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ABSTRACT 

 

The extracellular matrix (ECM) is a complex and dynamic meshwork of proteins providing 

structural support to cells. It also provides biochemical signals governing cellular processes 

including proliferation and migration. Alterations of ECM structure and/or composition has been 

shown to lead to, or accompany, many pathological processes including cancer and fibrosis. To 

understand how the ECM contributes to diseases, we first need to obtain a comprehensive 

characterization of the ECM of tissues and of its changes during disease progression. Over the past 

decade, mass-spectrometry-based proteomics has become the state-of-the-art method to profile the 

protein composition of ECMs. However, existing methods do not fully capture the broad dynamic 

range of protein abundance in the ECM, nor do they permit to achieve the high coverage needed 

to gain finer biochemical information, including the presence of isoforms or post-translational 

modifications. In addition, broadly adopted proteomic methods relying on extended trypsin 

digestion do not provide structural information on ECM proteins, yet, gaining insights into ECM 

protein structure is critical to better understanding protein functions. Here, we present the 

optimization of a time-lapsed proteomic method using limited proteolysis of partially denatured 

samples and the sequential release of peptides to achieve superior sequence coverage as compared 

to standard ECM proteomic workflow. Exploiting the spatio-temporal resolution of this method, 

we further demonstrate how 3-dimensional time-lapsed peptide mapping can identify protein 

regions differentially susceptible to trypsin and can thus identify sites of post-translational 

modifications, including protein-protein interactions. We further illustrate how this approach can 

be leveraged to gain insight on the role of the novel ECM protein SNED1 in ECM homeostasis. 

We found that the expression of SNED1 by mouse embryonic fibroblasts results in the alteration 

of overall ECM composition and the sequence coverage of certain ECM proteins, raising the 

possibility that SNED1 could modify accessibility to trypsin by engaging in protein-protein 

interactions.  

 

 

 

KEYWORDS: Extracellular matrix, matrisome, limited proteolysis, mass spectrometry, protein 

folding, peptide mapping  
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INTRODUCTION 

 

 The extracellular matrix (ECM) is a remarkably complex assembly of proteins that plays a 

critical architectural role in multicellular organisms by governing cell polarization, organizing 

cells into tissues, conferring mechanical properties to tissues and organs, and contributing to 

morphogenesis [1–4]. The ECM also conveys biochemical and biomechanical signals that tightly 

control all cellular processes from cell proliferation and survival, to migration, to differentiation 

[1,5]. Alterations of ECM structure and/or composition arising from mutations in ECM genes, or 

from an imbalance in ECM homeostasis, e.g., excessive accumulation or degradation, lead to, or 

accompany, many pathological processes including skeletal diseases, cardiovascular diseases, 

fibrosis, and cancer [6–12]. To understand the underlying molecular bases of ECM involvement 

in diseases, we need methods and tools capable of probing the complexity of this compartment.  

 

Over the past decade, bottom-up mass-spectrometry (MS)-based proteomics, has become 

a method of choice to profile the global protein composition of ECMs – or matrisomes – of tissues, 

organs, or produced by cells in vitro [13–17]. This method infers protein presence based on the 

identification of the most abundant peptides in any given sample. Proteomics has revealed that the 

ECM of any given tissue is made of well over 100 distinct proteins and has allowed the 

identification of ECM protein signatures characteristic of physiological processes (e.g., 

development [18], aging [19–22]) and pathological states (e.g., cardiovascular diseases [23], 

cancer [24], fibrosis [25–27]). However, existing proteomic approaches present limitations. First, 

the size and relative abundance of proteins found in the ECM span a very broad dynamic range, 

from very large and hyper-abundant collagens to small and low-abundance ECM remodeling 

enzymes or ECM-bound growth factors. As such, and despite improvements in instrumentation 

and sample preparation, including protein and peptide fractionation, proteins present in lower 

abundance are often eclipsed [14]. In addition, trypsin digestion remains the gold standard to 

generate peptides in a bottom-up MS workflow [28] but is not without limitations. For example, 

some proteins can be intrinsically resistant to tryptic digestion and, as such, may not be detected. 

ECM proteins are often highly cross-linked and cannot be easily solubilized, thus limiting trypsin 

accessibility. To overcome this, we and others previously proposed that hard-to-digest ECM 

proteins would benefit from sequential multi-proteases digestion (in our case LysC + trypsin) 
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[17,29]. Last, lower abundance proteins found in the ECM (proteins we have previously grouped 

under the term “matrisome-associated and including ECM-affiliated proteins, ECM regulators, and 

ECM-bound secreted factors [17,30]) tend also to be smaller, and so generate less peptides and, 

consequently, are less likely to be identified. Yet, these proteins are critical regulators of ECM 

homeostasis and functions. We and others have contributed to the enhancement of proteomic 

methods, however, until now, the focus has remained on improving protein identification and 

increasing the number of proteins identified [14,31,32]. 

Moreover, like all other proteins, ECM proteins exist in multiple proteoforms arising from 

alternative splicing for isoforms, from single-nucleotide variants, or from post-translational 

modifications [33,34] and these proteoforms can play important roles in health and disease. While 

proving the presence of a protein in a given sample only needs a few unique peptides, capturing a 

specific proteoform requires the detection of unique peptide sequences that cover all the variation 

and modification sites of a given protein, which often necessitates higher sequence coverage. Of 

note, the combined average sequence coverage of ECM proteins in MatrisomeDB, a database 

compiling ECM proteomic datasets [35], is 36.85% with a median sequence coverage <30%. The 

addition of new datasets to MatrisomeDB contributes little to improving overall sequence 

coverage, as the same trypsin-based proteomics protocol simply repeats previous observations. 

This implies that conventional “identification-oriented” proteomic workflows cannot meet the 

need for studies of ECM proteoforms. Instead, we propose to steer the development towards 

“coverage-oriented” approaches to increase the sequence coverage of ECM proteins and thus 

obtain more information on ECM proteoforms.  

