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Abstract 32 

Neural population dynamics, presumably fundamental computational units in the 33 

brain, provide a key framework for understanding information processing in the 34 

sensory, cognitive, and motor functions. However, neural population dynamics is not 35 

explicitly related to the conventional analytic framework for single-neuron activity, i.e., 36 

representational models that analyze neuronal modulations associated with cognitive 37 

and motor parameters. In this study, we applied a recently developed state-space 38 

analysis to incorporate the representational models into the dynamic model in 39 

combination with these parameters. We compared neural population dynamics 40 

between continuous and categorical task parameters during two visual recognition 41 

tasks, using the datasets originally designed for a single-neuron approach. We 42 

successfully extracted neural population dynamics in the regression subspace, which 43 

represent modulation dynamics for both continuous and categorical task parameters 44 

with reasonable temporal characteristics. Furthermore, we combined the classical 45 

optimal-stimulus analysis paradigm for the single-neuron approach (i.e., stimulus 46 

identified as maximum neural responses) into the dynamic model, and found that the 47 

most prominent modulation dynamics at the lower dimension were derived from 48 

these optimal responses. Thus, our approach provides a unified framework for 49 

incorporating knowledge acquired with the single-neuron approach into the dynamic 50 

model as a standard procedure for describing neural modulation dynamics in the 51 

brain. 52 

 53 

Keywords: monkey, neural population dynamics, regression subspace, orbitofrontal 54 

cortex, hippocampus 55 
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Introduction 57 

Recent innovations in the state-space analysis applied to multi-neuronal activities 58 

provide insight into the dynamic structure of information processing in a neural 59 

population (Brendel et al., 2011; Churchland et al., 2012; Mante et al., 2013). The 60 

identified dynamic structures of neural population activity are known as neural 61 

population dynamics and are assumed to reflect some underlying computations 62 

occurring in a neural network in the sensory, cognitive, and motor domains (Aoi et al., 63 

2020; Churchland et al., 2012; Murray et al., 2017; Okazawa et al., 2021; Osako et 64 

al., 2021; Raposo et al., 2014; Rossi-Pool et al., 2021). In the state-space analysis, 65 

multi-neuronal interactions with fine temporal evolution have provided a different 66 

perspective from the conventional analytical framework for single-neuron activity, 67 

known as the representational model. In this conventional framework, the neuronal 68 

discharge rate of a single neuron is assumed to reflect some mathematical 69 

parameters presumably computed in a neural circuit, such as the Gabor function in 70 

the visual cortices (Jones & Palmer, 1987; Tolhurst & Movshon, 1975), movement 71 

direction (Georgopoulos et al., 1982) and muscle force (Fetz & Cheney, 1980) in the 72 

motor cortices, reward value in the parietal cortex (Platt & Glimcher, 1999), and the 73 

location of animals during navigation in the hippocampus (O'Keefe & Dostrovsky, 74 

1971). As dynamic and representational models have rarely been analyzed 75 

simultaneously, a fundamental question remains as to how these two different 76 

approaches reflect putatively different or shared aspects of neural computation 77 

employed by each neuron and the underlying neuronal network, as well as their 78 

relationship. 79 

Theoretical neuroscience has provided a quantitative basis for the computation 80 

of single neurons in the brain (Dayan & Abbott, 2001). The theory has been 81 

developed in parallel with the development of measurement technology for neuronal 82 

activity (Yuste, 2015). The early representative model was developed when 83 
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researchers observed only one neuron while animals performed a behavioral task or 84 

were under anesthesia. As the single-neuron recording technique provides fine 85 

neuronal activity in vivo (Evarts, 1968; Hubel & Wiesel, 1959; Mountcastle & 86 

Henneman, 1949; Wurtz, 1968), an analytical and theoretical framework was 87 

developed to describe the functional role of separately recorded single-neuron 88 

activity. Recently, large-scale multi-channel recording technology has been 89 

developed to measure a large number of isolated neurons (Buzsaki et al., 2015; Jun 90 

et al., 2017) never imagined before. These simultaneously recorded single-neuron 91 

activities in the tens of thousands motivated computational neuroscientists to pursue 92 

a theoretical framework for neural computations that provides a different perspective 93 

from the conventional representational model (Aoi & Pillow, 2018; Elsayed & 94 

Cunningham, 2017; Keemink & Machens, 2019; Saxena & Cunningham, 2019; Vyas 95 

et al., 2020).  96 

Neural population dynamics, derived through dimensional reduction of neural 97 

population activity and its projection onto parsimonious dimensions, describe the 98 

temporal structures of neural response in fine time resolutions in the order of 99 

approximately 10 ms, different from other conventional population analyses, e.g., 100 

(Georgopoulos et al., 1982). Both analytic frameworks have described brain function 101 

in various functional domains, but the relationship between the developing dynamic 102 

model and the conventional representational model remains unclear. Indeed, we do 103 

not really know whether and how the neural population described by the conventional 104 

representational model is described from a dynamic-system perspective. Thus, it is 105 

challenging to incorporate knowledge acquired from the representational model into 106 

the dynamic model in the form of neural population dynamics. 107 

We previously developed a variant of state-space analysis for continuous 108 

parameters (Yamada et al., 2021), which describes how neurons dynamically encode 109 

some cognitive parameters in the regression subspace at the population level. 110 
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Although the pseudo-population of neurons was composed of non-simultaneously 111 

recorded single-neuron activity according to the representational framework, our 112 

previous study successfully described neural modulation dynamics using continuous 113 

parameters related to value-based decision making. Nevertheless, the other standard 114 

parameter for single-neuron recordings, categorical, was not incorporated previously, 115 

and thus, our previous analysis were not able to describe all types neural 116 

modulations in a dynamic system perspective. Here, we applied our analysis to the 117 

pre-existing datasets using a typical factorial design for conventional single-neuron 118 

recordings, i.e., categorical task parameters, from the hippocampus in monkeys 119 

performing a memory retrieval task (H. Chen & Naya, 2020). Our approach provided 120 

the temporal structure of neural modulations for both types of task parameters 121 

moment-by-moment, which would not be possible with the representational model, 122 

while most aspects of neural modulation were dynamically described, consistent with 123 

the conventional representational model. Thus, our analytic approach is beneficial to 124 

analyze neural modulation dynamics for all types of pre-existing data allowing 125 

researchers to incorporate the representational model into a dynamic system. 126 

 127 

Results 128 

Task, monkey’s behavior and datasets 129 

Details of the behavioral training, learning progress, and behavioral performance of 130 

the animals in the cued lottery task (Exp. 1, Yamada et al., 2021) and in the item–131 

location–retention (ILR) task (Exp. 2, Chen & Naya, 2020) have been previously 132 

reported. Briefly, after completing training in Exp. 1, the monkeys learned to estimate 133 

the expected value of the lottery, defined as a multiplicative combination of 134 

probability and magnitude, and chose the option with higher expected values 135 

(Yamada et al., 2021). This choice behavior was observed separately from the neural 136 

recordings. We used the neural activity recorded from the central par of the 137 
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orbitofrontal cortex (cOFC) in the non-choice condition where a single lottery cue and 138 

its outcome were provided to the monkeys (Figure 1A–C). In Exp. 2, the monkeys 139 

learned to retain the types of visual items and their presented location during the 140 

encoding phase, after which the monkeys indicated whether the sample item was 141 

matched to the cued items by choosing the memorized location (Figure 1D). Six 142 

visual items and four locations were used (Figure 1E). We used the neural activity 143 

recorded from the HPC (Figure 1F), after which the sample stimulus was presented 144 

to the monkeys during the encoding phase.  145 

In this study, we constructed two pseudo-simultaneously recorded populations of 146 

neurons by aligning the single-neuron activity of the cOFC (Figure 1C, 190 neurons) 147 

and HPC (Figure 1F, 590 neurons) with respect to the lottery cue onset in the single-148 

cue task (Figure 1A, gray bar) and the sample onset in the ILR task, respectively 149 

