing  bioinformatic tools in their ability to 93 

accurately identify AMR genes in a community. We describe a software pipeline, hAMRoaster, 94 

that provides statistics on accuracy of software when the presence of phenotypes is known. As 95 

shotgun metagenomic data is more often used in research and surveillance, and likely soon in 96 

clinical diagnostics,8 we believe this approach of validating tools using synthetic data will be 97 

important in selecting the most appropriate software. 98 

Methods  99 

For a schematic overview of the methods, see Supplementary Figure One.  100 

Development of a software pipeline, hAMRoaster, to assess results of antibiotic resistance 101 

prediction 102 

hAMRoaster was written as a Python script to take three inputs: a) the text output of 103 

AMR prediction run tool on a FASTQ or FASTA test file, such as a text file processed through 104 

hAMRonization,9 b) a list of known phenotypes associated with the test file and c) (optional) a 105 

tab formatted table which matches antibiotic drugs with their drug class.  If option c) is not 106 

specified a default table is used. The outputs of the program are a set of performance metrics that 107 

include sensitivity and specificity. A conda installable version of the software was deposited in 108 
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the Bioconda10 database.  The Github site for the software is 109 

https://github.com/ewissel/hAMRoaster.  110 

hAMRoaster requires, as input, a formatted results table of runs by AMR detection tools. 111 

This table is identical to that produced by the hAMRonization9 software. hAMRonization is 112 

conda installable and can compile the outputs of many AMR tools into a unified format. 113 

shortBRED11 and fARGene12 are not included in hAMRonization at the time of analysis, so 114 

hAMRoaster can take the path to the raw output for these tools and partially match it to the 115 

hAMRonization output.  116 

hAMRoaster requires an input to the “known” phenotypic resistance in the mock 117 

community (--AMR_key flag of hAMRoaster), such as a result of susceptibility testing tables 118 

that are available from NCBI Biosamples. Antibiotics in the table of known resistances are 119 

matched to their respective drug classes. Results classified as “susceptible” or “intermediate” in 120 

susceptibility testing are filtered out so only resistant instances are considered. In cases where 121 

susceptibility testing occurred with two or more agents, each agent is considered independently 122 

(e.g. resistance to “amoxicillin-tetracycline” was treated as resistance to “amoxicillin” and 123 

“tetracycline” independently). Each identified AMR gene is labeled with its corresponding drug 124 

class for comparison. In instances where a gene confers resistance to multiple drug classes, the 125 

detected gene is split into multiple rows so that each conferred resistance can be independently 126 

compared to what is known from the susceptibility testing. Gene to drug class linkage is verified 127 

using the CARD database13 when applicable. Any genes corresponding to ‘unknown’ or ‘other’ 128 

drug classes (including hypothetical resistance genes) are excluded from further analysis. Genes 129 

that confer  resistance to an antibiotic that was only effective in combination with another drug 130 
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(e.g. clavulanic acid in amoxicillin-clavulanic acid) are classified as ‘Other’ and excluded from 131 

analysis. 132 

A detected AMR gene is labeled as a true positive by hAMRoaster if the drug class 133 

matched to an AMR gene corresponds to a drug class represented in the mock community. 134 

Similarly, a false positive is coded as a drug class that is called by the software, but tested as 135 

susceptible in the mock community (--AMR key parameter). Observed AMR genes are labeled 136 

“Unknown” if the corresponding drug class is not tested in the mock community and not 137 

included in the AMR key file. Once true/false positives and true/false negatives are determined 138 

per tool, hAMRoaster calculates sensitivity, specificity, precision, accuracy, recall, and percent 139 

unknown. 140 

Creation of a synthetic mock communities of antibiotic resistance bacteria 141 

Bacterial members of the base mock community were chosen from NCBI’s BioSample 142 

Database14 and met the following criteria: (1) the strain had extensive antibiotic susceptibility 143 

testing data using CLSI or EUCAST testing standards as part of the public NCBI BioSample 144 

record; (2) the strain was isolated from human tissue; (3) the strain was the cause of a clinical 145 

infection; (4) the FASTA was available to download from NCBI BioSample Database.14 Eight 146 

bacteria, each representing a different species, with overlapping resistance to 43 antibiotics 147 

across 18 drug classes, were selected for the mock community (Table 1). The included taxa were 148 