Last, certain critical aspects of ECM biochemistry remain largely understudied, including 

folding and ECM protein-protein interactions, in the context of the assembled and insoluble ECM 

meshwork, as opposed to studying individual ECM proteins or fragments in soluble forms. Yet, 

we know that ECM protein folding and the nature of the protein complexes formed in the ECM 

are of paramount importance to achieve proper ECM function.    

 

Limited proteolysis coupled to proteomics has emerged as a powerful method to elucidate 

protein structures and conformational changes, and to map sites of protein-protein interactions 

[36,37]. However, until now, this approach has mainly been used to study soluble proteins, as they 

provide omnidirectional access for proteases. Here, we used limited proteolysis to devise a time-
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lapsed digestion pipeline to study  the ECM with two goals: 1) to release peptides sequentially 

over time and thus generate peptide samples of lower complexity, with the goal of enhancing 

protein identification and protein coverage, 2) since ECM proteins are highly insoluble and can 

only be partially solubilized prior to tryptic digestion [17,38] (see also Figure 1A), a time-lapsed 

tryptic digestion will result in the release of peptides from more exposed or accessible regions of 

proteins at earlier timepoints, and of peptides from buried protein domains as the digestion 

progresses. As a result, the mapping of peptides obtained via time-lapsed tryptic digestion can 

provide important information on protein folding and possible sites of protein-protein interactions.  

 

We further demonstrate here that this novel approach can shed light on the functions of 

under-studied ECM proteins by using as a case study the novel ECM protein SNED1 (Sushi, 

Nidogen and EGF Like Domains 1). We previously identified SNED1 in a proteomic screen 

comparing the ECM of poorly and highly metastatic mammary tumors [39]. Functionally we 

showed that SNED1 acts as a metastasis promoter, since knocking down SNED1’s expression 

significantly decreased metastatic dissemination. We also showed that the organization of fibrillar 

collagens within the tumor ECM was altered upon SNED1 knockdown [39], which led us to 

postulate that SNED1 may modulate ECM architecture. However, the precise mechanisms by 

which it could do so remain unknown. Using immunofluorescence microscopy, we have recently 

reported that SNED1 forms fibrils within the ECM [40]. Using, molecular modeling, we have 

predicted the interactome of SNED1 and found that SNED1 could potentially interact with 40 

ECM components, including fibronectin, nidogens 1 and 2, and this may serve as the basis for 

SNED1’s incorporation in the ECM [40]. However, none of these interactions have been validated 

experimentally yet, and we still do not know the mechanisms underlying SNED1’s assembly in 

the ECM. Here, by applying time-lapsed proteomics to profile ECM produced in-vitro by cells 

overexpressing SNED1, we show that SNED1’s expression and presence in the ECM modulates 

ECM protein composition. Interestingly, we also show that SNED1 increases the accessibility of 

some ECM proteins to trypsin resulting in an increase sequence coverage for these proteins (e.g., 

thrombospondins 1 and 2, Efemp1, Efemp2, fibrillin 2) but also decreased accessibility of other 

ECM proteins to trypsin, resulting in a decrease sequence coverage for these proteins (e.g., nidogen 

2, Tinagl1, Tgm2). While the mechanisms by which SNED1 modulates ECM composition and 
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ECM protein folding remains to be discovered, this proof-of-concept study highlights the ability 

of time-lapsed proteomics to shed light on novel or unsuspected roles for ECM proteins.  

 

RESULTS 

 

Time-limited proteolysis increases protein identification and coverage 

To test the impact of modifying trypsin digestion duration on protein identification, we 

chose to work with ECMs produced by mouse embryonic fibroblasts in vitro (Figure 1A). The 

generation of cell-derived matrices (CDMs) after decellularization of fibroblast cultures is highly 

reproducible [41] and thus offers a robust system to test and optimize ECM proteomic workflows. 

Once CDMs are obtained, they are partially solubilized and pre-digested with Lys-C (Figure 1A). 

CDMs are then either digested into peptides using a standard 18-hour tryptic digestion protocol 

[17,38] or using time-limited digestion (30 minutes, 2 hours, or 4 hours; Figure 1B). Peptides 

obtained were then characterized using LC-MS/MS (Supplementary Table 1, Supplementary 

Table 2). Overall, we observed that, time-limited digestions resulted in the highest absolute 

number of overall and matrisome spectra, while the proportion of matrisome spectra remained 

equivalent (Supplementary Tables 1 and 2).   

In terms of protein identification, we detected, 77, 79, 88, and 76 ECM proteins across two 

biological replicates using 30-min, 2-hour, 4-hour, and 18-hour digestions, respectively (Figures 

1C-D, Supplementary Tables 1 and 2). Across all digestions, about 2/3 of the proteins belong to 

the core matrisome (ECM glycoproteins, collagens, proteoglycans) while 1/3 are matrisome-

associated proteins (ECM-affiliated proteins, ECM remodeling enzymes, or secreted factors). 

Comparison of the proteins identified at the different timepoints reveals that 68 proteins were 

identified across all timepoints (Figure 1D, Supplementary Table 3). In addition, 2 proteins 

(Col4a3 and Fgf2) were uniquely identified by the 30-minute digestion, while 9 proteins were 

uniquely identified by the longer 2-hour and 4-hour digestions (Mfge8, Vwa1, Thbs2, Lum, 

Anxa4, Anxa5, Loxl3, Egfl7 and S100a13), and an additional 6 only using the 4-hour digestion 

protocol. While the standard 18h digestion protocol uniquely identified 2 proteins (annexin 5 and 

S100a13), it resulted in an overall lower number of proteins identified (76 vs. 87 with the 4-hour 

digestion). 
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Beyond protein identification, we next sought to evaluate the impact limited proteolysis on 

sequence coverage. We found that limited digestions resulted in an increase in the percentage of 

sequence coverage for all categories of matrisome proteins as compared with a standard 18hour 

digestion (Table 1, Supplementary Table 2).  

