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ABSTRACT:

Transgenic rodent models for human diseases have been widely used over the past 50 

years and are a mainstay of many biomedical research programs. Oftentimes the sequence of the 

transgenic segment of DNA is carefully designed but incorporation of this DNA into the host 

genome is less well understood. Structural variation and insertional mutagenesis may occur at 

transgenic insertion sites. Here, we present a robust workflow including identification of the 

transgene locus via selective Illumina sequencing followed by Cas9-mediated target DNA 

enrichment of the locus, which successfully identified beginning and end sites of a large 

transgenic insertion into a murine model for human amylin-induced type II diabetes. Enriched 

sequences were mapped via Oxford Nanopore sequencing. Although the insertion was too long 

for a single mapped genetic sequence to encompass, the method provided multiple insights 

relevant to the animal model: a minimum number of forward- and reverse-facing transcript 

copies as well as characterization of an inversion point within the insertion site. The insertion 

start point containing both murine and human DNA was used to identify and separate animals 
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hemizygous for the transgenic insertion from homozygous animals. This identification could be 

performed early in the rodent life cycle prior to maturation (i.e. breeding age), thus allowing for 

management of colony phenotypes and eliminating the need to “genotype by phenotype” later on 

(onset of amylin-induced type II diabetes does not occur until ~8-10 weeks of age for this 

model). We further confirmed our homozygous diabetic mice function the same as colonies 

established in other labs and present full antibody and fluorescent-staining protocols (available in 

SI). Lastly, we note that, due to our genotyping, a novel animal was identified within our colony: 

non-diabetic homozygous mice. Indeed, only 37% of homozygous mice bred in our colony 

became diabetic.

AUTHOR SUMMARY (for broad audience):

Transgenic rodent models are important to studying human diseases. When creating a 

new rodent model, one may insert new DNA into a well-characterized background genome. 

However, it is oftentimes not known where the new DNA was incorporated, how many times it 

was incorporated, or if any coding sequences or regulatory elements within native DNA were 

disrupted. Here, we have developed a method to characterize transgenic animals, and have 

applied it to a popular model for studying human amylin-induced type II diabetes. 

INTRODUCTION:

Understanding mutated genomes of transgenic animals. 

Almost 50 years has passed since the first successful introduction of transgenic material 

into a mouse(1–4), and to this day transgenic mouse alleles remain an indispensable biomedical 

tool from basic research to development of preclinical therapeutics.  Transgenic mouse alleles 
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are traditionally created by microinjecting recombinant DNA into the pronuclei of fertilized eggs 

and identifying integration events of the transgenic fragment into a random locus or loci of the 

genome. Neither the number nor location of insertion segments are reliable; thus native genes 

may be disrupted and expression levels of transgenic DNA vary widely among these 

models.(5,6) Continued breeding of mouse lines often results in mutagenesis over time, 

occasionally resulting in phenotype-enhancing or phenotype-suppressing effects.(7) Although 

more precise genome editing strategies have since become available, the transgenic method 

continues to reliably generate many animal models for human diseases, some of which have been 

commercialized. While phenotypes of these alleles are often carefully described, precise 

molecular characterization of transgenic alleles is seldomly reported. In fact, reports of molecular 

characterization of transgenic alleles indicate that transgenic alleles are often more complex than 

expected.(8)

One example of an animal model produced in this fashion that is now widely available is 

the RIPHAT hIAPP +/- mouse (FVB/N-Tg(Ins2-IAPP)RHFSoel/J, The Jackson Laboratory 

stock no. 008232). Phenotypically, these mice are highly valuable: when bred to homozygosity, 

some mice experience human amylin-induced type II diabetes (T2D) after ~10 weeks of age 

(T2D penetrance has previously been undefined). Molecularly, the location of the transgenic 

DNA is not known, although using primers designed based on the non-native transgene promoter 

sequence easily distinguishes animals carrying the transgenic allele from those not carrying it. 

