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Abstract 

A key theoretical challenge posed by single-molecule studies is the inverse problem of deducing the 

underlying molecular dynamics from the time evolution of low-dimensional experimental observables. 

Toward this goal, a variety of low-dimensional models have been proposed as descriptions of single-

molecule signals, including random walks with or without conformational memory and/or with static 

or dynamics disorder. Differentiating among different models presents a challenge, as many distinct 

physical scenarios lead to similar experimentally observable behaviors such as anomalous diffusion and 

nonexponential relaxation. Here we show that information-theory-based analysis of single-molecule 

time series, inspired by Shannon’s work studying the information content of printed English, can 

differentiate between Markov (memoryless) and non-Markov single-molecule signals and between 

static and dynamic disorder. In particular, non-Markov time series are more predictable and thus can 

be compressed and transmitted within shorter messages (i.e. have a lower entropy rate) than 

appropriately constructed Markov approximations, and we demonstrate that in practice the LZMA 

compression algorithm reliably differentiates between these entropy rates across several simulated 

dynamical models. 
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1. Introduction.  

Single-molecule studies that track molecular conformations in real time have opened a new 

window on biomolecular folding, function of molecular machines, and other cellular phenomena. A 

critical limitation of such experiments, however, is that they usually track only a few quantities of 

interest over time, even though the observed behavior is driven by underlying physical processes 

described by orders of magnitude more degrees of freedom. In other words, the experimental data 

describes a low-dimensional projection of high-dimensional molecular dynamics. It is known that such 

projected dynamics are highly complex and often intractable, their common property being that they 

exhibit memory effects1; that is, they are non-Markov processes. Yet to interpret single-molecule data, 

phenomenological Markovian models are commonly invoked for observed quantities of interest 𝑥(𝑡), 

such as diffusion2, 3 or evolution of 𝑥 along a biased random walk on a lattice when 𝑥 is discrete4. 

Signatures of non-Markovian dynamics such as anomalous diffusion, where the mean-square 

displacement of 𝑥 grows nonlinearly with time5, 6, or nonexponential relaxation have been previously 

reported (see, e.g., refs.7-13 ),  but the challenge, then, is to choose the right dynamical model out of 

the multitude of possibilities5. Data-driven Bayesian inference models of single-molecule time series 

have enjoyed considerable success in recent years14-19, but they usually require physical insight in order 

to constrain the space of possible models, and they, too, often assume that the observed dynamics is a 

one-dimensional random walk even if the number of discrete states is not specified a priori. 

 Is it possible to tell whether the observed signal can be explained by a Markov process, or 

whether a non-Markov model, or a model of a higher dimensionality, is called for by the data? For the 

case where the experimental observable 𝑥 is a continuous variable, one such Markovianity criterion 

has been established recently20 based on analyzing spatial intervals [𝑎, 𝑏] and comparing to theoretical 

inequalities the frequency with which the trajectory 𝑥(𝑡) transitions through or loops back when 

entering the interval, but this approach is inapplicable to processes where the observed experimental 

quantity takes on discrete values. Other non-Markovianity signatures have been established21, 22, and 

an information-theoretic method based on computing the mutual information of the true dynamics 

and its Markovian model has been proposed23. For discrete-state processes, a solution was already 

described by Shannon in his classic work24 where he estimated the information content (i.e. the 

Shannon entropy) of printed English. Specifically, a printed text may be viewed as a discrete-time signal 
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… 𝑖(𝑡 − 1), 𝑖(𝑡), 𝑖(𝑡 + 1)…, where the discrete variable 𝑖 ∈ {1, … , 𝑁} encodes the text characters (𝑁 

being the alphabet size). In the simplest – and clearly unrealistic – language model, the text is a 

sequence of statistically independent characters, and its statistical properties are completely specified 

by the frequencies 𝑃(𝑖), 1 ≤ 𝑖 ≤ 𝑁, with which each character appears in the text. A binary 

representation of the alphabet requires log!𝑁 bits per character, but by encoding frequently occurring 

characters with fewer bits and rare ones with more bits, one can compress the text, with the 

theoretical compression limit being given by Shannon’s entropy 𝐻 (in bits per character):  

 
𝐻 = −:𝑃(𝑖) log! 𝑃(𝑖)

"

#$%

. (1) 

A better language model, however, recognizes that certain adjacent pairs of letters are more frequent 

than others. For example, “t” is more likely to be followed by “h” but not by “w”. This observation can 

be used to compress the text further, by encoding the text as a sequence of character pairs rather than 

individual letters. To quantify the benefit of this pair encoding, let 𝑇(𝑖 → 𝑗) be the conditional 

probability that the 𝑖-th character is followed by the 𝑗-th character.  Then the string of letters produced 

by this model is a discrete-time (1st order) Markov process, with 𝑇 the transition probabilities.  The 

theoretical limit for how much the text described by this model can be compressed is given by the first-

order entropy rate ℎ(%), 

 ℎ(%) = −:𝑃(𝑖) 𝑇(𝑖 → 𝑗)	log! 𝑇(𝑖 → 𝑗) ,
#,)

 (2) 

measuring the conditional entropy of knowing the next symbol given the previous one, and it can be 

easily verified that ℎ(%) ≤ 𝐻. (The entropy rate here is information-theoretic and is not to be confused 

with the thermodynamic entropy production rate, which quantifies a non-equilibrium system’s heat 

exchange with its environment.) Shannon then proceeded to generalize this idea to higher-order 

correlations by computing the conditional probability that each character appears given the two 

previous characters (a 2nd order Markov process with entropy rate ℎ(!)), and so on. The limit ℎ =

lim
*→,

ℎ(*) estimates the true information content (in bits per character) of the language.  

 A key observation is that ℎ(*-%) ≤ ℎ(*): a higher-order estimate of the entropy rate always 

yields a lower value than a lower-order estimate. Knowing more preceding characters can only help us 

to guess the next character more accurately, and thus the information revealed by the next character 
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is lower. For similar reasons, the entropy rate of a non-Markov process is always bounded above by the 

entropy rate ℎ(*) of the 𝑘-th order Markov approximation of that process.  