 

Sequential tryptic digestion as a mean to fractionate peptides and further improve protein 

identification and sequence coverage 

We next sought to perform a time-lapsed digestion where peptides are collected 

sequentially, at different timepoints, over an 18-hour period (Figure 2A).  To compare the two 

digestion protocols (single timepoints vs time-lapsed), we first evaluated their output in terms of 

protein identification. Using the time-lapse digestion protocol, we identified 76, 75, 67, and 41 

ECM proteins in two biological replicates, at the 30-min, 2-hour, 4-hour, and 18-hour timepoints, 

respectively (Figure 2B-C). We also observed that the absolute number of spectra and peptides 

decreased at later timepoints of the time-lapse digestion (Supplementary Table 1). This is expected, 

since easy-to-digest peptides are depleted from the samples at the earlier timepoints of the 

sequential digestion.  

Aggregation of the data from the sequential digestions identified an average of 87 ECM 

proteins (Figure 2B, Aggregated), as compared to the 76 proteins identified using the standard 18-

hour digestion. The comparison of the proteins identified in two biological replicates showed a 

smaller overlap of 37 proteins across all timepoints (Figure 2C) compared to that of the single 

timepoint digestions (Figure 1D). This overlap consists of 17 ECM glycoproteins, nine collagens, 

two proteoglycans, five ECM-affiliated proteins, and 4 ECM regulators (Figure 2C, 

Supplementary Table 3). 24 matrisome proteins were identified in samples from the first three 

timepoints, ten matrisome proteins in samples from the first two timepoints. We also found that 

the first timepoint of the time-lapse digestion (30 minutes) contributed the most to the aggregate 

list of ECM proteins identified as an additional five matrisome proteins (Grem1, Ctsz, P4ha2, Itih1, 

and Angptl2) were uniquely identified at this timepoint (Figure 2C, Figure 2F). 

Of note, proteins that tended to vary more between protocols, timepoints, and replicates 

belonged to the matrisome-associated classification [17]. These proteins are expected to be present 

in lower abundance in CDMs than the more structural core matrisome proteins. For this reason, a 

short digestion cannot singlehandedly capture the complexity of CDM composition as it misses 
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proteins present in lower abundance. This is further demonstrated by the five-way comparison of 

datasets obtained with the four timepoints of the time-lapsed digestion or the standard 18-hour 

digestion (Figure 2D, Supplementary Table 3). The comparison yielded 36 matrisome proteins 

identified in all samples. These consisted of 17 ECM glycoproteins, 9 collagens, 2 proteoglycans, 

4 ECM-affiliated proteins, and 4 ECM regulators. It also showed how later timepoints of the time-

lapse digestion are contributing complementary datapoints to the 30-minute digestion (Figure 2E, 

Supplementary Table 3). The other timepoints captured four matrisome proteins identified using 

the standard digestion protocol that otherwise would have been missed, and further add the 

identification of four matrisome proteins that the standard digestion did not identify. We therefore 

defined the aggregate of identified proteins from the sequential digestion as the union of four 

timepoints, which creates a list greater than that of the classical digestion, with 13 uniquely 

identified proteins (Figure 2E). 

To further refine the characterization of the matrisome produced by MEFs in vitro, we 

compared the relative abundances of the proteins identified using normalized spectral abundance 

factor (NSAF), a semi-quantitative method based on spectral counts normalized by protein size 

[42,43]. The most abundant matrisome proteins found in MEF CDMs are fibronectin (Fn1), 

fibrillin 1 (Fbn1), fibulin 2 (Fbln2) and the elastin microfibril interface-located protein 1 (Emilin 

1) for the glycoproteins and type I and type VI collagens (Figure 2F, Supplementary Table 7). 

Interestingly, we also detected basement membrane proteins including nidogens 1 and 2 (Nid1 and 

Nid2), perlecan (Hspg2) and type IV collagens.   

As anticipated, we observed that the abundances of most proteins decreased with time 

during the time-lapsed digestion (Figure 2B, Supplementary Table 1, Supplementary Table 2). We 

also observed that the relative abundance of some proteins increased with longer digestions (Tgfbi, 

Tgm2, Col1a1, Col1a2, Col18a1, Lgals1, Anxa5, Anxa4). This may suggest that these proteins 

require more extensive denaturation and digestion to release peptides. 

 

Time-lapsed digestion increases matrisome protein sequence coverage 

After evaluating the impact of the two digestion protocols on protein identification, we 

sought to compare the methods in terms of protein sequence coverage, in other word, the 

percentage of a given protein sequence matched (or “covered”) by peptides detected by mass 

spectrometry. We found that proteins showed higher coverage at earlier digestion timepoints 
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(Supplementary Figure 1A). In particular, average coverage of proteins with peptides detected at 

the 2-hour timepoint of the sequential digestion was the highest of the four timepoints and 

surpassed that of the standard 18-hour digestion (Supplementary Figure 1B). However, by 

combining the identified peptide sequences of earlier timepoints with those of the next timepoint 

(aggregation), we observed that the coverage was significantly higher over time (Figures 3A, 3B, 

Supplementary Figure 1B). This increase in coverage over time for most proteins suggests that 

some of the peptide sequences identified are unique to the later timepoints of the time-lapsed 

digestion, thus increasing the cumulative coverage with time (Figure 3A).  

To evaluate whether a particular matrisome category of proteins benefitted more from this 

approach, we compared the protein coverages obtained using the standard 18-hour digestion or 

after aggregating coverage data of the time-lapsed protocol. We observed a shift in the distribution 

of coverages particularly for ECM glycoproteins (p < 0.001), ECM-affiliated proteins (p < 0.01), 

and ECM Regulators (p < 0.01) (Figure 3B). The increase in cumulative coverage is most 

noticeable with the ECM-affiliated proteins and ECM regulators, which are less abundant, and 

therefore would have benefitted the most according to our hypothesis (Figure 3A, 3B). 