(Figure 1D, gray bar), with a 0.6-s time window for each. Note that the HPC 150 

population data in Exp. 2 has been analyzed and reported using a representational 151 

model, but never analyzed using a dynamic model. Note also that the cOFC 152 

population data in Exp. 1 has been analyzed using both representational and 153 

dynamic models, and here, we repeated the same analysis with the shorter analysis 154 

time window after the cue presentation (2.7 s time window was used in Yamada et al., 155 

2021). 156 

 157 

Conventional analyses for detecting task-dependent modulations 158 

We first applied common conventional analyses such as the general linear model: 159 

linear regression in Exp. 1 and ANOVA in Exp. 2, respectively (see Methods). 160 

Detailed results from these conventional analyses have been previously reported 161 

(Figure 2E–O in Yamada et al., 2021, Figures 2 and 5 in Chen et al., 2020). In Exp. 1, 162 

the linear regression analysis showed that the cOFC neurons encode both probability 163 

and magnitude to some extent after cue onset, as shown in an example neuron 164 
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(Figure 2A–B, n = 119 trials, coefficient: intercept, -0.74, t = -0.72, P = 0.47; 165 

probability, 8.55, t = 6.91, P < 0.001; magnitude, 11.1, t = 8.95, P < 0.001). This 166 

conventional analysis showed whether the probability and magnitude cued by the 167 

lottery, both continuous parameters, modulated neuronal activity in each neuron. In 168 

the cOFC populations, approximately half of the neurons were modulated by the 169 

probability and magnitude of rewards during the 1-s time window (0-1 s after cue 170 

onset, probability: 44%, 84/190, magnitude: 49%, 94/190). The analysis with 0.02-s 171 

time bins, used to analyze neural population dynamics latter, showed that the 172 

percentages of neurons modulated by these two parameters increased and then 173 

decreased during the 1.0 s after the onset of the lottery cue (Figure 2C).  174 

In Exp. 2, ANOVA showed that the HPC neurons could encode both types of 175 

items and their presented locations to some extent, as shown in an example neuron 176 

(Figure 2D–E, two-way ANOVA, n = 240 trials, item: F(5,216) = 79.50, P < 0.001, 177 

location: F(3,216) = 5.48, P = 0.001). The analysis showed whether the items and 178 

locations, both categorical parameters, modulated neuronal activity in each neuron. 179 

In the HPC population, considerable proportions of neurons were modulated by these 180 

two factors (0.08–1 s after sample onset, Item, 26%, 152/590, Position, 22%, 181 

131/590). These proportions were significantly smaller than those of the cOFC 182 

neurons modulated by the probability and magnitude in Exp. 1 (Chi-squared test, df 183 

=1, P < 0.001 for all cases). In the 0.02-s time bins, the percentages of neurons 184 

modulated by these two factors increased and then decreased during the 1.0 s after 185 

the onset of the sample stimulus (Figure 2F).  186 

In short, the general linear model detected neural modulations using continuous 187 

and categorical parameters, which are usually used in the standard representational 188 

model, but these analyses did not clearly provide temporal structure of neural 189 

population signals. 190 

 191 
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State-space analysis for detecting neural modulation dynamics at the 192 

population level 193 

State-space analysis originally provided temporal dynamics of neural population 194 

signals related to cognitive and motor performances for whole neural activity changes 195 

under an assumption of linear system (Churchland et al., 2012; Mante et al., 2013). 196 

We previously developed a variant of the state-space analysis, which extracts the 197 

temporal structure of neural modulation by the task-related continuous parameters, 198 

probability and magnitude of rewards (Yamada et al., 2021). Here, we extend this 199 

analysis to neural modulations by categorical parameters to describe how the HPC 200 

neural population reflects item and location dynamically. We represented each 201 

neural-population signal as a vector time series in the parsimonious dimensions in 202 

two steps (Figure 3). First, we used a general linear model to project a time series of 203 

each neural activity into a regression subspace composed of task parameters as 204 

continuous (Figure 3A) and categorical (Figure 3B) (see Methods for details). This 205 

step captures the across-trial variance caused by the task-related parameters 206 

moment-by-moment at the population level. Note that this step requires an 207 

orthogonal matrix for task parameters because the estimation of the regression 208 

subspace is distorted given that the estimation of the regression matrix assumes 209 

orthogonality between parameters. Second, we applied PCA once to the time series 210 

of neural activities in the regression subspace in each neural population. This step 211 

determined the main feature of the neural population signal moment-by-moment in 212 

the predominant dimensions at the population level. Because neural activations are 213 

dynamic over time, this analysis identified whether and how signal modulations occur 214 

as a time-series of eigenvectors. These extracted time series of eigenvectors 215 

captured how the main neural modulation evolved as a vector angle and size, and 216 

their deviance at the population level (Figure 3C). 217 
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We evaluated the eigenvector properties in the first three principal components 218 

(PC1 to PC3) in each neural population in terms of vector angle, size, and deviance. 219 

We compared two neural populations recorded during two different cognitive tasks in 220 

terms of these vector properties. 221 

 222 

Neural population dynamics reflecting continuous and categorical parameters  223 

Our state-space analysis described the neural population dynamics in the cOFC 224 

(Figure 4A–C) during the perception of visual lotteries. In our previous study, we 225 

reported neural population dynamics during whole a cue period of 2.7 s (Yamada et 226 

al., 2021), but here, we analyzed the dynamics only during the initial 0.6 s to ensure 227 

that the neural population structures would be comparable between the cOFC and 228 

HPC populations with continuous and categorical parameters. We first confirmed the 229 

performance of the state-space analysis indicated by the percentages of variance 230 

explained in the cOFC population (Figure 4A). The cOFC population exhibited high 231 

performance, more than 40% of the variance was explained by PC1 and PC2 (see 232 

gray arrowhead). This is consistent with our previous findings (Figure 7A in Yamada 233 

et al., 2021, 27% in 0.02s bin during 2.7 s). We then characterized the whole 234 

structure of the cOFC population by plotting its eigenvectors moment-by-moment 235 

with the temporal order. As shown in Figure 4B, the eigenvectors for PC1 and PC2 236 

evolved less than 0.2 s after the onset of the cues in both probability and magnitude, 237 

while the eigenvectors shortened after approximately 0.3 s. These changes in 238 

eigenvectors were very stable in terms of vector angle (Figure 4C, top), as seen in 239 

the vector evolutions at 45° in angle between the PC1 and PC2 plane (see also 240 

Figure 7B in Yamada et al., 2021), while the vectors changed in PC3 in the opposite 241 

direction from positive to negative over time (Figure 4B and Figure 4C, bottom). Thus, 242 

these stable structures in the top two dimensions are consistent with our previous 243 

ones, even when the analysis window sizes differed. 244 
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Upon analysis of the HPC population as modulated by the two categorical 245 

parameters, the performance of the analysis was lower than that in Exp. 1 (Figure 246 

5A). The first two PCs only explained approximately 10% of the variance (see gray 247 

arrowhead) possibly because the percentages of modulated neurons in the recorded 248 

HPC population were not high compared to the cOFC populations (Figure 2C and F). 249 