However, this method fails to distinguish hemizygous transgenic from homozygous transgenic 

animals (SI-1). The distinction between hemi- and homozygous mice is typically only possible 

after the mice become diabetic (using phenotype to estimate the genotype). This approach is 

suboptimal financially (as all transgenic mice must be raised to ~10 weeks of age before their 
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phenotype is known) and further assumes that mature phenotype perfectly reflects genotype (i.e., 

100% penetrance). 

While detailed molecular characterizations of transgenic alleles are infrequent, great 

improvements have been made in our ability to study whole genomes of organisms. This 

includes substantial decreases in costs of short-read sequencing and development of powerful 

long-read sequencing technologies that allow transgenes to be mapped and characterized, 

respectively (9,10). In this study, we use these technologies to genetically characterize a colony 

of RIPHAT hIAPP (+/+) mice and study their resulting phenotypes. Here we report a map-then-

capture sequencing workflow (hereafter referred to as ‘MapCap’) to easily permit the 

characterization of transgenic alleles. Briefly, the first step uses selective amplification of 

transgene-containing Illumina inserts to map the locus of integration. The second step uses Cas9 

to selectively sequence that locus using Oxford Nanopore Technology. This method of 

molecularly characterizing transgenic mouse alleles can be applied to any transgenic mouse 

model with a known transgenic sequence, even if the insertion locus is unknown. This method 

yields the insertion locus, the structure of the insertion, and a rapid PCR-based genotyping assay 

to distinguish alleles with and without the transgene. 

DESCRIPTION OF THE METHOD:

DNA sequencing. 

DNA was isolated from mouse tail and blood of wild type, hemizygous, and homozygous 

mice and provided to the UW-Madison Biotechnology Center DNA sequencing facility (double-

blinded to sample ID). DNA target sequence construct was designed according to the patent 

submitted by Soeller et al (US patent 6187991 B1) describing RIPHAT transgenic construct (US 
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6187991 B1 sequence ID no. 7 encompassing rat insulin II promoter and 5’ untranslated leader, 

IAPP coding region, albumin intron I, and GAPDH polyadenylation region. See SI for full 

primer design). Illumina and Oxford Nanopore sequencing was performed and analyzed at the 

UW-Madison Biotechnology Center (UWBC) using protocols provided by manufacturer and a 

Cas9 enrichment protocol developed internally at UWBC. 

Mice.

Breeding pairs were purchased form Jackson Laboratories (stock no. 008232). Initial sequencing 

was performed on 18-week-old homozygous mouse tail snip DNA. Follow-up rounds of 

sequencing were performed on blood DNA from 10-week-old wild type FVB, hemizygous, and 

homozygous mice.  Mice were handled and sacrificed according to approved UW-Madison 

Research Animal Resources and Compliance (RARC) protocols.

Illumina sequencing of transgene insertion site.

Identification of the DNA junction between the integrated RIPHAT hIAPP transgene and 

the mouse strain genome was performed following a modified High-throughput Insertion 

Tracking by Deep Sequencing (HITS) method (11). Libraries were prepared using TruSeq Nano 

DNA Library Prep (Illumina). DNA was fragmented to an average size of 400bp using Covaris 

M220 Focused-ultrasonicator (Covaris, Inc). No size selection was performed prior to adapter 

ligation. Adapter ligation was performed using 15µM duplex oligos (5’-

ACACTCTTTCCCTACACGACGCTCTTCCGATC*T and 5’-

[Phos]GATCGGAAGAGC*C*A). Enrichment of adapter-ligated library containing the RIPHAT 

hIAPP transgene was performed, targeting the IAPP region. Custom oligos (5’-

ACACTCTTTCCCTACACGACGC-3’ and 5’- 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTCACAGTTGCCATGTAGACC-3’) 
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were substituted for PCR Primer Cocktail at 0.2 µM final and 16 cycles of PCR were performed. 