 To rule out that the increase in the sequence coverage seen upon data aggregation was due 

to the increase in the number of datasets collated, we aggregated four datasets obtained using the 

standard 18-hour digestion method (i.e., four files) and compared the average aggregated coverage 

to the average aggregated coverage obtained by integrating data from the four distinct digestion 

timepoints (Supplementary Figure 1C). This confirmed that the increased percentage of sequence 

coverage is indeed due to the benefit of the time-lapsed digestion method and the release of 

different peptides over time, and not the collation of datasets. 

To evaluate the contribution and potential benefit of each timepoint to the increased 

coverage attained with the time-lapsed digestion protocol, we calculated the coverage with 

increasing extent of aggregation—30-min to 2-hour, 30-min to 4-hour, 30-min to 18-hour—and 

evaluated their correlations to one another (Supplementary Figure 2). While the differences 

between the cumulative aggregated coverage of 4-hour and that of the 18-hour were minimal, as 

denoted by Pearson’s correlation coefficient (r > 0.97), the greatest differences were seen between 

the 30-min unaggregated coverages and the cumulative aggregated coverage of 18-hour (r = 0.93) 

(Supplementary Figure 2). Upon calculation of cumulative coverage, we found that the highest 

coverage was achieved for fibronectin (76 %, while fibronectin’s coverage was of ~60% using an 
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18-h standard digestion protocol, see Table 2 and Supplementary Table 2), followed by perlecan 

(60 %, while fibronectin’s coverage was of ~46% using an 18-h standard digestion protocol, see 

Table 1 and Supplementary Table 2).  

 To further identify the proteins that benefitted the most from the increase in coverage 

achieved by employing a time-lapsed digestion protocol, we calculated the ratio of aggregated 

coverage to standard digestion coverage, for each protein (Table 2). We found that type XI and 

type XVI collagens (Col11a1 and Col16a1), the proteoglycan prolargin (Prelp), and several 

fibulins (Fbln7, Efemp1, Fbln5) saw the largest increase in coverage. These changes in coverage 

were further plotted with respect to protein molecular weight, to evaluate whether a protein’s size 

affected the observed coverage increase (Figure 3C, Supplementary Table 2). While a greater 

number of ECM glycoproteins saw an improvement in their coverage (~50 % of all identified ECM 

glycoproteins), the extent of improvement was similar to those of the proteoglycans, ECM-

affiliated proteins, and ECM regulators (Figure 3C, Table 2). The overlap of the distribution with 

respect to size and coverage observed between the most and least affected proteins suggested no 

particular effects of these parameters on the increased coverage upon data aggregation (Figure 

3C).  

In conclusion, we demonstrate that, while performing time-lapsed tryptic digestion and 

aggregating data results in an only moderate increase in protein identification, it permits a more 

accurate estimation of relative protein abundance and leads to a significant increase in protein 

sequence coverage. Because the time-lapsed digestion protocol results in the release of peptides 

over time, we can also obtain information on protein digestibility and accessibility and then infer 

information about protein folding. The first draft of the MEF matrisome protein accessibility map 

provided here, thus represent a first step towards obtaining a detailed topographical map of ECM.  

 

Identification of SNED1-dependent changes in ECM protein composition and abundance  

Our next step was to test whether this new protocol could help us gain new knowledge on 

the ECM. We previously reported changes in the organization of the ECM of mammary tumors in 

presence of SNED1 which correlated with tumor’s metastatic potential [39]. More recently, we 

have shown that SNED1 is incorporated in fibrillar structures within the ECM meshwork (Figure 

4A, [40]), yet, we do not know how SNED1 assembled into an ECM and how it modulates ECM 

architecture. We thus sought to use the newly developed time-lapsed proteomic workflow 
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presented here to gain insight into the possible roles of this protein on ECM composition and ECM 

protein abundance and folding. To do so, we analyzed CDMs produced by Sned1KO MEFs over-

expressing GFP-tagged SNED1 and compared it to the CDMs produced Sned1KO MEFs over-

expressing GFP alone (control; see above). Quality-control analysis of the dataset obtained, on the 

model of what we presented above, revealed a similar pattern in terms of protein identification 

using single timepoint digestions or time-lapsed digestion (Supplementary Figure 3, 

Supplementary Tables 4 and 5).  

As described above, we could define the composition of CDMs containing or not SNED1 

as the list of proteins at the intersection of two biological replicates for each condition 

(Supplementary Table 6) and identified proteins whose detection changed as a function of 

SNED1’s expression. Doing so revealed that the 3 chain of type IV collagen (Col4a3), the 1 

chain of type VIII collagen (Col8a1), and Itih1 were not detected in the control CDMs, while 

S100a6, was only identified in SNED1-containing CDMs (Supplementary Table 6). 

We next sought to evaluate whether the presence of SNED1 altered the abundance of 

certain ECM proteins.  To do so, we calculated the NSAF for all proteins detected in SNED1-

containing CDMs (Supplementary Figure 3G, Supplementary Table 7) and compared these values 

with those obtained for control CDMs (Figure 4B, Supplementary Table 7). We found that type I 

collagen (chains 1 and 2), the glycoproteins thrombospondin 1 and periostin (Postn), the 

proteoglycan biglycan (Bgn), and annexin A4 were more abundant in SNED1-containing CDMs. 

In contrast, the glycoproteins Mfap2, Tinagl1, Mgp, and Nid2 and the Anxa5, Serpinh1, were 

present in lower abundance, in SNED1-containing CDMs as compared to control.  

 

Changes in ECM protein profiles upon expression of SNED1  

To gain insight into the possible role of SNED1 in modulating ECM architecture, we 

exploited the coverage data obtained by proteomics. Indeed, protein digestibility by trypsin is 

directly linked to how accessible lysine and arginine residues are, and this is linked to protein 

folding and protein-protein interactions, two parameters that can alter exposure of these residues. 