This might also be partly because of the larger data matrix composed of 10 vectors at 250 

each time point (six items and four locations) and a larger neural population 251 

containing 590 neurons: total X of size N(590)×M(300) because in our previous study, 252 

PCA performance decreased as the matrix size increased (Figure 7A in Yamada et 253 

al., 2021). We evaluate the effect of matrix size on PCA performance later in the 254 

manuscript (Figure 9). The eigenvectors in the first three PCs appeared to describe 255 

the neural population dynamics in the HPC. For example, the extracted eigenvectors 256 

for each visual item evolved within a reasonable range of time; increase and then 257 

decreased during approximately 0.2 to 0.5 s (Figure 5B), consistent with our previous 258 

findings using typical conventional analysis (Figures. 2 and 3 in Chen and Naya, 259 

2020). In clear contrast, the eigenvectors for locations did not show clear trends over 260 

time (Figure 5C), as the location information was shown to the monkeys before the 261 

sample presentations. When plotting the eigenvectors in the space of the first three 262 

PCs, the eigenvectors consistently evolved in one direction in the spaces of PC1 and 263 

PC2 (I2, I3, and I6) or in PC3 (I1, I4, and I5) (Figure 5D, left). In contrast, the 264 

eigenvectors for the locations were positioned at a constant location across time 265 

(Figure 5D, right). Unambiguously, arrangements of the eigenvectors for items and 266 

locations were orthogonalized, as seen in the item representations in the second and 267 

fourth quadrants and location representations in the first and third quadrants (Figure 268 

5D, top row). Thus, our state-space analysis in the regression subspace successfully 269 

described neural modulation dynamics in the HPC populations similar to the cOFC 270 
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populations, while they reflect continuous and categorical parameters in their neural 271 

modulations. 272 

 273 

Effect of shuffle control on PCA performance 274 

To validate the significance of these findings, we used a shuffle control procedure in 275 

three ways (see Methods for details), which determines the number of available 276 

dimensions in the neural population. In shuffled conditions 1 and 2, information on 277 

task-related parameters was partially shuffled in the regression subspace, matrix X. 278 

In shuffle condition 1, random permutation of neuron, n, was performed at each time i, 279 

eliminating the temporal neural modulation structure by condition C across each 280 

neuron but retaining the effect of neural modulation at each time, i, at the population 281 

level. In shuffle condition 2, random permutation of time, i, was performed in each 282 

neuron, n, eliminating the temporal neural modulation structure by condition C in 283 

each neuron but retaining the effect of neural modulation in each neuron, n, at the 284 

population level. In shuffled condition 3, random permutation of both time i and 285 

neuron n was performed. We evaluated the performance of the PCAs for each 286 

condition of each experiment. 287 

As shown in Figure 6, these three shuffle control procedures reproduced 288 

different disturbances in neural populations. In shuffle conditions 1 and 3 (Figure 6A, 289 

left and right), the explained variance decreased compared to those from the original 290 

data in the cOFC population. In shuffle condition 2, a considerable amount of 291 

variance was explained by PCA (Figure 6A, middle). These effects are consistent 292 

with those of our previous study (Figure 5A, E, and I in Yamada et al., 2021). 293 

Because the eigenvectors were very stable across time in the cOFC population 294 

(Figures 4B and 4C), the shuffle within each neuron did not strongly affect PCA 295 

performance (Figure 6A, middle). In contrast, the shuffle among neurons at each time 296 

point, t, strongly reduced the performance of PCA because neural modulation 297 
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differed neuron-by-neuron (Figure 6A, left). The same effects of shuffle controls were 298 

observed in the HPC population, for which categorical parameters were used (Figure 299 

6B); a considerable amount of variance was explained by PCA in shuffled condition 2. 300 

When examining the details of the decreased performance in each experiment, the 301 

performances of the first three PCs and the first twelve PCs were better than those in 302 

shuffled control condition 2 in Exp. 1 and Exp. 2, respectively (P < 0.05 for all these 303 

cases). Thus, the total number of available dimensions differed between the 304 

experiments. Note that all three shuffles destroyed the structured neural population 305 

dynamics to some extent, consistent with our previous findings (Figure 5F and J in 306 

Yamada et al., 2021). 307 

 308 

Preference ordering in compatible with the representational model 309 

To incorporate the conventional analytic framework into neural population dynamics, 310 

we reconstruct the regression subspace in line with the conventional perspective, 311 

such as neural preference to task conditions, item and location in this case. We 312 

analyzed the most preferred to least preferred conditions for items and locations in 313 

each neuron, in which item and location were remapped to the most preferred to 314 

least preferred in each condition of item and location neuron-by-neuron, defined 315 

using whole activity in the 0.08–0.6 s analysis window in each neuron. Thus, the 316 

regression subspace became composed of the same size, total X of size N(590)×N(300), 317 

but the condition, C, was changed to the most preferred to least preferred items and 318 

the most preferred to least preferred locations. 319 

The percent variance explained by the model for PC1 and PC2 was almost the 320 

same in the preference-ordering analysis (Figure 7A, 11%) compared to the original 321 

analysis (Figure 5A, 10%). The composition of the eigenvectors was also similar 322 

between the analyses in the PC1 and PC2 dimensions, locating at the second and 323 

fourth quadrants  from the most preferred (Ib, best item) to the least preferred (Iw, 324 
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worst item), but they were clearly different in the PC3 dimension, as seen in the most 325 

preferred item (Ib) (Figure 7B, left bottom). The composition of eigenvectors for 326 

locations was not clearly changed by preference ordering, even for PC3 (Figure 7B, 327 

right bottom). Thus, preference ordering may affect the eigenvector compositions at 328 

higher dimensions, equal to or more than PC3. 329 

 330 

Quantitative analyses of neural population dynamics between two neural 331 

populations 332 

To quantitatively examine these neural population structures, we compared the 333 

properties of the eigenvectors by estimating the vector size, angle, and deviance in 334 

each neural population (Figure 8). For this analysis, we used the rank-ordered HPC 335 

data shown in Figure 7, as well as the cOFC data shown in Figure 4. In the rank-336 

ordered data, we evaluated the best and worst conditions as typically used in 337 

conventional representational analyses. 338 

First, evaluation of vector size provided clear time-dependent structures in both 339 

cOFC and HPC populations for probability and magnitude (Figure 8A) and for the 340 

best and worst items (Figure 8B). Such time-dependent changes were not clearly 341 

observed in the eigenvectors for the best and worst locations (Figure 8B, right and 342 

second right columns), presumably because location information had already been 343 

provided to the monkeys before the samples appeared. The vector sizes during 0.1 s 344 

to 0.6 s after the onset of the lottery stimuli were not significantly different between 345 

two continuous parameters, probability and magnitude of rewards (Figure 8C, 346 

Wilcoxon rank sum test; PC1-2, n = 52, df = 51, W = 330, P = 0.892, PC2-3, n = 52, 347 

df = 51, W = 341, P = 0.964), consistent with our previous findings (Yamada et al., 348 

2021). In contrast, the vector sizes during 0.1 s to 0.6 s after the onset of the sample 349 

stimuli significantly differed between the best and worst items (Figure 8D, Wilcoxon 350 

singed rank test; PC1-2, item, n = 52, df = 51, W = 502, P = 0.002, PC2-3, item, n = 351 
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52, df = 51, W = 588, P < 0.001; PC1-2, location, n = 52, df = 51, W = 600, P < 0.001, 352 

PC2-3, item, n = 52, df = 51, W = 542, P < 0.001), possibly because the regression 353 

coefficients for the best conditions were considerably different from their means 354 

because the HPC responses were highly selective for one object (Figure 2D–E). 355 