 Although Shannon accomplished the remarkable feat of estimating the entropy of the English 

language without computers, we now can automate the same task by employing lossless compression 

algorithms. Given a sample path of a stationary stochastic process, the size (in bits per step) of the 

compression algorithm output is known to converge, asymptotically in the limit of large path size, to 

the theoretical entropy rate ℎ of the process25. So, for example, to detect whether a piece of text – or a 

single-molecule trajectory – can be explained by first-order Markovian dynamics, we can on the one 

hand compress the text and compute the implied entropy rate ℎ of the process from the compressed 

size; and on the other hand, measure the character-pair transition probabilities  𝑇(𝑖 → 𝑗) in the text 

and compute the first-order entropy rate ℎ(%) using Eq. 2. In principle, ℎ ≈ ℎ(%) precisely when the 

original process is first-order Markov. In practice, of course, we need to worry that the compression 

algorithm is imperfect: it will overestimate ℎ, and if the error is sufficiently large, the above procedure 

may fail to differentiate between Markov and non-Markov processes.  

 In what follows, we explore whether this “compression test” can reveal memory effects when 

applied to several families of non-Markov models commonly used to describe single-molecule 

dynamics. We find that this method can indeed differentiate between Markov and non-Markov 

dynamics. We further show that it can differentiate between static and dynamic disorder and thus 

narrow down the choice of a model to describe anomalous-diffusion-type phenomena. The rest of the 

paper is organized as follows: in Section 2 we describe the technical details of the method.  Section 3 

reports on its applications to several stochastic models. Section 4 concludes with further remarks and a 

discussion of future applications. 

 

2. Methods. 

2.1. Core algorithm. We assume that the experimental time-dependent observable 𝑖(𝑡) takes 𝑁 

possible discrete states, and that the process 𝑖(𝑡) is stationary. We then present a general algorithm, 

based on the compression test outlined above, to determine whether the process is likely Markov or 

non-Markov. Our method can further distinguish between 𝑘-th order Markov processes, for modest 𝑘, 

and non-Markov processes with longer-term memory effects. We assume for now a discrete-time 
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process and extend our approach to determining the Markovianity of continuous-time processes in 

section 2.2. 

 First, we estimate the entropy rate of the process. We compute a sample path 

𝑖(1), 𝑖(2), … , 𝑖(𝐿) of length 𝐿 and represent it as an 𝐿-character string with an alphabet of size 𝑁. We 

compress the string using LZMA2 lossless encoding, as implemented in the xz library 

(https://tukaani.org/xz/). The size of the resulting compressed data is measured in bits and divided by 

𝐿 to obtain an estimate ℎG	of the entropy rate. In our experiments we chose 𝐿 ≈ 10.; see the 

supplemental material for full methodological details. 

 The entropy rate estimate is affected by compressor error: it will differ from the process’s 

“true” entropy rate ℎ	by an error IℎG − ℎI = 	𝜖/ depending on the implementation details of the 

compression algorithm (which stores metadata within the output file) and the inability of the algorithm 

to perfectly compress the sample data.  Although 𝜖/ is guaranteed to converge to zero in the limit of 

an infinitely long sample path 𝐿 → ∞, in practice the error remains significant even for paths 

containing on the order of a billion steps. 

 Next, we construct an approximate 𝑘-th order Markovian description of the process 𝑖(𝑡). For 

any sequence of 𝑘	consecutive states 𝑆 = 𝑖(𝑚), 𝑖(𝑚 + 1),… , 𝑖(𝑚 + 𝑘 − 1) encountered in the 

sampled path and for any 𝑖	we can estimate the (conditional) transition probability 𝑇(𝑆 → 𝑖) that 𝑆	is 

followed by 𝑖 from the frequency of the subsequence 𝑆, 𝑖 within the sampled string. We then sample a 

path 𝑗(1), 𝑗(2), … , 𝑗(𝐿) from the 𝑘-th order Markov process defined by these probabilities and 

compress it as described above, yielding entropy rate estimate ℎG(*). Note that this estimate does not 

exactly match the true entropy rate of the 𝑘-th order Markov process, 

 ℎ(*) = −:𝑃(𝑆)𝑇(𝑆 → 𝑖)	log! 𝑇(𝑆 → 𝑖) ,
#,0

 (3) 

since again the estimate suffers from compressor error IℎG(*) − ℎ(*)I = 	 𝜖/
(*). By comparing ℎG  to ℎG(*), 

rather than to ℎ(*) directly, we exploit favorable cancellation of error: if the original random process is 

indeed 𝑘-th order Markov, then 𝜖/and 𝜖/
(*) are drawn from the same distribution, so that IℎG(*) − ℎGI is 

small even for values of 𝐿 for which the individual errors remain large. 

Markovianity detection therefore amounts to checking if ℎG ≈ ℎG (%). When ℎG ≪ ℎG(%) the process 

is likely non-Markov; higher-order Markov processes with longer memory can be discerned by 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2022. ; https://doi.org/10.1101/2022.01.13.476256doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.13.476256
http://creativecommons.org/licenses/by-nc-nd/4.0/


repeating the experiment for different 𝑘 (though the cost of doing so grows exponentially with 𝑘). We 

show below that this procedure does indeed clearly distinguish between Markov, second-order 

Markov, and non-Markov processes. 