To capture this, we defined a dissimilarity index reflecting the magnitude of the differences in 

coverage (Figure 4C, Table 3, see Materials and Methods). Using this index, we identified proteins 

with increased coverage in CDMs containing SNED1, including thrombospondins 1 and 2 (Thbs1 

and Thbs2) and EGF containing fibulin extracellular matrix protein 2 (Efemp2, also called fibulin 
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4), while proteins with decreased coverage in SNED1-containing CDMs included of emilin1, 

Tinagl1, nidogen 2, galectin 9, and annexin A5 (Figure 4D). 

Since an increase in protein abundance could result in an artificial increase in coverage, we 

next sought to identify proteins detected with increased coverage without differential abundance. 

With this approach, proteins such as Fbln1, Col4a1 can be considered as those whose increase or 

decrease in coverage, respectively, is independent of their relative abundance. On the other hand, 

proteins such as Col1a1, Col1a2, Fbln2, Fbn1, Col2a1 are identified with increased abundance 

without increase in coverage.  

Altogether, our results support the conclusion that SNED1’s expression modulates the 

composition and coverage of the ECM produced by fibroblasts. It will be interesting in the future 

to identify the mechanisms leading to these changes (see Discussion).  

 

Sequential release of peptides provides insight on protein accessibility to trypsin 

Perhaps the most significant innovation brought by the time-lapsed digestion protocol 

presented here is its spatio-temporal resolution. As discussed above, protein digestibility reflects 

the surface exposure of a protein, and is directly linked to protein folding and protein-protein 

interactions. Thus time-lapsed peptide mapping can identify protein regions readily exposed and 

accessible to trypsin (peptides matching these regions would be released at early digestion 

timepoints) and regions of proteins hard to access, either because of extensive post-translational 

modifications, such as O-glycosylations hindering accessibility, or because the engagement of 

protein-protein interactions that are not disrupted by the partial denaturation to which samples are 

submitted.  

Digestion kinetics and topographical information of SNED1 

As of today, we do not have any experimentally-validated information on the folding of 

SNED1 when incorporated in the ECM. To obtain topographical information on SNED1, we 

assessed the diversity of peptides generated over the course of the time-lapsed digestion. Overall, 

we found that the aggregated SNED1 coverage yielded 27.32 %, a significant increase from the 

13.8 % coverage obtained using the 18h standard digestion protocol (Supplementary Table 4). It 

is also a substantial increase from the ~5% coverage obtained by aggregating data from 

MatrisomeDB, a database reporting proteomics data on insoluble ECMs from tissues [35], and an 

increase from the 24.13% coverage reported in ProteomicsDB, with the caveat that this database 
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compiles global proteomic datasets and that for the most part includes proteomic analysis of 

soluble protein samples [44]. We observed that the number of peptide spectrum matches (PSMs) 

was the highest for the 30-minute timepoint of the time-lapse trypsin digestion. The most peptides 

at this timepoint were in the CCP/Sushi domain (SMART SM000032) and in the first FN3 

(SMART SM000060) domain, followed by peptides in the NIDO domain (SMART SM000539) 

(Figure 5A, Supplementary Table 8). Over time, the number of PSMs decreased, yet we found that 

each timepoint contributed unique peptides. In particular, we saw that a large number of peptides 

mapped to the second FN3 domain at the later digestion timepoints, with six and five PSMs for 

the 4-hour and 18-hour timepoints, respectively, which suggests that this domain gets exposed 

over time as the tryptic digestion progresses.   

While the structure of SNED1 has not been resolved yet, we can turn to molecular modeling 

to gain insight into the 3-dimensional folding of the protein. Here, we retrieved the 3-D structure 

of SNED1 predicted by AlphaFold [45] (https://alphafold.ebi.ac.uk/entry/Q8TER0) and mapped, 

in a color-coded manner, the peptides identified at each timepoint of the time-lapsed digestion 

(Figure 5B, Supplementary Table 8, Supplementary File 2). While the folding of some regions of 

the protein is only predicted with low confidence and while it is likely that SNED1’s folding is 

different when it is assembled in the ECM, this is a first attempt at overlaying experimental data 

obtained by time-lapsed proteomics on a theoretical model of an ECM protein.  

 

Peptide mapping of nidogen 2 whose coverage decreased upon SNED1presence 

To illustrate how SNED1 presence in the ECM influenced the coverage of ECM proteins, 

we performed a similar peptide mapping for nidogen 2. We found that Nidogen 2 (Nid2) had a 

higher sequence coverage in the CDMs lacking SNED1 (Figure 4C, Figure 6A, Table 3). The G2F 

domain was identified with the highest number of peptides, with 45 in the SNED1-lacking CDM 

and 36 in the SNED1-containing CDM. This was followed by the NIDO domain which was 

identified with 33 spectra in the SNED1-lacking CDM and 21 spectra in the SNED1-containing 

CDM. The 3-D model of Nid2 predicted by AlphaFold was further used to overlay peptide 

identified at each timepoint of the time-lapsed digestion. This revealed the precise location of 

peptides detected differentially in presence or absence of SNED1 (Figure 6B, Supplementary Files 

3 and 4). We can speculate that peptides released at later timepoints of the time-lapses digestion 

are part of protein domains not as readily accessible to tryptic digestion, and possibly because 
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these domains are involved in protein-protein interactions, protecting them from tryptic digestion. 

Interestingly, nidogen 2 was one of the proteins we predicted to interact with SNED1 by molecular 

modeling [40], supporting the possibility that protein-protein interaction between SNED1 and 

nidogen 2 is leading to the decreased coverage of nidogen 2 in presence of SNED1.  The fact that 

the presence of SNED1 modulates trypsin accessibility of several ECM proteins, suggests that this 

novel protein of the ECM plays a key role in modulating the assembly and organization of the 

ECM. 