Acinetobacter baumannii MRSN489669, Citrobacter freundii MRSN12115, Enterobacter 149 

cloacae 174, Escherichia coli 222, Klebsiella pneumoniae CCUG 70742, Pseudomonas 150 

aeruginosa CCUG 70744, Neisseria gonorrhoeae SW0011, and Staphylococcus aureus LAC 151 

(Table 1). 152 
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Paired-end FASTQs were simulated by ART 15 using default parameters for HiSeq 2500 153 

at three levels of average sequence coverage (5x, 50x, and 100x) and are available on FigShare 154 

(https://figshare.com/account/home#/projects/125974). Simulated FASTQs were subsequently 155 

concatenated to resemble shotgun metagenomics reads, and metaSPAdes16 was used to create 156 

assembled contigs. The FASTQs were simulated with approximately equal numbers of reads of 157 

each genome. 158 

Running antibiotic prediction software on mock communities 159 

All tools for AMR prediction were run on the mock community at all coverage levels 160 

using default settings for either simulated FASTQ or assembled contigs. When both options were 161 

available, assembled contigs were run. 162 

Statistical Analysis 163 

Data were analyzed in Python v3.7.7 and plotted in R v4.0.4. In initial runs we found that 164 

some tools provided results with a very high number of observed AMR genes because of 165 

multiple overlapping matches on the same gene. Because of this, we condensed the results so 166 

that the first observed gene is included in the dataset and subsequent genes that start before the 167 

observed end of that gene were not included. Unweighted Cohen’s kappa was calculated for each 168 

pairwise combination of tools to test agreement between tools.  169 

Data Availability  170 

All data and code is available on the hAMRoaster GitHub repository 171 

(https://github.com/ewissel/hAMRoaster) and figshare (for large FASTQ files; 172 

https://figshare.com/account/home#/projects/125974) 173 
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Results  174 

Selection of nine open source, conda-installable tools for detection of antibiotic resistance 175 

phenotypes 176 

To identify tools for antibiotic resistance prediction, we used a multi-headed search 177 

strategy. We searched PubMed using terms “AMR”, “antibiotic resistance genes”, 178 

“bioinformatics”, and “antimicrobial resistance”. We also searched GitHub using the same set of 179 

terms. Once an initial list of tools was compiled, we performed a second PubMed literature 180 

review including the search terms from above plus the names of the tools (“tool 1” OR “tool 2”). 181 

We also used Twitter to ask the research community what bioinformatic tools they use to 182 

identify AMR (link available in supplementary materials). These searches identified 16 potential 183 

tools to identify AMR genes (Table 2). The search for tools concluded on March 1, 2021. 184 

In order for an identified tool to be considered eligible for comparison, it had to meet the 185 

following criteria: (1) be conda or Docker installable; (2) have source code publicly available in 186 

a data repository and be actively maintained (defined as tool updates or GitHub responses within 187 

the last year); (3) have an open source license; and (4) take FASTQs or FASTAs as input files. 188 

Nine tools met the criteria to be included in this analysis: ABRIcate 17, fARGene 18 ResFinder 19, 189 

shortBRED11, RGI 20, AMRFinderPlus 21, starAMR 22 , sraX 23, and deepARG 24. PointFinder 190 

also qualified25, but was a subtool of ResFinder and only identified mutational resistance for 191 

some organisms, so it was excluded from analysis. The code used to install and run all tools is 192 

available on the hAMRoaster GitHub.  193 

Identified tools fell into two groups - those that aligned reads to a database, and those that 194 

compared reads against some model of AMR (Table 2).  195 
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ABRIcate 196 

ABRIcate v.1.0.1 took contig FASTA files as inputs and compared reads against a large 197 

database created by compiling several existing database, including NCBI AMRFinder Plus,21 198 

CARD,20 ResFinder,19  ARG-ANNOT,26 MEGARES,27 EcOH,28 PlasmidFinder,29 VFDB,30 and 199 

Ecoli_VF.31 ABRIcate reported on acquired AMR genes and not mutational resistance. 200 

shortBRED 201 

shortBRED11 v0.9.3 used a set of marker genes to search metagenomic data for protein 202 

families of interest. The bioBakery32 team published an AMR gene marker database built from 203 