Thus, the vector sizes captured the temporal changes in neural modulation at the 356 

population level. 357 

The analyses of vector angles showed that all eigenvectors were very stable in 358 

both populations in the top two dimensions (Figure 8E–F, top, Wilcoxon rank sum 359 

test; cOFC, PC1-2, n = 52, df = 51, W = 62, P < 0.001; HPC, PC1-2, item, n = 52, df 360 

= 51, W = 520, P < 0.001, location, n = 52, df = 51, W = 0, P < 0.001), as also shown 361 

in Figures 4C top and 7B top. Their angles in the PC2-3 plane were not stable 362 

(Figure 8E–F, bottom, Wilcoxon rank sum test; cOFC, PC2-3, n = 52, df = 51, W = 363 

343, P = 0.935; HPC, PC2-3, item, n = 52, df = 51, W = 321, P = 0.765, PC2-3, 364 

location, n = 52, df = 51, W = 312, P = 0.643, see also, Figure 4C, bottom and Figure 365 

7B, bottom). Both neural populations showed considerable vector deviance smaller 366 

than 0.1 with some statistical differences (Figure 8G–H, Wilcoxon rank sum test; 367 

cOFC, PC1-2, n = 52, df = 51, W = 361, P = 0.683; PC2-3, n = 52, df = 51, W = 300, 368 

P = 0.496; HPC, PC1-2, item, n = 52, df = 51, W = 459, P = 0.027; PC2-3, item, n = 369 

52, df = 51, W = 581, P < 0.001, PC1-2, location, n = 52, df = 51, W = 352, P = 0.807; 370 

PC2-3, location, n = 52, df = 51, W = 384, P = 0.408). Thus, our state-space analysis 371 

in the regression subspace was capable of describing neural modulation dynamic in 372 

the cOFC and HPC during two different cognitive tasks composed of continuous and 373 

categorical parameters. 374 

 375 

Matrix size control for PCA 376 

Because the PCA performance was lower in the HPC than in the cOFC population, 377 

we evaluated the effect of matrix size on the representational models. In our previous 378 
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study, the variance explained by the PCA decreased as the matrix size increased to 379 

explain the same neural modulation (Figure 7A in Yamada et al., 2021). In the 380 

present study, we reduced the matrix size of the HPC population by extracting the 381 

best and worst conditions for item and location according to conventional 382 

representational model analysis, although the regression matrix from the other 383 

conditions, 2nd preferred to 5th preferred, were removed. The regression subspace 384 

was reduced from the large size, total X of size N(590)×N(10×30), to N(590)×N(4×30), similar 385 

column size to the OFC population, N(190)×N(2×30), in terms of the number of conditions. 386 

In this smaller regression matrix, PCA performance improved (Figure 9A, 387 

approximately 16% of the variance explained by PC1 and PC2), consistent with the 388 

findings of our previous study where we used continuous parameters. The 389 

eigenvector compositions developed in a clearly symmetric way, perhaps because 390 

the variances from the other conditions were removed (Figure 9B). In this smaller 391 

regression matrix, the principal components appeared to be rotated at an 392 

approximately 135° angle from the original on the PC1-2 plane (Figures 9B and 7B). 393 

The percent variance explained by the PCA clearly differed from that in the shuffled 394 

conditions for the top three PCs, while the top six PCs significantly differed from 395 

shuffled control in condition 2 (Figure 9C, see also Figure 6B, middle), indicating that 396 

some neural population structures in higher dimensions were removed in this smaller 397 

matrix.  398 

In summary, our state-space analysis clearly described the neural modulation 399 

structures for both continuous and categorical task parameters. In both populations, 400 

using two standard task designs, we found stable evolutions of neural modulation 401 

structures in a relatively short period i.e., 0.6 s while the monkeys perceived visual 402 

items.  403 

 404 

Discussion 405 
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In our previous study, we developed a variant of state-space analysis in the 406 

regression subspace for continuous task parameters, which extracts neural 407 

modulation dynamics at the population level. Here, we applied our state-space 408 

analysis in the regression subspace to categorical task parameters and successfully 409 

described the neural modulation dynamics for items and locations for the first time 410 

(Figure 7). Comparisons of these results with those derived from continuous task 411 

parameters (Figures 4 and 5) indicated that our analysis showed gradual 412 

development (Figure 8A–B) and stable composition of the neural population 413 

structures at different angles (Figure 8E–F, top). Moreover, the population analysis 414 

using the best and worst conditions for items and locations showed that low-415 

dimensional robust neural-modulation structures existed in this restricted neural 416 

population, and some high-dimensional information seemed to disappear by 417 

removing neural activity between the best and worst conditions (Figure 9A, and 418 

Figures 7B vs 9B). Although both the cOFC and HPC neural populations were 419 

pseudo-populations of neurons using repetitive single-neuron recordings for the 420 

representational models, we successfully extracted both neural modulation dynamics 421 

with the state-space analysis we developed. Our reliable extraction of neural 422 

modulation dynamics indicated that any type of data can be re-analyzed and 423 

evaluated to describe the temporal structure of neural modulations as dynamic 424 

representational models. 425 

 426 

Two different types of task parameters yield comparable regression subspaces 427 

In our state-space analysis, neural population activity was projected to the regression 428 

subspace, reflecting the across-trial variance caused by the task-related parameters 429 

at the population level. In this step, both continuous and categorical task parameters 430 

are reliably used within a framework in the general linear model. However, it was 431 

reliably performed with one critical limitation; the conditions in any parameters should 432 
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be orthogonalized as the experimental design (Grafen & Hails, 2002). In the linear 433 

system assumed here, the concept of orthogonality is critical in terms of statistics and 434 

to avoid the skewed projection of neural activity into the regression subspace, which 435 

is part of the whole neural activity reflecting activity modulation by the task 436 

parameters of interest. 437 

Analysis of the regression subspace has been performed in a limited number of 438 

studies (Aoi et al., 2020; Mante et al., 2013). These studies aimed at detecting the 439 

regression subspace within a whole neural structure at a constant time point (Mante 440 

et al., 2013), and the detected modulation axis is assumed to be projected 441 

orthogonally and sometimes being stable through a task trial (Aoi et al., 2020). Our 442 

results support these assumptions, which were not examined in the previous study, 443 

as the cOFC and HPC showed stable evolution of these neural-modulation structures, 444 

at least during the two cognitive tasks with continuous and categorical task 445 

parameters. Thus, our approach encourages research that combines the 446 

conventional representational model and the dynamic model by re-analyzing the 447 

pseudo-population of recorded single-neuron activity to remap the dynamic neural 448 

modulation structures for all pre-existing data.  449 

 450 

Stable and fluctuating signals in neural modulation dynamics  451 

In this study, we observed stable neural modulation dynamics in both the cOFC and 452 

HPC populations. Although these tasks were designed with different types of task 453 

parameters, both brain regions showed stable modulation structures during the visual 454 

perception (Figures 4, 7, and 8). Why do these two distinct brain regions show stable 455 

modulation dynamics? One possibility is that both the cOFC and HPC play a role in 456 

accessing the memory for the expected values as a combination of probability and 457 

magnitude in Exp. 1 and the association between stimulus and position for future 458 

decisions in Exp. 2. These types of stable structures were observed in the 459 
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dorsolateral prefrontal cortex during a typical working memory task (Murray et al., 460 

2017). Thus, a key aspect of stable neural dynamics may be continuous access to 461 

memory and its maintenance. 462 

In our previous study, fluctuating neural population signals were observed in the 463 

dorsal part of the striatum (DS) and medial part of the orbitofrontal cortex (mOFC) 464 

because of signal instability or weakness (Figure 5A and B in Yamada et al., 2021). 465 