 

2.2. Generalization to continuous-time processes. The core algorithm can also be applied to 

continuous-time processes. We use kinetic Monte Carlo simulations26-28 to obtain stochastic 

trajectories 𝑖(𝑡) reporting on the location of the system in the discrete state space as a function of 

time 𝑡.  Depending on the problem (and as described below for each individual case in the next 

Section) we then either sample the continuous-time trajectory at finite (and sufficiently small) time 

intervals 𝛥𝑡, which results in discrete time series 𝑖(0), 𝑖(𝛥𝑡), 𝑖(2𝛥𝑡)… approximating the original 

trajectory, or describe the trajectory as a succession of states 𝑖1, 𝑖%, 𝑖!, …, where 𝑖* is the first site 

visited by the continuous-time process after leaving the previous site 𝑖*2%. We will refer to the former 

description as “continuous-time” (even though 𝑖 is sampled at finite time intervals) and the latter as 

“discrete time.” By construction, self-transitions 𝑖 → 𝑖 are not allowed in discrete-time processes, since 

each new state visited by the walk is different from the previous one. In contrast, the continuous-time 

description allows for self-transitions, where the state 𝑖 remains the same during the sampling interval 

𝛥𝑡, i.e., 𝑖(𝑡 + 𝛥𝑡) = 𝑖(𝑡).  It is of course possible that the process visits a state other than 𝑖 and returns 

to the original state, resulting in 𝑖(𝑡 + 𝛥𝑡) being equal to 𝑖, though the probability of such events can 

be made arbitrarily small by choosing a sufficiently small value of 𝛥𝑡.  

An important family of continuous-time signals consists of processes 𝑖(𝑡) whose discrete-time 

description is Markovian but continuous-time description is not. Such processes are known as semi-

Markov or renewal processes29, and they will be further discussed in Section 3.7.  
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Figure 1: The models under study in this paper. (a) Single-file diffusion on a ring lattice. Each particle (filled 
circle) can move to an adjacent lattice site only when the latter is vacant (empty circle). The observer monitors 
the position of a single tagged particle (red). Here the number of lattice sites is 𝑅 = 10  and the number of 
walkers is 𝑀 = 5. (b) Coarse-grained random walk, in which every  𝑛 adjacent lattice sites (n=2 here), are 
grouped into a single state, is a non-Markov process. The labels inside the circles enumerate lattice sites 𝑖, while 
the labels outside the boxes enumerate the coarse grained sates 𝚤~. The observer can only tell which boxed 
state  𝚤 ̃the particle is in. (c) A random walker with two internal states. The transition rates between pairs of 
states (1,2), (2,3), etc. have a higher value 𝑘! than those between pairs (1’,2’), (2’,3’), 𝑘", and the walker can 
switch between internal states (i.e. between states 𝑛  and 𝑛′) with a rate 𝛾. Thus the random walk is fast along 
the track formed by states 1,2,3,…, and slow along 1’,2’,3’…..  The observer, however, cannot differentiate 1 
from 1’, 2 from 2’, etc., and so the resulting observed process is non-Markovian. (d) A static-disorder model. 
Each site is randomly chosen to be fast or slow. Transitions leaving slow sites (gray) occur with rate 𝑘", while 
transitions leaving fast sites (white) occur with rate 𝑘! (e) Self-avoiding random walk on a 2D lattice. Shown is a 
trace of a self-avoiding walk (red) and a non-self-avoiding walk (blue-green) on a square lattice. 
 

3. Results.  

3.1. Single-file diffusion, Simple Case. A classic example of a random walk with (generally) long 

memory is single-file diffusion30, 31 (Fig 1a). This model has applications, for example, as the prototype 
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of diffusion in crowded environment of a biological cell5, 32, passage of multiple solute particles across a 

biological channel33, and non-Markovian barrier crossing kinetics34. Here we use a discrete-time lattice 

formulation, in which 𝑀 particles occupy discrete positions on a ring with 𝑅 sites. A particle can move 

to an adjacent site if it is unoccupied, and each step of the single-file diffusion process consists of one 

such move (chosen uniformly at random). An observer monitors the location 𝑖(𝑡) on the ring of a single 

tagged particle (shown in red in Fig. 1a), where the discrete time 𝑡 enumerates successive steps of 

single-file diffusion. It is known that the motion of the tagged particle generally exhibits anomalous 

diffusion and thus 𝑖(𝑡) is not a Markov process. 

 
Figure 2. Single-file diffusion with 𝑀 = 2 walkers and 𝑅 = 3 sites on a ring, where one tagged walker (red) is 

being observed. The filled circles represent occupied sites, and the open circle depicts the vacancy (i.e. 

unoccupied site). At every timestep, a random walker is chosen to move, and moves into the vacancy, leaving its 

old site vacant. 

It is instructive to consider the simple, analytically tractable, case with 𝑅 = 3 and 𝑀 = 2 

illustrated in Figure 2. The entropy rate ℎ(%) for the tagged particle using the 1st order Markov process 

approximation can be calculated analytically: at any step, one of the two walkers moves, and thus the 

probability that the tagged particle moves is ½. When it does, it moves either clockwise or 

counterclockwise with the same probability, and thus, at any step we have 3 outcomes: no move 

S𝑇(𝑖 → 𝑖) = %
!
T, move clockwise S𝑇(𝑖 → 𝑖 + 1) = %

3
T, and move counterclockwise S𝑇(𝑖 → 𝑖 − 1) = %

3
T. 

Using Eq. 2, the entropy rate based on these transition probabilities is − %
!
log!

%
!
− %

3
log!

%
3
− %

3
log!

%
3
=

1.5 bits/step. 
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 The entropy rate ℎ(!) of the 2nd order Markov process approximation can also be found 

analytically via a change of variable. Specifically, consider the process ℓ(𝑡) = 𝑖(𝑡) − 𝑖(𝑡 − 1). This 

process may be viewed as a “step” representation of the particle’s trajectory, as it informs about the 

direction and length of the step taken. Since there is a one-to-one correspondence between 𝑖(𝑡) and 

ℓ(𝑡) assuming that the starting point 𝑖(0) is known, the two processes have the same entropy rate. 