 

 Peptide mapping of thrombospondin 1 whose coverage increased upon SNED1presence 

In contrast with what we observed for nidogen 2, thrombospondin 1 saw its sequence 

coverage increased when SNED1 is present in the ECM (Figure 4C, Table 3, Figure 7A). We 

found that the thrombospondin N-terminal like domain contained the highest number of PSMs, 

102 in SNED1-containing CDMs, compared to 78 counts in SNED1-lacking CDMs. To better 

capture differences, on the model of what has been proposed by Eckersley and others [Eckersley 

et al 2020], PSM counts were normalized by the amino-acid length of each domain (Figure 7A).  

The 3-D model of Thbs1 predicted by AlphaFold was further used to overlay peptide 

identified at each timepoint of the time-lapsed digestion (Figure 7B, Supplementary Files 5 and 

6). The resulting annotation showed a large overlap of peptide sequences identified across the 

different timepoints, revealing that most of the peptides were obtained with a short 30-minute 

digestion. Further analysis of the distribution of the peptides identified in SNED1-lacking CDMs 

with those identified in the SNED1-containing CDMs, revealed their precise topography (Figure 

7B, white arrows). One hypothesis to explain how the presence of SNED1 in the ECM results in 

an increased in the sequence coverage of a protein, like thrombospondin 1, is if it directly or 

indirectly induced a conformational change on this protein, either by binding to it, or by 

modulating the forces exerted on it, which would, in turn, increase the exposure of this protein to 

trypsin. Future studies will be aimed at exploring this hypothesis.  

 

 

DISCUSSION 

 

In this study, we report the development of time-lapsed digestion coupled to mass 

spectrometry to enhance ECM protein identification and sequence coverage, and gain insight into 
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ECM protein folding in the context of an assembled ECM meshwork. By comparing MS output 

obtained from time-limited tryptic digestions, we found that shorter digestions are sufficient to 

identify the same number, if not more, than the gold standard overnight trypsin digestion protocol. 

We further demonstrate the significant benefit of conducting time-lapsed digestion and 

aggregating output in terms of protein identification and coverage over a standard overnight trypsin 

digestion protocol. Last, we highlight how time-lapsed proteomic data can be leveraged via 1-D 

and 3-D peptide mapping to gain insights into ECM protein folding and identification of possible 

sites of protein-protein interactions.  

 

 Modulation of the duration of the trypsin digestion is only one of the parameters of a multi-

step proteomic workflow that can be modified. While we demonstrated its benefits, in particular 

in terms of sequence coverage, there is still a dark side to the matrisome that has yet to be 

illuminated. We were the first to propose and show that hard-to-digest ECM proteins would benefit 

from sequential multi-proteases digestion (in our case LysC + trypsin) [17], this combination is 

now broadly adopted. On the model of what has been developed to achieve higher coverage of the 

intracellular proteome [46–49], and based on the findings reported here, we propose that a 

sequential (or simultaneous) digestion with multiple proteases, beyond the use of the LysC-trypsin 

pair, could achieve a deeper matrisome coverage. However, this poses challenges including the 

optimization of reaction conditions to ensure protease compatibility and downstream 

computational analysis to support multiplexed digestion for accurate peptide identification.  

 

The complex structure of the ECM meshwork mediated by protein-protein interactions that 

are dependent on proper protein folding, is crucial to its function. Conventional structural 

proteomic approaches such as cross-linking mass spectrometry (XL-MS, [50]) are not suitable to 

study ECM as crosslinking reagents will further harden already hard-to-digest ECM proteins. On 

the other hand, classical limited-proteolysis-coupled mass spectrometry method previously 

developed is devised to handle soluble proteins [37]. While the approach developed here can shed 

light on proteins’ accessibility in the assembled state of the ECM, translated as the proteins’ 

digestibility by trypsin, it is worth noting that it is applied here to samples that have been partially 

denatured. Our next step will be to attempt to work on native ECM samples to conduct a true 

topographical survey of the ECM using proteomics. In addition, in native conditions, protein 
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domains engaged in protein-protein interactions will be inaccessible and as a result resistant to 

proteolysis. Peptide mapping should thus reveal, more directly, a map of potential protein-protein 

interaction sites at the ECM scale.  

 

 As a proof-of-concept, we applied the newly devised time-lapsed digestion protocol to 

compare the ECM produced by Sned1KO or SNED1-overexpressing mouse embryonic fibroblasts. 

The Sned1 gene was clones nearly two decades ago [51], yet, until very recently, we did not know 

anything about the physiological or pathological roles of SNED1. We became interested in 

studying SNED1 after discovering its role as a promoter of mammary tumor metastasis [39]. More 

recently, we reported the generation of a Sned1 knockout mouse model and its essential role during 

development, since Sned1 knockout led to early neonatal lethality, likely due to craniofacial 

malformations and its involvement in neural crest cell fate [52]. Based on sequence analysis, we 

categorized SNED1 as part of the core matrisome [17,30], before we knew that it could incorporate 

in the ECM and constitute one of its structural components, something we recently demonstrated 

experimentally [40]. However, how SNED1 assembles in the ECM and how it governs different 

pathophysiological processes remain unknown. Early observations looking at the ECM of tumors 

expressing or not SNED1suggested that SNED1 may play a role in modulating the tumor ECM 

[39]. We thus sought to use the newly developed time-lapsed proteomic pipeline to test this. Here 

we showed that overexpression of SNED1 by mouse embryonic fibroblasts indeed modulated 

ECM composition, as observed when calculating the relative abundance ECM proteins in cell-

derived matrices produced by Sned1KO or SNED1-overexpressing cells, and ECM protein 

accessibility to trypsin. Interestingly, several proteins whose abundance and/or whose coverage 

changed as a function of SNED1 are also predicted to be possible SNED1 interactors. These 

include fibronectin, and nidogen 2. Future work will be aimed at understanding the mechanisms 

leading to these changes and determine if, and if so, how, they relate to the pathophysiological 

process in which we have implicated SNED1.  