849 AR protein families derived from the ARDB33 v1.1 and independent curation alongside 204 

shortBRED, which is used in this study. 205 

fARGene 206 

fARGene12,18 v.0.1 uses Hidden Markov Models to detect AMR genes from short 207 

metagenomic data or long read data. This was different from most other tools which compare the 208 

reads directly. fARGene has three pre-built models for detecting resistance to quinolone, 209 

tetracycline, and beta lactamases, which were tested in this study. 210 

RGI 211 

RGI20 v5.1.1 used protein homology and SNP models to predict ‘resistomes’. It used 212 

CARD’s protein homolog models as a database. RGI predicts open reading frames (ORFs) using 213 

Prodigal,34 detects homologs with DIAMOND,35 and matches to CARD’s database and model 214 

cut off values.  215 
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ResFinder 216 

ResFinder19 v4.0 was available both as a web-based application or the command line. We 217 

used ResFinder 4 in this study, which was specifically designed for detecting genotypic 218 

resistance in phenotypically resistant samples. ResFinder aligned reads directly to its own 219 

curated database without need for assembly.  220 

deepARG 221 

 deepARG24 v.2.0 used a supervised deep learning based approach for antibiotic resistance 222 

gene annotation of metagenomic sequences. It combines three databases—CARD, ARDB, and 223 

UNIPROT—and categorizes them into resistance categories.  224 

sraX 225 

 sraX23 v.1.5 was built as a one step tool; in a single command, sraX downloads a 226 

database and aligns contigs to this database with DIAMOND35. By default, sraX uses CARD, 227 

though other options can be specified. As we use default settings for all tools, only CARD was 228 

used in this study for sraX. 229 

starAMR 230 

starAMR22,36 v.0.7.2 uses BLAST+37 to compare contigs against a combined database 231 

with data from ResFinder, PointFinder, and PlasmidFinder.  232 

AMR Finder Plus 233 

AMR Finder Plus21 v.3.9.3 uses BLASTX38 translated searches and hierarchical tree of 234 

gene families to detect AMR genes. The database was derived from the Pathogen Detection 235 

Reference Gene Catalog39 and was compiled as part of the National Database of Antibiotic 236 

Resistant Organisms (NDARO). 237 
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Performance of selected tools on a mock bacterial community containing 43 laboratory 238 

confirmed AMR phenotypes 239 

Each software tool was run against a synthetic mock community of 8 bacteria at three 240 

coverage levels that expressed 43 antibiotic resistance phenotypes. To assess sensitivity and 241 

specificity, we developed a new software pipeline called hAMRoaster (Harmonized AMR 242 

Output compAriSon Tool ‘ER’).  243 

Range of phenotypes detected 244 

Overall, the number of AMR genes detected across all tools ranged from 13 to over 700 245 

at 100x coverage (Table 3). For some tools, genes detected did not match to a tested phenotype 246 

in the mock community, so the prediction fell into the “unknown” category. Among the tools 247 

tested, AMR Finder Plus had the highest degree of unclassifiable/unknown results (observed 248 

AMR gene not testing in the mock community). An overview of these results are available in 249 

Figure One. 250 

Sensitivity and Specificity 251 

 The highest sensitivity for phenotype detection ranged from >0.99 (RGI) to 0.23 (sraX) at 252 

the lowest coverage levels (Fig. 2). In general, coverage did not greatly affect sensitivity, with 253 

the exception of sraX, which increased to 0.53 at the highest level. fARGene and deepARG had 254 

a high sensitivity value (>0.90) at all coverage levels. RGI, deepARG, and fARGene are all tools 255 

that compare reads to a model of AMR instead of aligning reads directly to a database, indicating 256 

that this method may be appropriate when high sensitivity values are preferred.  As a note, in this 257 

dataset, there were only 2 possible true negatives because only two drug classes were always 258 

susceptible to antibiotics in those two drug classes when tested (nitrofuran and polypeptide).  259 