Suppose now that the tagged particle takes a step in the clockwise direction, ℓ = +1. It easy to see 

(Fig. 2) that the next step in the same direction would be into a site that is occupied, so 

𝑇ℓ(+1 → +1) = 0, where we have written 𝑇ℓ to emphasize that these are the transition probabilities 

of ℓ(𝑡) instead of 𝑖(𝑡). The tagged and untagged particles have the same probability to move, and so 

we find  𝑇ℓ(+1 → −1) = %
!
, 𝑇ℓ(+1 → 0) = %

!
. By symmetry, we also find 𝑇ℓ(−1 → −1) = 0, 

𝑇ℓ(−1 → +1) = %
!
, 𝑇ℓ(−1 → 0) = %

!
. Using similar arguments, one can show that  𝑇ℓ(0 → ±1) = %

3
, 

𝑇ℓ(0 → 0) = %
!
 . The unconditional step probabilities are evaluated in a similar manner, 𝑃ℓ(±1) =

%
3
, 

𝑃ℓ(0) =
%
!
. Using Eq. 3 we now find ℎℓ

(%) = 1.25 bits/step. Again, the subscript ℓ indicates that we are 

considering the process ℓ(𝑡) rather than 𝑖(𝑡). Since 𝑖(𝑡) is recoverable from ℓ(𝑡), and ℓ(𝑡) can only 

depend on 𝑖(𝑡) and 𝑖(𝑡 − 1), ℎℓ
(%) = ℎ(!), and hence ℎ(!) = 1.25 bits/step. 

 Note that we have derived the 2nd-order Markov entropy rate of the process 𝑖(𝑡) by computing 

the 1st-order entropy rate of a different representation ℓ(𝑡) of the same physical process. This 

highlights the fact that different representations of the same system may have different Markov 

orders. In our examples below that take place on a structured lattice, we will continue to make use of 

the “step” representation ℓ(𝑡) = 𝑖(𝑡) − 𝑖(𝑡 − 1)	when convenient; the entropy rates for the two 

representations are related by  ℎℓ
(*) = ℎ#

(*-%).  We will often simplify notation and use ℎ(*) ≡ ℎ#
(*) to 

denote the entropy rate of the process in the original “lattice site” representation (in accord with the 

usual convention in physics that a simple random walk depending only on the current site is regarded 

as a 1st order Markov process), but will use a subscript (e.g. 𝑖 or ℓ) when we want to emphasize which 

representation is used to calculate the order. 

 Although ℎ(!) provides an improved estimate of the single-file diffusion entropy rate, it is still 

an overestimate. The true entropy rate is ℎ = 1 bit/step, as can be seen from the following argument: 

there is a one-to-one correspondence between sample paths 𝑖(𝑡) of the tagged particle, and sample 
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paths 𝑣(𝑡) of the vacant site (dashed circle in Fig. 2). But the latter is a Markovian, unbiased random 

walk (since at every step it exchanges places with one of its two occupied neighbors), and so its 

entropy rate is exactly ℎ = 1 bit/step. Note that this example again shows how the same random 

process can be Markov in one representation (motion of the vacancy) and non-Markov in a different 

one (motion of the tagged particle). 

 Applying compression to a trace with 𝐿 = 105 steps gives the estimates ℎG#
(%)

= 1.62 bits/step, 

ℎG#
(!) = 1.35 bits/step, and ℎG =	1.08 bits/step. The discrepancy between ℎ and ℎG  stems from the 

compressor error 𝜖/
(*) vanishing very slowly as a function of 𝐿. If we subtract a constant 𝛥ℎ ≈ 0.10 

from all three measurements, we find that  ℎG#
(%)

=1.52 bits/step, ℎG#
(!) = 1.25bits/step, and  ℎG# =	0.98 

bits/step, which is almost perfect agreement with the theoretical values. 

 

3.2 Single-File Diffusion, General Case. For larger M and R, we use the lattice-site representation to 

obtain compression-based entropy-rate estimates ℎG(*) for several values of 𝑘, and compare them to 

the compression-based estimate ℎG  of the true entropy rate, as well as to the entropy rates ℎ(*) (Eqs. 2-

3) of the Markov approximations in the absence of any compressor error. 

Results are shown in Figure 3a for 𝑀 = 7 walkers and for different numbers of sites 𝑅. Here, as 

in the 𝑀 = 2, 𝑅 = 3 case, we observe a discrepancy between ℎ(*) and  ℎG(*). As discussed in Section 2, 

it is most meaningful to compare the  ℎG(*) against each other and against ℎG.  

When 𝑀 ≈ 𝑅, we further observe that the true entropy rate ℎG  is significantly lower than its 

finite-order estimates ℎG (*), 𝑘 = 1,2,3,	 indicating strongly non-Markovian character of single-file 

diffusion. Since ℎG < ℎG (*), the memory of the previous 𝑘 states is insufficient to construct an adequate 

description of the process. As 𝐿 increases, however, the “clashes” between walkers become 

increasingly unlikely, and each walker diffuses freely in the limit 𝑅 ≫ 𝑀, thus undergoing Markovian 

dynamics. Consistent with this observation, the true entropy rate estimate ℎG  and its 𝑘-order Markovian 

estimates ℎG (*)converge to the same value as 𝑅 increases. We also note that, as expected, the 

estimated entropy rates decrease with increasing order 𝑘, that is, ℎG (%) > ℎG(!) > ℎG(6). 
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Figure 3. Entropy rates of a tracer particle in a single-file diffusion setup on a ring lattice shown as a function of 

the number 𝑅 of lattice sites for a fixed number of random walkers, 𝑀 = 7.  Quantities with a tilde (e.g. ℎ3#
(%)) 

were computed using compression, while quantities without a tilde (e.g. ℎ#
(%)) were obtained using Eqs 2 or 3 

using numerically estimated transition probabilities. When the number of open sites 𝑅 −𝑀 is low, the system 

behaves in a very non-Markov manner. Once the number of sites greatly exceeds the number of particles, the 

system’s behavior approaches Markov.(a) Entropy rates computed using the site-based 𝑖(𝑡) representation. (b) 

Entropy rates computed using the step ℓ(𝑡) representation. 