Our view of the ECM has significantly changed over the past decades, from an inert 

scaffold to a remarkably complex and dynamic signaling platform.  We now know that the ECM 

is actively remodeled over time during the processes of development, tissue aging, wound healing, 

and disease progression [4,7,8,10,12]. Changes in cell-ECM interactions, microenvironmental 

cues (e.g., tissue oxygenation levels), and environmental factors (e.g., smoke, UV) induce 
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biochemical (e.g., glycation [53]) or structural (e.g., degradation, cross-linking) post-translational 

modifications, leading to alteration of the structure of individual ECM proteins and that of the 

ECM meshwork. Bottom-up proteomic and peptide mapping have contributed to appreciate and 

evaluate the extent of these changes for example during aging and photoaging of the skin [19–

21,27,54], fibrosis [11,26,27], or cancer progression [55], but much more remains to be discovered. 

As demonstrated here, we propose that applying time-lapsed proteolysis coupled to mass 

spectrometry can contribute to unravel the compositional and structural complexity of the ECM, a 

necessary first step toward deciphering ECM-dependent pathophysiological processes and the 

development of ECM-targeting therapeutic strategies.  

 

EXPERIMENTAL PROCEDURES 

 

Cell culture and generation of cell-derived matrices (CDMs) 

Mouse embryonic fibroblasts (MEFs) were previously isolated from embryos of Sned1LacZ-Neo/LacZ-

Neo (Sned1KO) mice [52]. MEFs were first immortalized and then transduced with retroviral 

constructs to achieve stable expression of either the SNED1_GFP fusion protein (SNED1_GFP) 

or GFP alone (control), as previously described [40]. For all experiments, cells were cultured in 

DMEM (Corning, #10-017-CV) supplemented with 10 % fetal bovine serum (Sigma), and 2 mM 

glutamine (Corning). 

To obtain cell derived matrices (CDMs), cells were cultured as described by Franco-Barraza, et al. 

[41]. In brief, cells were plated in 6-well plates at 475,000 cells/well. Upon cell reaching 

confluency (within 24 to 36 hours post seeding), the culture medium was replaced with fresh 

medium supplemented with 0.05 μg/mL of ascorbic acid (Sigma). Half of the medium was then 

replaced with fresh medium containing 0.1 μg/mL of ascorbic acid, every other day, for 7 days 

following the first ascorbic acid treatment. After 7 days of ascorbic acid treatment, cells were 

washed twice with warm D-PBS containing calcium and magnesium (Corning), and the ECM 

produced by the cells was decellularized using warmed extraction buffer (0.5 % Triton X-100 and 

20 mM NH4OH in PBS) for 6 minutes. Decellularization efficiency was assessed by microscopic 

observation. The buffer containing cellular lysate was then removed and replaced with cold PBS. 

The obtained CDMs were cut in half using a scalpel and transferred from the cell culture plate to 

a conical tube. The CDMs were washed in PBS under constant inversion at 4 °C for 4 hours. The 
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PBS was replaced after a centrifugation at 4,000 rpm for 8 minutes at 4 °C, and the wash was 

repeated once for 4 hours and then for 12 hours. Last, CDMs were pelleted by centrifugation at 

13,000 rpm for 2 minutes at 4 °C, and stored at -80 °C.  

For immunofluorescence visualization, cells were cultured on a glass coverslip coated with 

crosslinked gelatin as described by Harris et al. [56]. After decellularization (see above), CDMs 

were fixed with 4 % paraformaldehyde, blocked with 1 % BSA in 0.05 % Triton X-100, and 

incubated first with a polyclonal rabbit anti-SNED1 antibody (used at a 1 μg/mL concentration, 

previously described [40]) and a monoclonal mouse anti-GFP antibody (Abcam #ab1218, used at 

a 1:500 dilution), and then with a goat anti-rabbit antibody conjugated to AlexaFluor568 (Thermo 

Fisher A11036, used at 1:1000) and a goat anti-mouse antibody conjugated to AlexaFluor647 

(Thermo Fisher A21236, used at 1:1000) for visualization. Coverslips were mounted using 

Fluoromount-G (Southern Biotechnology) and imaged using Zeiss confocal microscope LSM880. 

 

Protein solubilization and digestion into peptides 

Each CDM pellet was resuspended in 100 mM NH4HCO3 solution containing 8 M urea and 10 

mM dithiothreitol (DTT; Thermo Fisher) and incubated at 37 °C for 2 hours under agitation, for 

partial solubilization and reduction. Reduced thiol groups were alkylated using 40 mM iodoacetate 

(IAA; Thermo Fisher) for 30 minutes at room temperature in the dark. Urea concentration was 

brought to 2 M with 100 mM NH4HCO3 and samples were then de-glycosylated with PNGase F 

(New England Biolab), under agitation at 37 °C for 2 hours, and pre-digested with Lys-C (Thermo 

Fisher), under agitation at 37 °C for 2 hours, as previously described [17,38]. 

Single timepoint tryptic digestion 

For single timepoint digestion (n = 4 for 2-hour and 18-hour timepoints; n = 2 for 30 min and 4-

hour timepoints), trypsin (Thermo Scientific) was added, and tryptic digestion was performed 

under agitation at 37°C for 30 minutes, 2 hours, 4 hours, or 18 hours. Upon completion of each 

timepoint, samples were centrifuged at 13,000 rpm for 5 minutes to separate any undigested CDM 

material, and peptide-containing supernatants were transferred to a clean tube, acidified using 50% 

trifluoroacetic acid (TFA) and stored at -20 °C. 