Because the signal carried by the mOFC population was weak (Figure 8 bottom row 466 

in Yamada et al., 2021), the eigenvector fluctuation in the mOFC population reflected 467 

weak signal modulations by the probability and magnitude of rewards. In this case, 468 

moment-by-moment vector fluctuation was observed, as there was no clear neural 469 

modulation structure in the mOFC populations. In contrast, the fluctuating DS signal 470 

seemed to reflect the functional role employed by the DS neural population in 471 

detecting and integrating the probability and magnitude of rewards, related to the 472 

control of some actions (Balleine et al., 2007). In the DS population, structural 473 

changes in eigenvectors occurred over time (Figure 8 in Yamada et al., 2021). We 474 

need to elaborate on the stability of modulation dynamic functions in neural 475 

processing in future studies to elucidate how neural circuitry actually operates and 476 

computes (Ebitz & Hayden, 2021; Humphries, 2021). 477 

 478 

Conclusions 479 

Representational models have provided mounting evidence that neural modulation is 480 

associated with mathematical functions in every area of the brain. A dynamic-model 481 

approach that has been recently developed appears promising to account for 482 

different aspects of neural computation, but the relationship with the representational 483 

models remains unclear. Although a few studies have sought a connection between 484 

these two advances (X. Chen & Stuphorn, 2015; Churchland et al., 2012; Murray et 485 

al., 2017), more direct comparisons are necessary to understand the functional 486 
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significance of the neural population dynamics. Our results indicated that the neural 487 

modulation dynamics observed in population ensemble activities are compatible with 488 

representational models and encourage research aimed at incorporating traditional 489 

representational models into the dynamic system. 490 

 491 

Materials and Methods 492 

Subjects and experimental procedures 493 

Four macaque monkeys were employed for this study in two experiments 494 

(Experiment 1: Macaca mulatta, SUN, 7.1 kg, male; Macaca fuscata, FU, 6.7 kg, 495 

female; Experiment 2: Macaca mulatta, A, 9.3 kg, male; Macaca mulatta, D, 9.5 kg, 496 

male). All experimental procedures were approved by the Animal Care and Use 497 

Committee of the University of Tsukuba (Exp. 1, protocol no H30.336), and the 498 

Institutional Animal Care and Use of Laboratory Animals approved by Peking 499 

University (Exp. 2,  project number Psych-YujiNaya-1) and performed in compliance 500 

with the US Public Health Service’s Guide for the Care and Use of Laboratory 501 

Animals.  502 

 503 

Behavioral task and Monkey electrophysiology 504 

Experiment 1 505 

Cued lottery tasks. Animals performed one of two visually cued lottery tasks: a 506 

single-cue task or a choice task. Neuronal activity was recorded only during the 507 

single-cue task. 508 

At the beginning of trials during the single-cue task, the monkeys had 2 s to align 509 

their gaze to within 3º of a 1º-diameter gray central fixation target. After fixation for 1 s, 510 

a pie chart was presented for 2.5 s to provide information regarding the probability 511 

and magnitude of rewards at the same location as the central fixation target. The 512 

probability and magnitude of rewards were associated with the number of blue and 513 
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green 8º segments, ranging from 0.1 to 1.0 mL in 0.1-mL increments for magnitude 514 

and 0.1 to 1.0 in 0.1 increments for probability. With an interval of 0.2 s after the 515 

removal of the pie chart, either a 1 kHz or 0.1 kHz tone of 0.15-s duration was 516 

provided to indicate reward or no-reward outcomes, respectively. With an interval of 517 

0.2 s after the high tone, a fluid reward was delivered. After a low tone, no reward 518 

was delivered. An inter-trial interval of 4–6 s followed each trial.  519 

In the trials during choice task, the animals were instructed to choose between 520 

two peripheral pie charts providing information regarding the probability and 521 

magnitude of rewards for each of the two target options were presented for 2.5 s, at 522 

8º to the left and right of the central fixation location. The animals received a fluid 523 

reward, indicated by the green pie chart of the chosen target, with the probability 524 

indicated by the blue pie chart; otherwise, no reward was delivered.  525 

One hundred pie charts were used in the experiments. In the single-cue task, 526 

each pie chart was presented once in a random order. In the choice task, two pie 527 

charts from the 100 pie charts were randomly allocated to the two options. During 528 

one session of electrophysiological recording, approximately 30 to 60 trial blocks of 529 

the choice task were interleaved with 100 to 120 trial blocks of the single-cue task.  530 

We used conventional techniques for recording single-neuron activity from the 531 

central part of the orbitofrontal cortex (cOFC, area 13M). A tungsten microelectrode 532 

(1–3 MΩ, FHC) was used to record single-neuron activity. Electrophysiological 533 

signals were amplified, band-pass filtered (at 50–3000 Hz), and monitored. Single-534 

neuron activity was isolated based on the spike waveforms. We recorded from the 535 

cOFC of a single hemisphere in each of the two monkeys: 190 cOFC neurons (98, 536 

SUN and 92, FU). The activity of all single neurons was sampled when the activity of 537 

an isolated neuron demonstrated a good signal-to-noise ratio (>2.5). Blinding was not 538 

performed. The sample sizes required to detect effect sizes (number of recorded 539 

neurons, number of recorded trials in a single neuron, and number of monkeys) were 540 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2022. ; https://doi.org/10.1101/2022.01.13.476265doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.13.476265
http://creativecommons.org/licenses/by-nd/4.0/


 

 

22 

 

estimated based on previous studies (X. Chen & Stuphorn, 2015; Yamada et al., 541 

2013; Yamada et al., 2018). Neural activity was recorded during 100–120 trials of the 542 

single-cue task. Neural activity was not recorded during the choice trials. In this study, 543 

we analyzed the cOFC activity data during 600 ms after cue onset from Yamada et al. 544 

(2021) for comparison with the activity data in Exp. 2. 545 

 546 

Experiment 2 547 

Item location-retention (ILR) task. The animals performed the task under dim light in 548 

an electromagnetically shielded room. The task started with an encoding phase, 549 

which was initiated by the animal pulling a lever and fixating on a white square (0.6°) 550 

presented within one of the four quadrants at 12.5° (monkey A) or 10° (monkey D) 551 

from the center of the touch screen (3MTM MicroTouchTM Display M1700SS, 17 inch), 552 

situated approximately 28 cm from the subjects. Eye position was monitored using an 553 

infrared digital camera with a sampling frequency of 120 Hz (ETL-200, ISCAN). After 554 

fixation for 0.6 s, one of the six items (3.0° for monkey A and 2.5° for monkey D, 555 

radius) was presented in the same quadrant as a sample stimulus for 0.3 s, followed 556 

by another 0.7-s fixation on the white square. If the fixation was successfully 557 

maintained (typically, < 2.5 °), the encoding phase ended with the presentation of a 558 

single drop of water. 559 

The encoding phase was followed by a blank interphase delay interval of 0.7–1.4 560 

s during which no fixation was required. The response phase was initiated with a 561 

fixation dot presented at the center of the screen. One of six items was then 562 

presented at the center for 0.3 s as a cue stimulus. After another 0.5-s delay period, 563 

five disks were presented as choices, including a blue disk in each quadrant and a 564 

green disk at the center. When the cue stimulus was the same as the sample 565 

stimulus, the animal was required to choose by touching the blue disk in the same 566 

quadrant as the sample (i.e., match condition). Otherwise, the subject was required 567 
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to choose the green disk (i.e., non-match condition). If the animal made a correct 568 

choice, four to eight drops of water were provided as a reward; otherwise, an 569 

additional 4 s was added to the standard intertrial interval (1.5–3 s). During the trial, a 570 

large gray square (48° on each side, Red, Green, Blue value: 50, 50, 50, luminance: 571 