 

We now compare the entropy-rate estimates based on the site representation 𝑖(𝑡) and on the 

step representation ℓ(𝑡).  In theory, both processes should have the same entropy rate h, and, 
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moreover, we have ℎℓ
(*) = ℎ#

(*-%). The compression-based estimates of these quantities, which are 

greater than their true values, are however not guaranteed to be the same, and indeed they are not 

(compare Fig. 3b with Fig. 3a). Moreover, compression-derived entropy rates ℎ3ℓ
(%) are significantly 

greater than their counterparts ℎℓ
(*) obtained from Eqs. 2-3 using numerically estimated transition 

probabilities (Fig. 3b). Importantly, however, the relative orderings between ℎG(*) are preserved. Thus 

examination of either Figure 3a and Figure 3b unambiguously leads to the representation-independent 

conclusions (1) that single-file diffusion is a process with long memory that cannot be described by k-

order Markov process with 𝑘 ≤ 3 when most of the lattice sites are occupied (𝑀 ≈ 𝑅) and (2) that the 

process becomes increasingly close to a Markov process as 𝑅 grows much larger than 𝑀.  

 

3.3. Memory in coarse-grained random walks. A fundamental source of dynamical memory is coarse-

graining1.  An experiment cannot resolve each of the individual microscopic states of the molecule, so 

multiple microscopic states are effectively lumped into collective observable states. To illustrate this 

effect, we use a simple toy model in which the true dynamics are an unbiased discrete-time random 

walk along a one-dimensional lattice, whose sites are enumerated by 𝑖. Suppose that the spatial 

resolution of the experiment only allows one to resolve a length of 𝑛 adjacent sites. The observations 

thus form a random process on groupings of 𝑛 adjacent sites (Fig. 1b). For example, sites 𝑖 = 1,2, …𝑛 

correspond to a collective state 𝚤̃ = 1, sites  𝑖 = 𝑛 + 1, 𝑛 + 2,…2𝑛 to  𝚤̃ = 2, etc. The new variable 

𝚤̃	also undergoes an unbiased (in the sense that the unconditional probabilities of making steps left and 

right are the same) discrete-time random walk, but this walk is no longer Markovian: as will be seen 

below, the conditional probability of making a step left or right depends on the direction of the 

preceding step. 

 We cannot directly apply our method to compute ℎ7̃
(*), as we did in Section 3.2, since (as stated 

in Section 2) our method requires a random process on finitely-many states. However, we can once 

again define ℓ(𝑡) = 𝚤̃(𝑡) − 𝚤̃(𝑡 − 1), which has the same entropy rate as 𝚤̃(𝑡), and examine ℎℓ
(*2%) to 

determine ℎ#
(*). Given that the probabilities of stepping left  𝚤̃ → 𝚤̃ − 1 or right  𝚤̃ → 𝚤̃ + 1 are the same, 

we have  𝑃ℓ(−1) = 𝑃ℓ(+1) = 1 2⁄ , the same as for the original random walk. Therefore, the first-

order Markov approximation of ℓ(𝑡) has entropy rate of ℎ(%) = log! 2 = 1 bit per step (Eq. 2). 
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Intuitively, at every step one needs to specify whether the walker moves left or right, which occur with 

equal probability. The coarse-grained walk, however, is not Markovian because the direction of each 

step is correlated with the direction of the previous step. For example, for 𝑛 = 2, one can show that 

the conditional probability of making the next step in the same direction as the previous step is 1 3⁄  

while the probability of making a step in the opposite direction is 2 3⁄ . In other words, we have  

 𝑇ℓ(+1 → +1) = 𝑇ℓ(−1 → −1) =
1
3	

𝑇ℓ(+1 → −1) = 𝑇ℓ(−1 → +1) =
2
3. 

 

Moreover, it is easy to see that the direction of a step only depends on that of the previous step and 

not on earlier steps. In other words, the 1st -order Markov model in the step representation (2nd-order 

in the site representation) is exact for our coarse-grained random walk. 

Using Eq. 2 and the fact that the (unconditional) probabilities to make a step in either direction 

are 𝑃ℓ(±1) = 1 2⁄ , we find an entropy rate ℎ(!)(𝑛 = 2) = ℎℓ
(%)(𝑛 = 2) = − %

6
log!

%
6
− !

6
log!

!
6
≈ 0.918 

bits/step. In contrast, when we applied the compression method to a synthetic 2nd order Markov walk 

generated according to the above transition probabilities (using 𝐿 = 10. steps) we obtained a value 

of  ℎG(!) = ℎGℓ
(%) ≈ 0.996 bits/step. Once again, the compressor overestimates the true entropy rate—

in fact, applying the compressor to the original, ungrouped random walk (which has an entropy of 

exactly 1 bit/step) yields a result of ℎG ≈ 1.074 bits per step, a value of 𝜖/ = 0.074 bits/step higher 

than expected. However, ℎG(!)(𝑛 = 2)  and ℎG(𝑛 = 2) show excellent agreement, and this comparison 

reveals that the grouped random walk is second-order Markov (see Fig. 4a). 

More generally, for coarse states containing 𝑛 adjacent sites, one can show that 

𝑇ℓ(+1 → +1) = 𝑇ℓ(−1 → −1) = %
9-%

, 

𝑇ℓ(+1 → −1) = 𝑇ℓ(−1 → +1) = 9
9-%

. 

Intuitively, a walker entering a group of 𝑛 states from the left is much more likely to escape it back to 

the left than to cross this group and escape to the right. As a result, the entropy rate of the second-

order Markov approximation is  

 ℎ7̃
(!)(𝑛) = −

1
𝑛 + 1 log!

1
𝑛 + 1 −

𝑛
𝑛 + 1 log!

𝑛
𝑛 + 1. 