When all software predictions were combined we achieved the 0.99 sensitivity across the 260 

coverage (Supplementary Table 1). However this came at the cost of low specificity 0.11 . 261 
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Specificity in this study is artificially low for most tools because the number of possible true 262 

negatives is low (only two). Therefore we did not assess this metric. 263 

Condensing Results 264 

All tools provide results in which the detected AMR genes are overlapping, where one 265 

gene starts between the start and stop codon of another. If we remove overlapping genes so that 266 

only the first detected gene was included, and all genes that started before its stop codon were 267 

removed, the counts for all tools decrease (Table 4). However, this process does not necessarily 268 

improve metrics or counts, and it is unclear that such a tactic is useful for real life uses as there is 269 

no simple way to determine which detected AMR genes to include and which should be filtered 270 

out. 271 

Concordance between tools 272 

An analysis of the agreement between tools of detected AMR genes within drug classes 273 

revealed that overall, there was low agreement (<0.50) between tools at all coverage levels 274 

(Table 6).  275 

Discussion 276 

Development of a framework for assessing AMR prediction software performance using 277 

synthetic data  278 

There is a considerable research effort to develop new software for predicting AMR 279 

using DNA sequence alone. In this dynamic environment, there is a need for researchers and 280 

epidemiologists to understand the relative performance of open source software tools within  the 281 

types of sample they may encounter. While some tools currently exist for compiling the results 282 

of several AMR tools together (hAMRonizer and chARMedDb40), this study was motivated by 283 
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the lack of an open-source pipeline for comparing the results once compiled. hAMRoaster was 284 

built so that several metrics can easily be compared across tools.  285 

The central challenge in developing this software was to compare detected AMR genes to 286 

resistance phenotypes. Detected AMR genes needed to be classified by their corresponding drug 287 

class(es) so they could be matched to the known phenotypically resistant drug classes. One 288 

hurdle in this translation is that tools use different databases, and some databases classify genes 289 

differently. For example, shortBRED classifies gene families, while CARD classifies specific 290 

genes. While this analysis checked the drug classification via the DNA/Protein Accession value 291 

in CARD, only around 300 of the >1,000 genes detected could directly map to genes in CARD 292 

by accession value. The hAMRonization tool overcomes this challenge by providing a drug class 293 

column and filling in the values from ChEBI ontology41 when possible. The hAMRoaster 294 

strategy is to assign a CARD drug class value to every detected AMR gene first by accession 295 

number, then by gene name. If neither of  these methods assign a drug class for an AMR gene, 296 

then the drug class provided by hAMRonization is used. Another challenge in converting 297 

detected AMR genes to drug classes is that some drugs are only administered in combination, for 298 

example clavulanic acid with amoxicillin. For these instances, resistance to the drug only used in 299 

combination (e.g. clavulanic acid) is treated as an “other” drug class and excluded from analysis. 300 

In these cases, we used the experience of practicing clinicians to identify combination 301 

antibiotics.   302 

The analysis presented here used synthetic data to compare tool performance. Synthetic 303 

data has the benefit of allowing controlled input with known ground truth. Therefore users can 304 

focus on the types of organisms and phenotypes they need to to detect in their own datasets, 305 

perform experiments with real samples, and manipulate a range of factors such as relative 306 
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abundance and sequencing error. The NCBI BioSample repository (used in this study) is an 307 

invaluable resource for creating such datasets as it contains many samples with AMR phenotypes 308 

determined by international standards. Researchers could also sequence and phenotype 309 

culturable organisms in their own laboratories to provide testing standards to evaluate software. 310 

Here, we exclusively examined synthetic short read Illumina data, but this analysis strategy 311 

could be adapted to understand the effect of using data generated on long read technologies such 312 

as the Pacific Bioscience and Oxford Nanopore platforms. 313 

Overall trends in  performance and reasons for variability between tools 314 

Tools used one of two basic strategies, either aligning reads to a database of AMR genes 315 

or using a more complex model of sequenced-based AMR detection (Table 2). The methods 316 

appear to lead to the different AMR genes detected across tools, as demonstrated in Figure 1 and 317 

summarized in Table 3.   318 

We found  the sensitivity of almost all tools to be very good (>0.80), with the exception 319 

of sraX, which had a proportionally high number of false negatives compared to true positives.  320 

All tools except shortBRED and starAMR detected a large number of genes that were not 321 

associated with a lab-determined phenotype in our mock community. This is a feature of the 322 

approach of limiting focus to a specific set of phenotypes in the testing process.  In practice, 323 

researchers and epidemiologists may be only interested in a narrow range of AMR phenotypes. 324 

hAMRoaster calculates specificity, precision, accuracy, recall , and F1 (Table 3). 325 