A second round of PCR was performed to incorporate indexes and TruSeq universal adapter 

sequences. PCR was performed using KAPA HiFi HotStart Ready Mix (Roche Diagnostics) and 

custom oligos (5’-

TGATACGGCGACCACCGAGATCTACAC[55555555]ACACTCTTTCCCTACACGACGCT

CTTCCGATCT-3’ and 5’-

AAGCAGAAGACGGCATACGAGAT[77777777]GTGACTGGAGTTCAGACGTGTGCTCT

TCCGATCT -3’) at 0.2 µM final, where bracketed sequences are 8nt indexes. The following 

conditions were used for amplification: 95°C for 3 minutes, followed by 8 cycles of 95°C for 30 

seconds, 55°C for 30 seconds, and 72°C for 30 seconds, with a final extension at 72°C for 5 

minutes. Libraries were sequenced on a MiSeq System at 10pM final using MiSeq Reagent Nano 

Kit v2, 300-cycles (Illumina) with paired-end reads of 250 cycles and 50 cycles. Asymmetric 

cycles were used to increase the chances of sequencing through the junction site given the library 

insert size and orientation. Sequence reads in FASTQ format were obtained with bcl2fastq 

(version v2.20.0.422), part of the standard Illumina Pipeline.

High molecular weight DNA extraction.

Genomic DNA was extracted from 200 µL of whole blood obtained via retro-orbital bleed using 

Circulomics Nanobind CBB Big DNA Kit (Circulomics, Baltimore, MD) following the 

manufacturer’s recommendations. DNA was size selected using Circulomics Short Read 

Eliminator Kit.

Cas9-mediated target enrichment.

Once the transgenic insertion locus is mapped to the mouse genome, pairs of Cas9 target 

sites were chosen 700-750 bp flanking the mapped insertion site, with PAMs oriented inwards. 
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Oxford Nanopore adapters were selectively ligated to the target region according to previously 

published methods.(12) High Molecular Weight (HMW) DNA was dephosphorylated, 

inactivating DNA ends. Cas9-mediated double-strand breaks were introduced, A-tailed, and 

adapters were ligated using Ligation Sequencing Kit (SQK-LSK109, Oxford Nanopore 

Technologies Ltd, Oxford, UK). Libraries were sequenced with a R9.4.1 flowcell (FLO-

MIN106D) on a GridION platform (Oxford Nanopore Technologies Ltd). Basecalling was 

performed with Guppy 3.2.8+bd67289 using the high-accuracy basecalling model.

Fluorescence microscopy.

FFPE tissues were sliced at 10 µm and stained using Congo Red, Thioflavin T, anti-

Insulin or anti-hIAPP (T4157 polyclonal antibody raised against mature hIAPP amino acids 25-

37, Peninsula Laboratories International) prior to viewing on a Nikon Intensilite Microscope 

(ThT, anti-Insulin, anti-hIAPP), a Nikon STORM/PALM microscope with TIRF illuminator 

(Congo Red) or Nikon Fluorescence Microscope equipped with light polarization sliding control 

(Congo Red). Amyloid staining protocols have been described previously(13–15) or are freely 

available online from StainsFile (©2019). Images were processed using FIJI (ImageJ software).  

Full step-by-step protocols used to stain tissues presented here are available in SI.

APPLICATION OF RESULTS:
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Figure 1: 3-step workflow for MapCap sequencing of transgenic animals. A) Fragmenting DNA, 
Ligation of Adapters, and read mapping to a reference genome provides the location of a 
transgenic insertion sequence. B) Dephosphorylation of high molecular weight DNA, Cas9-
mediated exposure of transgenic ends, ligation of ONT adapters and alignment provide the copy 
number and inversion events. C) Using the results from A) and B), a PCR primer mix is created 
for distinguishing wild-type, hemizygous, and homozygous animals. 

First, we wanted to define both the chromosomal location and insertion site of the 

RIPHAT hIAPP transgene. Genomic DNA was isolated from tail punches of heterozygous mice 

followed by TruSeq Nano DNA Library Prep. Transgene-specific primers were designed using 

the plasmid sequence used to generate the RIPHAT transgene. An additional primer was used 
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against the Illumina adapters, as shown in Figure 1A, allowing selective amplification of inserts 

containing the transgene. Mapping this library back to mouse genome yielded the precise 

insertion location of the transgene. 