(4) 
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Figure 4 compares the compression-derived entropy rate ℎG  with the Markovian approximations 

calculated in two ways: (1) using the exact theoretical values known in this case (i.e., ℎ(%)(𝑛) = 1 

bit/step and ℎ(!)(𝑛) given by Eq. 4 and (2) using our compression method. As with the single-file 

diffusion system, the compression algorithm does not attain the theoretical compression ratio and 

overestimates the entropy rate in both cases, but comparison of ℎG and ℎG(*) reveals that the system is 

second-order Markov.  Moreover, one observes from Figure 4a that  ℎG(!)(𝑛) differs from ℎ(!)(𝑛)	by a 

nearly constant offset. Subtracting this offset from ℎG(𝑛) results in an estimate for the entropy of the 

coarse-grained random walk that is virtually indistinguishable from the true value (Fig. 4b). 
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Figure 4. (a) Entropy rate (per step) ℎ3  of a coarse-grained random walk as a function of the number of states 𝑛 

forming a single coarse-grained state. This entropy rate is compared with the compression-derived entropy rates 

ℎ3(() and ℎ3()) of the 1st and 2nd order approximating Markov processes, as well as with their theoretical values 

ℎ(() = 1 bits/step and ℎ()) given by Eq. 4. (b) The same plots after subtracting the offset 𝛥ℎ from the 

compressor-derived entropy rates.  

 

3.4. Random walker with internal states. Another example of coarse-graining is the model shown in 

Fig. 1c. Unlike the previous case, we are now considering a continuous-time process, where a random 

walker can be in one of the two internal states; in one, its diffusion is fast (quantified by a jump rate 

𝑘:) and in the other it is slow (jump rate 𝑘;). The walker can switch between the two internal states 

stochastically, with a switching rate 𝛾.  The kinetic scheme (Fig. 1c) thus consists of a “fast” and a 

“slow” track, with the walker randomly switching between the two. According to this scheme, the time 

evolution of the probabilities 𝑃(𝑖, 𝑡) and 𝑃(𝑖<, 𝑡) to occupy sites 𝑖 and 𝑖′ obey the continuous-time 

master equation, 

𝑑𝑃(𝑖, 𝑡)
𝑑𝑡 = −2𝑘:𝑃(𝑖, 𝑡) + 𝑘:𝑃(𝑖 − 1, 𝑡) + 𝑘:𝑃(𝑖 + 1, 𝑡) − 𝛾𝑃(𝑖, 𝑡) + 𝛾𝑃(𝑖<, 𝑡) (5a) 

		
𝑑𝑃(𝑖<, 𝑡)
𝑑𝑡 = −2𝑘;𝑃(𝑖′, 𝑡) + 𝑘;𝑃(𝑖′ − 1, 𝑡) + 𝑘;𝑃(𝑖′ + 1, 𝑡) − 𝛾𝑃(𝑖′, 𝑡) + 𝛾𝑃(𝑖, 𝑡), 

(5b) 

which describes a Markov process. The states 𝑖 and 𝑖<, however, appear indistinguishable to the 

observer and are thus lumped to a single coarse state characterized by the apparent position 𝑖 =

1,2, … of the walker along the track. Unless 𝑘: = 𝑘;, the time evolution of the probability 𝑃(𝑖, 𝑡) +

𝑃(𝑖<, 𝑡) to be at position 𝑖 cannot be described by a master equation like Eq. 5a or 5b: the observed 

random walk is non-Markovian. 

Models of this type have been used, e.g., to describe the dynamics of biomolecular motors 

traveling along their tracks4, 35, 36 , even though in our case the walker has no directional bias and thus 

does not undergo unidirectional motion characteristic of molecular motors. 

The stochastic time evolution corresponding to Eq. 5 was simulated using the kinetic Monte 

Carlo method (see, e.g., refs.26-28 ) and the entropy rate was estimated using the “continuous time” 

approach described in Section 2.2,  using a time step 𝛥𝑡 chosen to satisfy the inequalities 𝑘:𝛥𝑡 ≪

1, 𝛾𝛥𝑡 ≪ 1, to guarantee that the probability of the walker changing  state more than once during 𝛥𝑡 is 
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negligibly small. As with the coarse-grained random walk, we computed entropy rate using the step 

representation (and make use of ℎG(*) = ℎGℓ
(*2%)) to avoid dealing with infinite sites. 

The compression-derived entropy rate of this walk is shown in Figure 5a as a function of the 

switching rate 𝛾 for the case 𝑘; = 0.1𝑘:, and compared to the entropy rates of the first- and second-

order Markov approximations. For all values of the switching rate 𝛾, the true entropy rate of the 

walker is always lower than that of the two reference Markov processes (whose entropy rates are 

indistinguishable), indicating non-Markovianity of the underlying process. Despite the significant 

statistical noise observed in Fig. 5a, particularly at slow switching rates, the difference between the 

true entropy rate and that of the first-order reference Markov process (shown in Fig. 5b) is always 

negative and is less noisy than the absolute entropy rates shown in Fig. 5a – thus the compression 

method detects the non-Markovianity of the underlying dynamics reliably even when the simulations 

have not fully converged.  

 The dependence of the entropy rate on the switching rate also agrees with what one expects 

on physical grounds. Specifically, in the limit of high switching rates, 𝛾 ≫ 𝑘:, the process becomes 

effectively Markovian, with the effective transition rate coefficients between adjacent positions on the 

track equal to the average rate, 𝑘=>> = i𝑘; + 𝑘:j 2⁄ , with a corresponding entropy rate of ℎ=>>. Note 

this Markov process is identical to the 1st order reference Markov process, which is the same 

regardless of the switching rate. Consistent with this observation, we observe that (1) the 

compression-derived value ℎG (%) is independent of the switching rate (aside from statistical noise) and 

(2) the true entropy rate approaches the entropy rate ℎ(%) of the reference Markov process at large 

values of 𝛾 (Fig. 5a,b). 