However, all of these measures are dependent on false positives and/or true negatives in their 326 

calculations. As these values are inherently low in our mock community due to the robust 327 

resistance profile, these metrics are not particularly informative for understanding how well these 328 

tools detect resistance in this phenotypically resistant sample. Similarly, we calculated all 329 
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effective metrics when the results of all tools are combined. While sensitivity in the combined 330 

data was very high (>0.99), there was a very high number of overall detected AMR genes, 331 

including overlapping results between genes, thus,.it would be difficult for researchers to 332 

meaningfully use this type of result to understand the AMR profile. We calculated Cohen’s 333 

kappa to capture the agreement at the drug class level between AMR tools to see if all AMR 334 

tools detected resistance to the same drug classes.  We found that agreement was surprisingly 335 

low across all tools (Table 6), indicating that some tools may be better suited for detecting 336 

different types of resistance. As such, hAMRoaster provides a table with the number of genes 337 

detected per drug class for each tool.  338 

Finally, this research supports the need for the further development of software tools for 339 

the detection of AMR genes in the human microbiome. It is increasingly recognized that the 340 

confined location and genetic diversity of this microbial population provides ideal conditions for 341 

genetic exchange among residential microbes and between residential and transient, including 342 

pathogenic microbes. Notably, rates of horizontal gene transfer among bacteria in the human 343 

microbiome (especially the gastrointestinal tract) are estimated to be many times higher than 344 

among bacteria in other diverse ecosystems, such as soil.42  Refined tools appropriate for use in 345 

shotgun metagenomic data will be important for tracking the spread of AMR genes from diverse 346 

environmental sources to the human microbiome and across sites in the human body and 347 

understanding whether AMR genes are derived from vertical inheritance or via horizontal gene 348 

transfer, for example.   349 

 In conclusion, this study compared bioinformatics tools for detecting AMR genes in a 350 

simulated short read metagenomic sample at three coverage levels at one time point. While tools 351 

use slightly different methods and databases, these tools overall had high sensitivity for detection 352 
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of AMR genes.  Moreover agreement between tools was low, indicating the importance of tool 353 

selection. In our test set we found starAMR had the highest sensitivity value with fewer than 354 

20% unknown detected genes at all coverage levels. We advocate that researchers should test 355 

these software tools using pipelines such as hAMRoaster with a synthetic community that 356 

highlights the resistance profiles and sample of interest. In particular, this assessment of 357 

performance of available tools should take place before the commencement of the study as the 358 

set of tools for detecting AMR genes are actively maintained and undergoing further 359 

improvements.  360 
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Figure 1: Antimicrobial Resistance (AMR) Genes Detected By Software Tools by  Drug 555 

Class  556 

AMR Genes detected by each tool across coverage levels, grouped into drug class to which the 557 

genes  confer resistance with the color coding indicating whether the detection was true positive 558 
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(green), false positive (purple) or unknown (yellow). Clear spaces in the plot indicate that AMR 559 

genes were not detected for the drug class on the x-axis by the tool on the y-axis.  560 
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Figure 2 Sensitivity of Software Tools for Detection of Antimicrobial Resistance 561 

(AMR) Genes Across Coverage Levels 562 

 563 

Sensitivity was calculated as (true positives) / (true positives + false negatives). Most tools were 564 

highly sensitive (greater than 0.80). All genes corresponding to “Other” or “Unknown” drug 565 

classes were  not included in these calculations. Similarly, AMR genes corresponding to 566 
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phenotypic resistance that was  not tested in the mock community was considered “Unknown” 567 

and not included in the sensitivity analysis.   568 

remix, or adapt this material for any purpose without crediting the original authors. 
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, 

The copyright holder has placed thisthis version posted January 15, 2022. ; https://doi.org/10.1101/2022.01.13.476279doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.13.476279


BENCHMARKING AMR SOFTWARE 

26 

Figure 3: Percent Detection of Unknown Antimicrobial (AMR) Resistance Genes Across 569 

Coverage  570 

 571 

The percent detection of AMR genes that could not be classified because the material the 572 

gene confers resistance to was not tested in the mock community. A black dashed line is placed 573 

at 0.20, indicating where at least 20% of the detected AMR genes could not be classified.  574 
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Supplementary Figure 1: Pictorial Methods 575 