After mapping the transgene to the precise location within the mouse genome, a Cas9-

enrichment long-read DNA assessment was performed (Figure 1B), as shown in Figure 1C, 

results from A) and B) are used to genotype the colony. A pair of guide RNAs flanking the 

insertion site, PAM facing inwards, were designed. Reads passing quality thresholds (guppy 

defaults) were aligned to the RIPHAT hIAPP transgene sequence with fasta36. Those reads 

containing any portion of the transgene were aligned to the mouse genome (FVB_NJ_v1, build 

GCA_001624535.1) with minimap2. Reads spanning the insertion sites on both the 5’ and 3’ 

ends were identified. Additional reads containing full and partial portions of the transgene, but 

lacking overlap with the native genomic sequence, were also identified. Inspection of all 

genomic alignments indicated that no read (longest = 31,520 bp) spanned the entire insertion. 

Dotplot analysis allowed us to identify at least 26 tandem copies of the expected transgenic 

insertion, separated by at least one inversion event. A single read revealed at least 13 tandem 

copies on the centrometic/telomeric side (Figure 2A). Another read revealed an inversion 

between 4 tandem repeats (Figure 2B). A third read revealed at least 13 tandem copies on the 

telomeric/centromeric side (Figure 2C). 

Our evidence indicates one of 3 scenarios (Figure 2D-F) (although there are two 

possibilities for scenario E). In one scenario, all of the highest-quality reads overlap, and the 

transgenic region contains 26 copies of the original transgenic construct: 13 forward-facing 

copies and 13 reverse-facing copies. The two scenarios in Figure 2E display possibilities where 2 

high-quality reads overlap, but are not overlapped with the third read. Lastly, Figure 2F displays 
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a final scenario where none of the reads overlap. In all scenarios, there is a minimum of 26 

copies of the transgene at the insertion site, indicating that homozygous mice carry 52 copies of 

the transgenic construct. Our results place the transgenic construct in a noncoding region of 

chromosome 15; proximity to the two nearest-neighbor coding sequences is displayed in Figure 

2G. 

Figure 2: A minimum of 26 copies of transgenic material exist in RIPHAT hIAPP (+/-) 
transgenic mice. Our longest read in the forward direction contained 13 repeat segments (A), 
followed by an inversion point (B), followed by 13 repeat segments in the opposite orientation 
(C). The minimum number of copies at the transgenic site is 26, a scenario displayed in (D), 
where all reads overlap. Scenarios also exists where only 2 of the 3 reads overlap (E), or where 
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none of the reads overlap (F). The transgene insertion site in relation to other coding sequences 
on mouse chromosome 15 (G).

Using PCR sequences complementary to the rat insulin 2 promoter, it is not possible to 

distinguish the mice in our colony (SI-1). This is presumably due to high sequence similarity 

between the rat insulin promoter and the mouse insulin promoter sequences; thus wild-type mice 

are also positive for the ca. ~500 b.p. band (SI-1). Using a complementary sequence to human 

GAPDH, located near the end of the transgenic sequence, it is possible to distinguish wild type 

mice from transgenic mice, but not hemizygous from homozygous mice (SI-1). Shown in Figure 

3 (top left panel) are results of PCR analysis of wild type mice, hemizygous RIPHAT hIAPP(+/-)  

mice and homozygous RIPHAT hIAPP(+/+) mice using primers complementary to part-mouse 

part-transgene genetic material, developed using our method. Each mouse is examined in 2 lanes 

of the resulting gel, one lane testing for the presence of native sequence and one for the presence 

of the transgene. PCR-based genotyping enabled us to identify a 460-bp product for mIAPP 

versus a 361-bp product for the hIAPP transgene (Figure 3) Control mice and homozygous mice 

yield the 460-bp and 361-bp products, whereas hemizygous mice yielded both products. Figure 3 

(top right panel) illustrates averaged fasting blood glucose levels for male RIPHAT hIAPP(+/+) 

mice that became diabetic and wild-type mice (black curve) over 6 to 14 weeks of age. 