3.36 cd/m2) was presented at the center of the display (backlight luminance: 0.22 572 

cd/m2) as a background. After the end of the trial, all stimuli disappeared, and the 573 

entire screen displayed a light red color during the intertrial interval. The start of a 574 

new trial was indicated by the reappearance of the large gray square on the display, 575 

upon which the monkey could start pulling the lever, triggering the appearance of a 576 

white fixation dot. In the match condition, sample stimuli were pseudo-randomly 577 

chosen from six well-learned visual items, and each item was presented pseudo-578 

randomly within the four quadrants, resulting in 24 (6 × 4) configuration patterns. In 579 

the nonmatch condition, the location of the sample stimulus was randomly chosen 580 

from the four quadrants, and the cue stimulus was randomly chosen from the five 581 

items that differed from the sample stimulus. The match and non-match conditions 582 

were randomly presented at a ratio of 4:1, resulting in 30 (24 + 6) configuration 583 

patterns. The same six stimuli were used during all recording sessions. 584 

To record single-unit activity, we used a 16-channel vector array microprobe (V1 585 

X 16-Edge, NeuroNexus), a 16-channel U-Probe (Plexon), a tungsten tetrode probe 586 

(Thomas RECORDING), or a single-wire tungsten microelectrode (Alpha Omega). 587 

We recorded 590 hippocampal (HPC) neurons, of which the recording sites appeared 588 

to cover all its subdivisions (i.e., dentate gyrus, CA3, CA1, and subicular complex). 589 

We applied state-space analysis to the HPC population and compared to the results 590 

from the cOFC population. 591 

 592 

Statistical analysis 593 
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For statistical analysis, we used the statistical software package R (Exp. 1) and 594 

MATLAB (MathWorks) (Exp. 2). All statistical tests for the neural analyses were two 595 

tailed.  596 

 597 

Behavioral analysis 598 

Exp. 1. We previously reported that monkey behavior depends on the expected 599 

values defined as probability time magnitude (Yamada et al 2021). 600 

Exp. 2. We previously reported that two monkeys learned to retain the item and 601 

location information of the sample stimulus (H. Chen & Naya, 2020). 602 

No new behavioral results were included in this study. 603 

 604 

Neural analysis  605 

Peristimulus time histograms were drawn for each single-neuron activity aligned at 606 

the visual stimulus onset. The average activity curves were smoothed for visual 607 

inspection using a Gaussian kernel. 608 

 609 

Conventional analyses to detect neural modulations in each neuron 610 

We analyzed neural activity during the 1-s time window (0-1 s after cue onset, Exp. 611 

1) and during the 0.92 s time window (0.08-1 s after sample onset, Exp. 2), 612 

respectively, respectively. These activities were used for the conventional analyses 613 

below. No Gaussian kernel was used. 614 

Exp. 1. Neural discharge rates (F) were fitted using a linear combination of the 615 

following parameters: 616 

 F = b0 + bp Probability + bm Magnitude  (1) 617 

where Probability and Magnitude are the probability and magnitude of the rewards 618 

indicated by the pie chart, respectively. b0 is the intercept. If bp and bm were not 0 at P 619 
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< 0.05, the discharge rates were regarded as being significantly modulated by that 620 

variable. These results have been previously reported (Yamada et al., 2021).  621 

Based on the linear regression, activity modulation patterns were categorized 622 

into several types: “Probability” type with a significant bp and without a significant bm; 623 

“Magnitude” type without a significant bp and with a significant bm; “Both” type with 624 

significant bp and bm. 625 

Exp. 2. For neural responses during the encoding phase after the sample 626 

presentation, we evaluated the effects of “item” and “location” for each neuron using 627 

two-way analysis of variance (ANOVA) (P < 0.01 for each). We analyzed neurons 628 

that we tested in at least 60 trials (10 trials for each stimulus, 15 trials for each 629 

location). On average, we tested 100 trials for each neuron (n = 590). The results 630 

have been previously reported (H. Chen & Naya, 2020). 631 

Based on the ANOVA, activity modulation patterns were categorized into several 632 

types: “Item” type only with a significant main effect of Item; “Location” type only with 633 

a significant effect of Location; “Both” type with a significant effect of Item and 634 

Location or with a significant effect of interaction. 635 

 636 

Population dynamics using principal component analysis 637 

We analyzed neural activity during a 0.6 s time period from cue onset (Exp. 1) and 638 

sample onset (Exp. 2). To obtain a time series of neural firing rates within this period, 639 

we estimated the firing rates of each neuron for every 0.02-s time bin (without 640 

overlap) during the 0.6-s period. No Gaussian kernel was used. 641 

 642 

Regression subspace. We used a general linear model to determine the probability 643 

and magnitude of rewards (Exp. 1) and item and location (Exp. 2) affecting the 644 

activity of each neuron in the neural populations. Each neural population was 645 

composed of all recorded neurons in each brain region. 646 
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Exp. 1. We first set the probability and magnitude at 0.1 and 1.0 and 0.1 to 1.0 mL, 647 

respectively. We then described the average firing rates of neuron i at time t as a 648 

linear combination of the probability and magnitude in each neural population: 649 

 F(i,t,k) = b0(i,t) + b1(i,t)Probability(k) + b2(i,t)Magnitude(k)  (2) 650 

where F(i,t,k) is the average firing rate of neuron i at time t on trial k, Probability(k) is the 651 

probability of reward cued to the monkey in trial k, and Magnitude(k) is the magnitude 652 

of reward cued to the monkey in trial k. The regression coefficients b0(i,t) to b2(i,t) 653 

describe the degree to which the firing rates of neuron i depend on the mean firing 654 

rates (hence, firing rates independent of task parameters), probability of rewards, and 655 

magnitude of rewards, respectively, at a given time t during the trials. 656 

Exp. 2. We first set six items and four locations as categorical parameters. We then 657 

described the average firing rates of neuron i at time t as a linear combination of item 658 

and location in each neural population: 659 

 F(i,t,k) = b0(i,t) + b1(i,t)Item(k) + b2(i,t)Location(k),  (3) 660 

where F(i,t,k) is the average firing rate of neuron i at time t on trial k, Item(k) is the type 661 

of item cued to the monkey on trial k, and Location(k) is the type of location cued to 662 

the monkey on trial k. Each of the regression coefficients b0(i,t), b1(i,t), and b2(i,t) 663 

describe the degree to which the firing rates of neuron i depend on the mean firing 664 

rates (hence, firing rates independent of task parameters, probability, and magnitude 665 

of rewards), the degree of the firing rate in each item relative to the mean firing rates, 666 

and the degree of firing in each location relative to the mean firing rates, respectively, 667 

at a given time t during the trials. Note that the interaction term was not included in 668 

the model.  669 

We used the regression coefficients (i.e., the regression table in the ANOVA) 670 

described in Eqs. 2 and 3 to identify how the dimensions of neural-population signals 671 

were composed of information related to probability and magnitude (Exp. 1) and were 672 

composed of information related to item and location (Exp. 2) as aggregated 673 
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properties of individual neural activity. This step constructs an encoding model where 674 

the regression coefficients could be explained by a temporal structure in the neural 675 

modulation of two continuous parameters (Exp. 1) or two categorical parameters 676 