 576 

  577 
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 578 

Table 1: Clinical isolates included in the simulated community. (susceptibility test is in 579 

the spreadsheet, will have to be supplemental bc so big) 580 

Strain 

Testing Standard 

(CLSI or EUCAST) BioSample ID Link 

Neisseria gonorrhoeae 

SW0011 CLSI SAMN15960549 

https://www.nc

bi.nlm.nih.gov/biosam

ple/SAMN15960549  

Klebsiella pneumoniae 

CCUG 70742 EUCAST SAMN07602587 

https://www.nc

bi.nlm.nih.gov/biosam

ple/SAMN07602587  

Pseudomonas 

aeruginosa CCUG 

70744 EUCAST SAMN07602569 

https://www.nc

bi.nlm.nih.gov/biosam

ple/SAMN07602569 / 

Acinetobacter 

baumannii 

MRSN489669 CLSI SAMN12087686 

https://www.nc

bi.nlm.nih.gov/biosam

ple/SAMN12087686  

Enterobacter cloacae 

174 CLSI SAMN04456586 

https://www.nc

bi.nlm.nih.gov/biosam

ple/SAMN04456586  

Citrobacter freundii CLSI SAMN13412315 https://www.nc
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MRSN12115 bi.nlm.nih.gov/biosam

ple/SAMN13412315  

Staphylococcus aureus 

LAC CLSI SAMN08391108 

https://www.nc

bi.nlm.nih.gov/biosam

ple/SAMN08391108  

Escherichia coli 222 CLSI SAMN05194390 

https://www.nc

bi.nlm.nih.gov/biosam

ple/SAMN05194390  

 581 

  582 
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Table 2: Tools identified from search methods with the selection criteria and whether 583 

they subsequently worked or not. 584 

Tool 

Conda / 

Docker 

Installable? 

Actively 

Maintaine

d? 

Input 

format? 

Included in 

Analysis? 

Implement

ation 

Method Database 

ABRIcate Yes - conda Yes FASTA  Yes 

Align reads 

to database 

NCBI AMRFinder 

Plus, CARD, 

ResFinder, ARG-

ANNOT, 

MEGARES, EcOH, 

PlasmidFinder, 

VFDB, and 

Ecoli_VF 

shortBRED 

Yes - 

Docker & 

conda Yes FASTA  Yes 

Align reads 

to database 

AMR gene marker 

database from 849 

AR protein families 

from the ARDB19 

and independent 

curation 
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fARGene Yes - conda Yes FASTQ Yes 

Compare to 

AMR model 

Hidden markov 

models for 

quinolone, 

tetracycline, and beta 

lactamases 

RGI 

Yes - 

Docker 

(conda 

outdated) Yes FASTQ Yes 

Compare to 

AMR model 

Prodigal predicts 

ORF and compared 

to CARD and 

WildCARD 

ResFinder 4 

Yes - 

Docker 

(conda 

broken) Yes FASTA Yes 

Align reads 

to database 

ResFinder 4 

database 

DeepARG Yes, Docker Unclear FASTA Yes 

Compare to 

AMR model 

Supervised deep 

learning compares 

reads to antibiotic 

resistance categories 

created from CARD, 

ARDB, and 

UNIPROT 

sraX Yes - both Yes FASTA Yes 

Align reads 

to database CARD by default 
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starAMR Yes - conda Yes FASTA Yes 

Align reads 

to database 

ResFinder, 

PointFinder, and 

PlasmidFinder 

AMR 

Finder Plus Yes - conda Yes FASTA Yes 

Align reads 

to database 

Pathogen Detection 

Reference Gene 

Database 

ResPipe No  Yes 

FASTQ 

or BAM No   

PointFinder 

Yes - 

Docker Yes FASTA No   

PCM: 

Pairwise 

Comparativ

e Modelling No Yes 

FASTA 

- protein No   

SRST2 No No FASTQ No   

Arg_Ranke

r 

Yes - 

conda Yes 

Require

s special 

metadata 

input No   

MetaCherc

hant 

Yes - 

conda No 

FASTA 

- No   
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genomic 

ARIBA 

Yes - 

Docker No 

Paired 

end 

FASTQ No   

ARG-

ANNOT No No Unclear  No   

kmerresista

nce No No - No   

c-sstar No No 

Unkno

wn 

No - could 

not track 

down 

github   

 585 

  586 
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Table 3: Summary Statistics from hAMRoaster: These are the counts and metrics as 587 

calculated by the hAMRoaster pipeline. Formulas for all metrics are as follows: 588 