 Consider now the opposite case of slow switching rate, 𝛾 ≪ 𝑘;. In this case we expect that the 

trajectory of the random walker will consist of long segments where the walker stays on the fast (or 

slow) track, jumping between neighboring lattice sites with a rate of 𝑘: (or 𝑘;). Since the fractions of 

time spent on each track are %
!
, we expect the entropy rate to approach an average value of  ℎ =

iℎ: + ℎ;j 2⁄ , where ℎ: (ℎ;) is the entropy rate of a Markovian random walk along the fast (slow) track 

(i.e. a 1D random walk with a transition rate 𝑘: (𝑘;). Indeed, this is the behavior observed in Fig. 5b, 
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with a compression-derived estimate of  iℎ: + ℎ;j 2⁄  agreeing with the compression-derived true 

entropy rate ℎG at low switching rates.  
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Figure 5. (a) Entropy rate for the random walk with two internal states (Fig. 1c), plotted as a function of the 

switching rate 𝛾 between the fast and slow tracks and compared with the reference 1st and 2nd order Markov 

processes. Solid line represents the compression-derived entropy rate for the random walk with static disorder 

(Fig. 1d). The kinetic parameters are  𝑘" = 0.1, 𝑘! = 1.0. (b) The difference ℎ − ℎ(() between the compression-

derived true entropy rate and that of the Markovian approximation plotted as a function of the switching rate. 

At low switching rates, 𝛾 → 0, the entropy rate (measured relative to its 𝛾 → ∞ limit) is seen to approach the 

expected value equal to the mean of the (compression-derived) entropy rates of two Markovian processes, the 

slow one (with the jump rate 𝑘") and the fast one (jump rate 𝑘!).  

 

3.5. Compression differentiates between static and dynamic disorder.  

The two-track model considered in Section 3.4 is an example of a model with dynamical 

disorder, where the (mean) lifetime of the random walker on a lattice site can be either long (1/(2𝑘;)) 

or short i1/(2𝑘:)j depending on a dynamical variable (the internal state of the walker) that is itself 

undergoing a stochastic process switching between the slow and fast states. By construction, the 

probabilities of finding the walker in the slow and fast states are equal. It is instructive to consider a 

seemingly similar model with static (quenched) disorder. In this model of a 1D random walk (Fig. 1d), 

each lattice site is randomly assigned to have either long or short average dwell time. Transitions that 

leave the former occur with rate 𝑘;, and transitions that leave the latter occur with rate 𝑘:. Since in 

both models the random walker visits the ”slow” and the “fast” sites with equal probabilities, one 

often uses these two types of models interchangeably, but the two models are not equivalent37. More 

generally, various anomalous-diffusion-type phenomena are often interpreted in terms of random 

walks on a network of “traps”, with a certain distribution of the trap energies leading to a distribution 

of trapping times5. One often models such a random walk as a renewal process (see Section 3.7 for 

further discussion of such processes), in which the times spent on each trap are statistically 

independent, but such an assumption is not correct when the trap properties are “frozen” in time5, 37. 

While differentiating between static and dynamic disorder in anomalous diffusion phenomena 

is often a challenge, the compression-based method explored here achieves this goal rather 

straightforwardly, at least for the model system considered. Specifically, the entropy rate 

corresponding to the process with static disorder is always lower than that for dynamic disorder, as can 

be observed in Fig. 5a. It is easy to understand why: every time the random walker visits a new lattice 
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site, the information gained consists of the site identity and of the time spent on this site. If the walker 

visits the same site again, less information will be gained in the case of static disorder, as information 

can already be inferred about this site’s dwell time from the time spent on this site in the previous 

visit.  

 

3.6 Self-avoiding random walks. A random walk that is not allowed to cross its prior path offers an 

interesting example of a non-Markov process with infinite (or, more precisely, as long as the walk 

itself) memory. Such random walks have been studied extensively in the context of polymer physics, 

where they serve as models of polymer backbones. Moreover, a compression-based approach to the 

mathematically equivalent problem of computing the entropy of a polymer has been recently studied 

by Avinery, Kornreich and Beck38.  

Here we consider self-avoiding 2D walks on a square lattice (Fig. 1e).  Because of the symmetry 

between up/down and left/right directions, the probabilities of making step in one of the 4 possible 

directions are equal, 𝑇(𝑖 → 𝑖<) = 1 4⁄ , for any of the 4 sites 𝑖′ adjacent to 𝑖. Thus the 1st order Markov 

model of the process is simply the random walk with the self-avoidance condition removed. For such a 

walk the number of possible step directions at each step is 4 = 2!, and thus its entropy rate is 

ℎ(%) = log! 4 = 2 bits per step.  

 The 2nd order Markov model of the self-avoiding walk clearly must account for the fact that any 

step cannot be the reverse of the previous step. Since there are only 3 possible steps left, a naïve 

estimate of the entropy rate would be ℎ(!) = log! 3 ≈ 1.585 bits/step, assuming that all three 

possible directions are equally probable. A more precise estimate for this value, obtained numerically 

from Eq. 3 using transition probabilities measured from simulation data, is slightly lower, ℎ(!) ≈ 1.578.   

Note that this model is locally self-avoiding, since by demanding that a step cannot be reversed, we 

automatically ensure self-avoidance for 3 steps in a row. Thus, only long-range correlations (longer 

than 3 steps) may account for the difference between ℎ(!) for the 2nd order Markov model and the 

entropy rate of the true self-avoiding walk. As we show below, the compression-based method is still 

capable of differentiating between these two models. 

 Figure 6 shows the entropy rates estimated numerically as functions of the walk length. To 

apply our method we sampled 250,000 length-𝑁 self-avoiding random walks using Sokal’s pivoting 
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algorithm39. For sufficiently large values of 𝑁, the entropy rate becomes independent of the length of 

the walk. This property is an established fact40 but not immediately obvious, as the memory of the walk 

is as long as the length of the walk itself. Specifically, the total number of self-avoiding random walks 

asymptotically grows as 

𝛺(𝑁) ∝ 𝜇" (6) 

 

as 𝑁 → ∞, where numerical estimates exist41 for lower and upper bounds for 𝜇, 2.625622 < 𝜇 <

2.679193.  We can interpret 𝜇 as the average number of possible step directions available at each step 

of the walk, and thus its entropy rate is   

ℎ ≈ log! 𝜇 ≈ 1.4, (7) 

 

which we take as the “exact” entropy rate in this case. As seen in Figure 6, the compression method 

differentiates among the two reference Markov approximations and true dynamics, indicating that the 

actual observed process has more memory than that of one previous step (in fact of 3 previous steps 

given that the self-avoidance is guaranteed for any 3 consecutive steps in this model).  