Male RIPHAT hIAPP(+/+) mice spontaneously develop diabetes (T2D).(16) Significant 

differences in blood glucose between RIPHAT hIAPP(+/+) and wild type mice are present at all 

ages. A few female RIPHAT hIAPP(+/+)mice were monitored. They developed diabetes, 

although not until ~25 weeks of age (results not shown).

Regardless of sex, not all RIPHAT hIAPP(+/+) mice develop diabetes by 12 weeks of 

age. Among 41 RIPHAT hIAPP(+/+) male mice, only 15 (~37%) developed diabetes by 12 

weeks of age (Figure 3, bottom chart), which to our knowledge has not been reported previously. 
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Only RIPHAT hIAPP(+/+) homozygous mice that achieve blood glucose levels >300 mg/dl at 

12 weeks of age were used in the studies described below. 

Figure 3: Genotyping and phenotyping of wild-type and transgenic RIPHAT mice. Top, left 
panel: PCR distinguishes wild-type, hemizygous RIPHAT hIAPP(+/-), and homozygous 
RIPHAT hIAPP(+/+) mice. A 100 bp ladder (A). Wild-type FVB/N and C57BL/6J   mice 
display 460-bp band (B and E, respectively) for the native sequence, but do not display the 361-
bp band for the insertion sequence (F and I, respectively). Hemizygous RIPHAT hIAPP(+/-) 
mice display 460-bp band for native sequence (C) and 361-bp band (G) for the insertion 
sequence, whereas homozygous RIPHAT hIAPP(+/+) mice do not display the 460-bp native 
sequence (D) and are positive for the insertion sequence (H). Top, right panel: Averaged blood 
glucose levels for wild-type and diabetic RIPHAT hIAPP(+/+) mice. Bottom, chart: F1 Progeny 
of RIPHAT hIAPP(+/-) mice. Continued breeding yielded 41 total homozygotes, 15 of which 
had T2D. Data within chart measured at 15 weeks of age.  

Islets from wildtype and RIPHAT hIAPP(+/+) mice are both amylin-positive according 

to Anti-hIAPP antibodies (T4157 polyclonal antibody raised against hIAPP amino acids 25-37, 

Peninsula Laboratories International) that according to our experiments recognize both mIAPP 

and hIAPP (SI-2, A2 and A4). However, in contrast to wild type mice, islets in RIPHAT 

hIAPP(+/+) mice show a dramatic loss of β-cells, as judged by reduced insulin 

immunoreactivity (Si-2, A1 and A3). Islet amyloid using Thioflavin T (SI-2, B1, B2, and B3) 

and Congo red under polarized light (SI-2, C3) was identified in RIPHAT hIAPP(+/+) mice but 

not wild-type mice (SI-2, B4 and C4, for Thioflavin T and Congo Red under polarized light, 
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respectively). These results suggest that expression of human IAPP results in amyloid formation 

and, because of the loss of insulin-producing β-cells, inhibits normal islet function, in agreement 

with previous work on these mice.(16–18) 

DISCUSSION AND CONCLUSIONS:

In summary, we have developed a robust method to genotype colonies of transgenic animals and 

applied this method to a colony of wild-type and RIPHAT hIAPP(+/- and +/+) mice. We also 

characterized the animals using previous methods, such as blood glucose tracking and 

fluorescence microscopy. In so doing, we observed that the prevalence of type II diabetes 

amongst homozygous animals is only 37%, and discovered a previously unidentified subset of 

animals—those homozygous for the transgenic insertion, but who did not get type II diabetes. 

We expect other transgenic animal models may have uncharacterized genetic penetrance as well, 

if the animals are only characterized by phenotype. This method improves the current 

understanding of the genotype-versus-phenotype relationship in animal models of human 

diseases.  
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