Specificity = TN / (TN + FP) 589 

Sensitivity = TP / (TP + FN) 590 

Precision = TP / (TP + FP) 591 

Accuracy = (TP + TN) / (TP + FP + TN + FN) 592 

Recall = true pos / (true pos  + false neg) 593 

F1 = 2 * (precision * recall) / (precision + recall) 594 

Percent_unknown = unknown / (true_positives + false_positives + unknowns) 595 

 596 
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 597 

Full Results, 100x Coverage 

tool 
False 
positive 

True 
positive unknown 

False 
negative 

True 
negative sensitivity specificity precision accuracy recall 

Percent 
unclassified 

abricate 0 66 22 9 2 0.8800 1.0000 1.0000 0.8831 7.3333 0.2500 

amrfinderpl
us 2 62 71 9 1 0.8732 0.3333 0.9688 0.8514 5.6364 0.5259 

deeparg 0 98 23 8 2 0.9245 1.0000 1.0000 0.9259 
12.250

0 0.1901 

fARGene 0 713 0 13 2 0.9821 1.0000 1.0000 0.9821 
54.846

2 0.0000 

resfinder 4 1 43 15 9 1 0.8269 0.5000 0.9773 0.8148 4.3000 0.2542 

rgi 4 559 255 6 1 0.9894 0.2000 0.9929 0.9825 

55.900

0 0.3117 

shortbred 0 29 0 11 2 0.7250 1.0000 1.0000 0.7381 2.6364 0.0000 

srax 0 10 3 11 2 0.4762 1.0000 1.0000 0.5217 0.9091 0.2308 

staramr 1 

5

2 11 9 1 

0.8

525 

0.5

000 

0.9

811 

0.8

413 

5

.2000 

0.17

19 

Full Results, 50x Coverage    

tool 

False 

positive 

True 

positive unknown 

False 

negative 

True 

negative sensitivity specificity precision accuracy recall 

Percent 

unclassified 
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abricate 0 66 21 9 2 0.8800 1.0000 1.0000 0.8831 7.3333 0.2414 

amrfinderpl

us 2 62 67 9 1 0.8732 0.3333 0.9688 0.8514 5.6364 0.5115 

deeparg 0 99 23 8 2 0.9252 1.0000 1.0000 0.9266 12.3750 0.1885 

fARGene 0 702 0 13 2 0.9818 1.0000 1.0000 0.9819 54.0000 0.0000 

resfinder 4 1 43 15 9 1 0.8269 0.5000 0.9773 0.8148 4.3000 0.2542 

rgi 4 557 254 6 1 0.9893 0.2000 0.9929 0.9824 55.7000 0.3117 

shortbred 0 30 0 11 2 0.7317 1.0000 1.0000 0.7442 2.7273 0.0000 

srax 0 13 3 10 2 0.5652 1.0000 1.0000 0.6000 1.3000 0.1875 

staramr 1 52 11 9 1 0.8525 0.5000 0.9811 0.8413 5.2000 0.1719 

Full Results, 5x Coverage    

tool 

False 

positive 

True 

positive unknown 

False 

negative 

True 

negative sensitivity specificity precision accuracy recall 

Percent 

unclassified 

abricate 0 9 39 19 2 0.8125 1.0000 1.0000 0.8200 4.3333 0.3276 

amrfinderpl

us 1 9 60 58 1 0.8696 0.5000 0.9836 0.8592 6.0000 0.4874 
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deeparg 0 8 267 86 2 0.9709 1.0000 1.0000 0.9711 

33.375

0 0.2436 

fARGene 0 13 470 0 2 0.9731 1.0000 1.0000 0.9732 

36.153

8 0.0000 

resfinder 4 0 9 43 10 2 0.8269 1.0000 1.0000 0.8333 4.7778 0.1887 

rgi 12 6 1015 418 1 0.9941 0.0769 0.9883 0.9826 

56.388

9 0.2893 

shortbred 0 11 29 0 2 0.7250 1.0000 1.0000 0.7381 2.6364 0.0000 

srax 0 12 4 3 2 0.2500 1.0000 1.0000 0.3333 0.3333 0.4286 

staramr 0 9 44 11 2 0.8302 1.0000 1.0000 0.8364 4.8889 0.2000 

598 
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 599 

Table 4: Condensed Summary Statistics: This table contains the counts and metrics if the 600 

data were condensed so that overlapping genes are excluded from the count data (i.e. genes that 601 

start between the start and stop codon of another gene are not considered in analysis).  602 