(Exp. 2) at the population level. Our procedures are analogous to the state-space 677 

analysis performed by Mante et al. (Mante et al., 2013), in which the regression 678 

coefficients were used to provide an axis (or dimension) of the parameters of interest 679 

in multi-dimensional state space obtained through principal component analysis 680 

(PCA). In this study, our orthogonalized task design allowed us to reliably project the 681 

neural firing rates into the regression subspace. Note that our analyses were not 682 

aimed at describing the population dynamics of neural signals as a trajectory in multi-683 

dimensional task space but were aimed at describing the neural-modulation 684 

dynamics as in a representational model. 685 

 686 

Preference ordering. In Exp. 2, each neuron had a preferred item and location. As in 687 

the conventional representational-model analysis, we defined the preferred item and 688 

location in each neuron to construct matrix X. We constructed X with and without 689 

rank order. Items 1 to 6 were rank-ordered from the most preferred to least preferred, 690 

defined as the mean firing rates during a whole analysis time window from 0.08 to 0.6 691 

s. Thus, Item(k) was the rank-ordered item cued to the monkey on trial k. In the same 692 

way as the definition of Item, Location(k) was the rank-ordered location cued to the 693 

monkey on trial k. Note that this preference ordering was never changed through 694 

time t in each neuron n. 695 

 696 

Principal Component Analysis We used PCA to identify the dimensions of the neural-697 

population signal in the orthogonal spaces composed of the probability and 698 

magnitude of rewards in Exp. 1 and of the item and location in Exp. 2, respectively, in 699 

each of the four neural populations. In each neural population, we first prepared a 700 
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two-dimensional data matrix X of size N(n)×M (C×T); the regression coefficient vectors, 701 

b1(i,t) and b2(i,t), in Eqs. 2 and 3, whose rows correspond to the total number of 702 

neurons (n) in each neural population and columns correspond to C, the total number 703 

of conditions (i.e., two: probability and magnitude in Exp. 1; 10: six items and four 704 

locations in Exp. 2), and T as the total number of the analysis windows (i.e., 30 bins: 705 

0.6 s divided by the window size bin, 0.02 s). A series of eigenvectors was obtained 706 

by applying PCA once to data matrix X in each of the neural populations. The 707 

principal components (PCs of this data matrix are vectors v(a) of length N(n), and the 708 

total number of recorded neurons if M (C×T) is > N(n); otherwise, the length is M (C×T). 709 

The PCs were indexed from the principal components, explaining most of the 710 

variance to the least variance. The eigenvectors were obtained using the prcomp () 711 

function in R software. Note that we did not include the intercept term b0(i,t) to focus on 712 

the neural modulation by the interested parameters. 713 

 714 

Eigenvectors. When we applied PCA to data matrix X, we decomposed the matrix 715 

into eigenvectors and eigenvalues. Each eigenvector has a corresponding 716 

eigenvalue. In our analysis, the eigenvectors at time t represent a vector in the space 717 

of probability and magnitude in Exp. 1 and of item and location in Exp. 2, respectively. 718 

The eigenvalues at time t for the probability and magnitude in Exp. 1 and of item and 719 

location in Exp. 2, respectively, were scalars, indicating the extent of variance in the 720 

data in that vector. Thus, the first PC is the eigenvector with the highest eigenvalue. 721 

We mainly analyzed eigenvectors for the first three PCs (PC1 to PC3) in the following 722 

analyses, as the top three PCs had been analyzed previously (Okazawa et al., 2021). 723 

Note that we applied PCA once to each neural population, and thus, the total 724 

variances contained in the data differed among the neural populations. 725 

 726 
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Analysis of eigenvectors. We evaluated the characteristics of eigenvectors for PC1 to 727 

PC3 in each neural population in terms of the vector angle, size, and deviance in the 728 

space of probability and magnitude in Exp. 1 and of the item and location in Exp. 2, 729 

respectively. The angle is the vector angle from the horizontal axis from 0º to 360º 730 

against the main PCs. Size is the length of the eigenvector. The deviance is the 731 

difference between vectors. We estimated the deviance from the mean vector for 732 

each neural population. These three characteristics of the eigenvectors were 733 

compared in each population at P < 0.05 using the Kruskal–Wallis and Wilcoxon 734 

rank-sum tests. The vector during the first 0.1 s was extracted from these analyses. 735 

 736 

Shuffle control for PCA. We performed three shuffle controls to examine the 737 

significance of population structures described with PCA. A two-dimensional data 738 

matrix X was randomized by shuffling in three ways. In shuffled control 1, matrix X 739 

was shuffled by permutating the allocation of neuron n at each time i. This shuffle 740 

provided a data matrix X of size N(n)×M (C×T), eliminating the temporal structure of 741 

neural modulation by condition C in each neuron but retaining the neural modulations 742 

at time t at the population level. In shuffled control 2, matrix X was shuffled by 743 

permutating the allocation of time i in each neuron n. This shuffle provided a data 744 

matrix X of size N(neuron)×M (C×T), eliminating the neural modulation structure under 745 

condition C maintained in each neuron but retaining the neural modulation in each 746 

neuron at the population level. In shuffled control 3, matrix X was shuffled by 747 

permutating the allocation of both time i and neuron n. In these three shuffle controls, 748 

matrix X was estimated 1,000 times. PCA performance was evaluated by 749 

constructing the distributions of explained variances for PC1 to PC12. The statistical 750 

significance of the variances explained by PC1 and PC3 was estimated based on the 751 

95th percentile of the reconstructed distributions of explained variance or bootstrap 752 

standard errors (i.e., standard deviation of the reconstructed distribution).  753 
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 754 

Matrix Size Control for PCA Because the original matrix sizes of X, N(n)×M (C×T), differed 755 

between the cOFC (X of size N(190)×M (2×30)) and HPC (X of size N(590)×M (10×30)) populations, 756 

we controlled for matrix size. In this control, we used only two columns in each bin, the most 757 

preferred and least preferred, for each condition C, item, and location; thus, matrix X was (X 758 

of size N(590)×M (4×30)). This corresponds to the conventional analysis usually used in the 759 

representational model, which compares the neural responses between the most preferred 760 

and least preferred conditions. We evaluated the percentage explained by the model between 761 

the original matrix and size-controlled matrix in the HPC. 762 

 763 
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  888 

Figure 1. Behavioral task and recording location of neurons. 889 

(A) Sequence of events during the single-cue task in Exp. 1. A single visual pie chart 890 

having green and blue pie segments was presented to the monkeys. Neural activity 891 

was analyzed during 0.6 s after cue onset, i.e., for the same duration as in Exp. 2. 892 

(B) Payoff matrix – each of the magnitudes was fully crossed with each of the 893 

probabilities resulting in a pool of 100 lotteries. (C) Illustration of neural recording 894 

areas based on coronal magnetic resonance (MR) images for the cOFC (13M, 895 

medial part of area 13) at the A31–A34 anterior–posterior (A–P) level. (D) Sequence 896 

of events during the ILR task in Exp. 2. The cue stimulus during the response phase 897 

was the same as the sample stimulus during the encoding phase in the match trial, 898 

while the two stimuli differed in the nonmatch trial. Neural activity was analyzed 899 

during 0.6 s after sample onset, i.e., for the same duration as in Exp. 1. (E) Six visual 900 

item stimuli and spatial composition during the sample period. (F) Coronal MR 901 

images from monkey A for the HPC population showing the recording area at A16–902 

A10.5 depicted by purple color in the red boxes. Figure 1A was published in Yamada 903 

et al., 2021. Figure 1D–F was published in Chen et al., 2020.  904 
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 906 