While the compression-derived estimate of the connectivity parameter, 𝜇 = 2/? ≈ 3, exceeds 

the best currently-known upper bound on the theoretical value, this estimate can be improved by 

accounting for the compression error: for the second-order Markov reference process we can compute 

𝜖/
(!) = ℎG(!) − ℎ(!) ≈ 0.1bits  from Eq. 3 Assuming that 𝜖/ ≈ 𝜖/

(!) and applying this same correction to 

estimate ℎ ≈ ℎG 	− 0.1 ≈ 1.5 bits/step and 𝜇 ≈ 2.8, still somewhat greater than the known bound.  
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Figure 6. Entropy rates for self-avoiding walks of various lengths, compared with the with the entropy rates of 

the corresponding 1st order and 2nd order Markov models. Literature value for the entropy of the self-avoiding 

random walk40 is shown as a dashed line. 

 

3.7. Continuous-time random walks (CTRW) constitute an important class of non-Markov models used 

widely to describe anomalous-diffusion-type phenomena6, 29, 42.  Milestoning, a method for computing 

long-time molecular dynamics, also uses a CTRW-type representation43. CTRW is an example of a semi-

Markov or renewal process.  A continuous-time random walker makes a step from a current site 𝑖 to 

new sites 𝑗 according to the conditional probabilities 𝑇(𝑖 → 𝑗), with the sojourn time at 𝑖 before 

making this step drawn from a specified probability density 𝜌(𝑡) (the case where this probability 

density is itself state dependent is a straightforward generalization). Thus the random walk can be 
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viewed as a combination of two processes: the first one is the sequence of sites visited 𝑖%, 𝑖!, … , 𝑖9, … 

and the other is the sequence of sojourn times 𝑡%, 𝑡!, … , 𝑡9, … spent on each site. The first of the two is 

a discrete-time Markov process. The total entropy rate is the sum of the entropy rate for the discrete-

time Markov process and the entropy rate associated with the sequence of the sojourn times. We will 

now focus on the latter. As the sojourn times are statistically independent, the entropy rate is just the 

entropy of the distribution 𝜌(𝑡). More precisely, if we discretize the time by binning the temporal data 

into sufficiently fine time bins of equal size 𝛥𝑡, then the entropy rate is given by     

𝜂[𝜌] ≈ −q d𝑡𝜌(𝑡)(log! 𝜌(𝑡) − log! 𝛥𝑡)
,

1
, (8) 

 

where the last term accounts for the dependence of the entropy on the resolution with which the time 

is measured. 

 Using the method of Lagrange multipliers, one finds that of all the distributions 𝜌(𝑡) with a 

fixed first moment, ⟨𝑡⟩ = ∫ 𝑡𝜌(𝑡)d𝑡,
1 , the one that maximizes 𝜂[𝜌] is the exponential distribution,  

𝜌(𝑡) = ⟨𝑡⟩2%𝑒2@ ⟨@⟩⁄ , (9) 

for which 

𝜂[𝜌] =
1
ln 2 − log!

𝛥𝑡
⟨𝑡⟩. 

(10) 

This distribution corresponds to a Poisson process, which is Markovian. This illustrates the general 

observation that Markovian processes maximize the entropy rate, provided that the average frequency 

of the transitions is fixed. 

  

 4. Discussion 

Reconstruction of the underlying models of single-molecule dynamics from experimental 

observables has received much recent attention (see, e.g., ref.44 for a review) and remains a challenge 

in the field. The problem is further confounded by experimental constraints such as finite temporal and 

spatial resolution.  In all of the examples studied here, compression-derived entropy rate estimates 

could differentiate between simulated Markov and non-Markov time series, as well as between models 

with dynamical and static disorder, even when the statistical errors or systematic errors introduced by 

the compression algorithm exceeded the difference between the entropy rate of the true signal and its 
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candidate model (e.g. Markov description). We note that this method does not require a high data 

sampling rate that may be unattainable experimentally: indeed, the entropy rate at an arbitrary data 

sampling rate can be compared with that of the corresponding reference Markov process, the latter 

being always computable via Eqs. 2-3. 

Markovian approximations to the non-Markov systems studied here provide upper bounds on 

the true entropy rate. In general, one can construct the 𝑘th-order Markov reference model of the 

process and to estimate its entropy rate ℎ(*); if ℎ(*) converges toward the entropy rate ℎ of the 

experimental signal as 𝑘 increases sufficiently fast, this result is a practical estimate of the number of 

previous steps needed to be included to produce an accurate description of the signal. For example, for 

the coarse-grained random walk with grouped states (Section 3.3) the 1st order Markov process does 

not reproduce the “experimental” entropy rate, but the 2nd order one (which happens to be the exact 

description in this case) does (Fig. 2). In contrast, the 2nd order Markov model does not provide a 

noticeable improvement over the 1st order one for the random walk from Section 3.6, suggesting long 

memory (as compared to the sampling time step). In such a case, a different description of the signal is 

desirable. 

 This work focused on signals where the observed variable is discrete. Such signals are common 

in single-molecule fluorescence studies in which the arrival of an individual photon can be viewed as a 

discrete event45-48. In contrast, force spectroscopy studies measure continuous variables such as a 

molecule’s extension or position of a molecular motor along its track4, 49, 50. Likewise, single-particle 

tracking studies measure continuous signals, see, e.g., ref.51. Can the compression method be applied 

to a continuous signal? A naïve answer to this is to digitize the observed variable by measuring it with a 

finite resolution. The resulting entropy rate is known as the “epsilon entropy” ℎ(𝜖) (the parameter 

𝜖 quantifying the resolution), which can be viewed as an approximation to the Kolmogorov-Sinai 

entropy52, 53. For stochastic signals, ℎ(𝜖) is known to diverge as 𝜖 → 0, and its behavior for certain 

stochastic models has been studied53. To our knowledge, the practical utility in using ℎ(𝜖) to 

differentiate between stochastic processes with and without memory has not yet been explored, and it 

will be the subject of our future work. 
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