 603 
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 604 

Condensed Results, 100x Coverage 

tool 

False 

positive 

True 

positive unknown 

False 

negative 

True 

negative sensitivity specificity precision accuracy recall 

Percent 

unclassified 

abricate 0 21 5 0 2 1 1 1 1 1 0.1923 

amrfinderplus 0 22 23 0 2 1 1 1 1 1 0.5111 

deeparg 0 2 1 0 2 1 1 1 1 1 0.3333 

fARGene 0 713 0 0 2 1 1 1 1 1 0 

resfinder 4 0 12 5 0 2 1 1 1 1 1 0.2941 

rgi 1 77 38 0 1 1 0.9872 0.5 0.9872 1 0.32769 

shortbred 0 29 0 0 2 1 1 1 1 1 0 

srax 0 10 3 0 2 1 1 1 1 1 0.23078 

staramr 1 36 6 0 1 1 0.9730 0.5 0.9737 1 0.1395 

Condensed Results, 50x Coverage 

tool 

False 

positive 

True 

positive unknown 

False 

negative 

True 

negative sensitivity specificity precision accuracy recall 

Percent 

unclassified 
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abricate 0 22 3 0 2 1 1 
1 1 1 1 

amrfinderpl

us 0 20 27 0 2 1 1 
1 1 1 1 

deeparg 0 1 1 0 2 1 1 
1 1 1 1 

fARGene 0 702 0 0 2 1 1 
1 1 1 1 

resfinder 4 0 11 7 0 2 1 1 
1 1 1 1 

rgi 1 75 38 0 1 1 

0.98684210

53 
0.9868 0.5000 0.9870 1 

shortbred 0 30 0 0 2 1 1 
1 1 1 1 

srax 0 13 3 0 2 1 1 
1 1 1 1 

staramr 1 29 7 0 1 1 

0.96666666

67 
0.9667 0.5000 0.9677 1 

Condensed Results, 5x Coverage 

tool 

False 

positive 

True 

positive unknown 

False 

negative 

True 

negative sensitivity specificity precision accuracy recall 

Percent 

unclassified 

abricate 
0 4 3 0 2 1 1 1 1 1 0.4286 

amrfinderpl

us 
0 7 11 0 2 1 1 1 1 1 0.6111 
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deeparg 
0 42 7 0 2 1 1 1 1 1 0.1429 

fARGene 
0 470 0 0 2 1 1 1 1 1 0.0000 

resfinder 4 
0 6 2 0 2 1 1 1 1 1 0.2500 

rgi 
1 48 30 0 1 1 0.9796 0.5000 0.9800 1 0.3797 

shortbred 
0 29 0 0 2 1 1 1 1 1 0.0000 

srax 
0 4 3 0 2 1 1 1 1 1 0.4286 

staramr 
0 33 8 0 2 1 1 1 1 1 0.1951 

 605 

 606 
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 607 

Table 5: Kappa Values: Kappa values (agreement) between tools across coverage levels 608 

calculated in R using the kappa2 function 609 

 610 

 611 

 612 

 613 

 614 
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 615 

Supplementary Table 1: Summary Statistics when results of all tools are combined.  616 

 617 

 618 

Combined Stats 

 100x 50x 5x 

true_positive 1703 1624 1971 

unknown 329 394 605 

false_positive 8 8 13 

true_negatives 1 1 1 

false_negatives 6 6 6 

sensitivity 0.996 0.996 0.996 

specificity 0.111 0.111 0.071 

 619 

  620 
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Supplementary table 2: link to tweet 621 

https://twitter.com/emily_wissel/status/1336013892116488195  622 

  623 
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Supplementary table 3: tidy table of data 624 

https://docs.google.com/spreadsheets/d/1bfACqEh0nkS65vCUj5DfMg4PvW0fHxbtrv0P625 

gKt1gT4/edit#gid=53644837  626 
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