Figure 2. Example activity of neurons during the single-cue and ILR tasks. 907 

(A) Example activity histogram of a cOFC neuron modulated by the probability and 908 

magnitude of rewards during the single-cue task. The activity aligned to the cue 909 

onset is represented for three different levels of probability (0.1–0.3, 0.4–0.7, 0.8–910 

1.0) and magnitude (0.1–0.3 mL, 0.4–0.7 mL, 0.8–1.0 mL) of rewards. Gray hatched 911 

time windows indicate the 1-s time window used to estimate the neural firing rates 912 

shown in B. Histograms are smoothed using a Gaussian kernel (σ = 50 ms) (B) 913 

Activity plot of the cOFC neuron during the 1-s time window shown in A against the 914 

probability and magnitude of rewards. (C) Percentages of neural modulation type: the 915 

probability (P), magnitude (M), and both (Both) in the 0.02-s time bin during 1.0 s 916 

after cue onset. The scale bar indicates the 0.2 s. (D) Example of an HPC neuron 917 

showing sample-triggered sample–location signals and item signals. A 0.08–0.38 s 918 

time window was used to estimate the neural firing rates shown in E. Histograms are 919 

smoothed using a Gaussian kernel (σ = 20 ms). (E) Activity plot of the HPC neuron 920 

during the 0.3-s time window shown in A against items and locations. (F) 921 

Percentages of neural modulation types: item, location, and both (Both) in the 0.02-s 922 

time bin during 1.0 s after sample onset. Figure 2A–C was published in Yamada et 923 

al., 2021. Figure 2D–E was published in Chen et al., 2020.   924 
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 925 

Figure 3. Schematic depictions for the analysis of neural-population dynamics 926 

using PCA. 927 

(A) Time series of neural population activity projected to a regression subspace 928 

composed of probability and magnitude. The eigenvectors for probability and 929 

magnitude were plotted after coordinate transformation against PC1 and PC2. A 930 

series of eigenvectors was obtained by applying PCA once to the cOFC population. 931 

The number of eigenvectors obtained by PCA was 0.6 s divided by the analysis 932 

window size, 0.02 s, for probability (P) and magnitude (M), hence 30 eigenvectors for 933 

each. The regression equation is shown at the bottom (see Methods for details). (B) 934 

Time series of neural population activity projected to a regression subspace 935 

composed of items and locations. The eigenvectors for six items (I1 to I6) were 936 

plotted after coordinate transformation against PC1 and PC2 (the eigenvector for 937 

locations are not shown). A series of eigenvectors was obtained by applying PCA 938 

once to the HPC population. The number of eigenvectors obtained by PCA was 0.6 s 939 

divided by the analysis window size, 0.02 s, for the six items and four locations, 940 

hence 30 eigenvectors for each. The regression equation is shown at the bottom 941 

(see Methods for details). (C) Characteristics of the eigenvectors evaluated 942 

quantitatively. Angle: vector angle from the horizontal axis obtained from -180º to 180º. 943 

Size: eigenvector length. Deviance: difference between vectors.   944 
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 945 

Figure 4. The state-space analysis provides a temporal structure of neural 946 

modulation in the cOFC. 947 

(A) Cumulative variance explained by PCA in the cOFC population. The arrowhead 948 

indicates the percentages of variances explained by PC1 and PC2. (B) Time series 949 

of eigenvectors for PC1 to PC3 in the cOFC population. (C) Series of eigenvectors 950 

for PC1 to PC3 are plotted against the PC1 and PC2 and PC2 and PC3 dimensions 951 

in the cOFC population. Plots at the beginning and end of the series of vectors are 952 

labeled as start (s) and end (e), respectively. In A–B, a.u. indicates arbitrary unit.  953 
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 954 

Figure 5. Temporal structure of neural modulation in the HPC population. 955 

(A) Cumulative variance explained by PCA in the HPC population. The arrowhead 956 

indicates the percentages of variances explained by PC1 and PC2. (B) Time series 957 

of eigenvectors for six items in the HPC population. The top three PCs are shown. 958 

(C) Same as B but showing the eigenvectors for the four locations. (D) Series of 959 

eigenvectors for PC1 to PC3 are plotted against the PC1 and PC2 and PC2 and PC3 960 

dimensions in the HPC population. In B–C, a.u. indicates arbitrary unit. 961 

  962 
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 963 

Figure 6. Explained variances by PCA in shuffled controls. 964 

(A) Boxplot of explained variances by PCA for PC1 to PC6 for the cOFC population 965 

under the three shuffled conditions (see Methods for details). The plot is not 966 

cumulative. The boxplot was made with 1,000 repeats of the shuffle in each condition. 967 

(B) Same as A, but for the HPC population. In A and B, the colored circles indicate 968 

the variances explained by PCA in each neural population without the shuffles.  969 
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 970 

Figure 7. Effects of preference ordering on the HPC categorical data. 971 

(A) Cumulative variance explained by PCA in the HPC population when item and 972 

location are ordered according to their activity preferences (see Methods). The 973 

arrowhead indicates the percentages of variances explained by PC1 and PC2. (B) 974 

Series of eigenvectors for PC1 to PC3 when item and location are ordered according 975 

to their preferences plotted against the PC1 and PC2 and PC2 and PC3 dimensions 976 

in the HPC population. Ib and Iw indicate the best and worst items, respectively. I2 to 977 

I5 indicate the 2nd to 5th best items. Lb and Lw indicate the best and worst locations, 978 

respectively. L2 and L3 indicate the 2nd and 3rd best locations, respectively.  979 

  980 
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 981 

Figure 8. Quantitative evaluations of eigenvector properties in the cOFC and 982 

HPC populations. 983 

(A) Time series of vector size estimated in the cOFC population for probability (P) 984 

and magnitude (M) of rewards. The vector sizes are estimated in the PC1 to PC2 985 

plane (top) and PC2 to PC3 plane (bottom), respectively. a.u. indicates arbitrary unit. 986 

The solid colored lines indicate interpolated lines using a cubic spline function to 987 

provide a resolution of 0.005 s. (B) Same as A, but for the best and worst items and 988 

the best and worst locations in the HPC population. (C) Box plots of vector size 989 

estimated in the cOFC population for probability and magnitude of rewards. (D) 990 

Same as C, but for the best and worst items and the best and worst locations in the 991 

HPC population. (E–F) Same as C–D, but for the vector angle estimated in the cOFC 992 

and HPC populations. (G–H) Same as C–D, but from the vector deviance for the 993 

mean estimated in the cOFC and HPC populations. In C–H, data after 0.1 s are used.  994 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2022. ; https://doi.org/10.1101/2022.01.13.476265doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.13.476265
http://creativecommons.org/licenses/by-nd/4.0/


 

 

44 

 

 995 

Figure 9. Effects of matrix size control in the HPC population. 996 

(A) Cumulative variance explained by PCA in the HPC population when the best and 997 

worst conditions for item and location are used for the regression subspace. The gray 998 

dots indicated the percent variance explained by the PCA when using the full matrix. 999 

The first 12 PCs are shown. (B) Time series of eigenvectors for PC1 to PC3 when 1000 

the best and worst items and the best and worst locations are used. Ib and Iw 1001 

indicate the best and worst items, respectively. Lb and Lw indicate the best and worst 1002 

locations, respectively. s and e indicate the start and end of the time series of vectors, 1003 

respectively. (C) Boxplot of explained variances by PCA for PC1 to PC12 under the 1004 

three shuffled conditions (see Methods for details). The plot is not cumulative. The 1005 

boxplot was made with 1,000 repeats of the shuffle in each condition. The colored 1006 

circles indicate the variances explained by PCA in the HPC population without the 1007 

shuffles. 1008 
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