Time-lapsed tryptic digestion 

For time-lapsed tryptic digestion, trypsin was added following the pre-digestion, and the tryptic 

digestion was continued under agitation at 37 °C (n = 2). After 30 minutes, samples were 
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centrifuged at 13,000 rpm for 5 minutes, and the supernatants were transferred to a clean tube, 

while the remaining proteins were resuspended in 2 M urea in 100 mM NH4HCO3, and the 

digestion continued at 37 °C with addition of equal amount of trypsin. After 2 hours since the 

initial trypsin addition (or 1.5 hour after addition of the second batch of trypsin), samples were 

centrifuged, and the process was repeated, and the 4-hour and 18-hour timepoint samples were 

obtained. Samples were acidified with 50% TFA upon timepoint completion and stored at -20 °C 

until further processing.  

Acidified peptides were desalted on C18 desalting columns (Thermo Scientific) following the 

manufacturer’s instructions and eluted in 50 % acetonitrile (ACN) solution containing 0.1 % TFA. 

Peptides were lyophilized for 4 hours and reconstituted in 5 % ACN solution containing 0.1 % 

formic acid. For all samples, peptide concentration was measured using a colorimetric peptide 

quantification assay (Thermo Scientific). Finally, the concentration of the samples was adjusted to 

250 ng/μL. 

 

LC-MS/MS analysis 

Data acquisition 

1g-equivalent of peptides from each sample was dissolved in 15uL 0.1% formic acid and injected 

and separated by a capillary C18 reverse-phase column of the mass-spectrometer-linked Ultimate 

3000 HPLC system (Thermo Fisher) using a 90-minute gradient (5-85% acetonitrile in water) at a 

300 nL/min flow rate. Mass spectrometry data were acquired on a Q Exactive HF mass 

spectrometry system (Thermo Fisher) with nanospray ESI source using data-dependent 

acquisition. 

Database search 

Mass spectrometry raw files were converted into .mzML files using msConvert [57], searched and 

filtered by MSFragger [58] (version 3.2) and Philosopher [59], respectively. The database search 

was performed against a custom proteome reference database generated by amending standard 

mouse reference proteome (UniProt Mus musculus C57BL/6J proteome last modified on March 

7, 2021, and including 110,926 entries, 55,463 forward sequences and 55,463 decoy sequences) 

with human SNED1’s protein sequence (UniProt Q8TER0). Trypsin was specified as cleavage 

enzyme allowing 1 missed cleavage, mass tolerance was set to 50 ppm for precursor ions and 20 

ppm for fragment ions. The search included variable modifications of methionine oxidation, lysine 
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and proline hydroxylation [60], asparagine, and glutamine deamidation, glutamine to 

pyroglutamate, and fixed modification of carbamidomethyl cysteine. Peptide length was set within 

a range between 7 to 50 amino acids and false discovery rate (FDR) was set to 1% at the 

peptide/spectrum match (PSM), peptide, and protein levels.  

 

Data analysis 

We restricted our analysis to reviewed UniProt entries and annotated the dataset to identify ECM 

and ECM-associated proteins according to the  matrisome nomenclature [17,30]. For protein 

identification, we further restricted our analysis to proteins detected with at least 2 peptides. 

Proteome coverage was calculated from mapping all identified peptides to custom proteome 

reference sequences described above.  

Semi-quantitative analysis of protein abundance 

For each protein, the normalized spectral abundance factor (NSAF) was calculated as described 

by Zybailov et al. [42]. In brief, NSAF is calculated as the number of spectral counts (SC) 

identifying a protein, divided by the protein’s length (L), divided by the sum of SC/L for all 

proteins of the dataset [43].  

Analysis of sequence coverage 

To investigate the aggregated coverage at a given timepoint of the time-lapsed tryptic digestion, 

identified peptides from previous and current timepoints were pooled together prior to peptide 

mapping and coverage calculation (e.g., aggregated coverage at 18-hour was calculated based on 

all identified peptides from the sequential 30-minutes 2-hour, 4h-hour and 18-hour digestions). 

Change in sequence coverage when comparing the 18-hour stand digestion method and the data 

aggregated from the time-lapsed digestion method was calculated as follows: 

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
𝑆𝑒𝑞𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒  𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 − 18ℎ 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

18ℎ 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒
∗ 100 

 

Dissimilarity index was calculated as follows: 

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 =
Euclidean distance

Cosine Similarity
=

√∑ (𝑄𝑖 − 𝑃𝑖)2𝑛
𝑖=1

𝑸 • 𝑷
||𝑸|| ||𝑷||

 

Where n = 4 (4 independent timepoints). Q and P represent the vectors consisting of 4 aggregated 

coverage in control or SNED1-overexpressing samples, respectively. 
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Statistical analysis 

 The data used for comparison between the coverages in proteins grouped by ECM categories was 

first checked for normality using the Shapiro-Wilk test [61]. Considering the non-normality of the 

data, the distribution of standard 18-hour digestion coverages and the aggregate coverage 

counterparts were compared using Wilcoxon signed-rank test, with p-values reported following 

Bonferroni adjustments for stringent results [62].  

Data visualization 

Proportional 2-circle Venn diagrams were generated using the Venn Diagram Generator: 

http://barc.wi.mit.edu/tools/venn/.  

Visualization of the intersection of multiple datasets was performed using UpSetR [63] and the 

online application: https://gehlenborglab.shinyapps.io/upsetr/. 

Visualization of the coverages and NSAF values was performed using Morpheus: 

https://software.broadinstitute.org/morpheus. 

Peptide mapping on 1D representation of protein structures 

The information of domain start and end positions were obtained from the Simple Modular 

Architecture Research Tool (SMART [64]). Each peptide was assigned the domains using a 

heuristic created in an Excel file that determined where the start and end position of the identified 

sequences belonged to (see Supplementary File 1). The outliers that were matched onto the non-

domain regions of the protein were manually excluded in the count of spectra count ratio on the 

model of what has been described by Eckersley [65]. 

Peptide mapping on 3D representation of protein structures 

The pdb files of AlphaFold prediction models were obtained for the proteins of interests [45]. Each 

pdb file was visualized and annotated using UCSF Chimera (https://www.cgl.ucsf.edu/chimera/) 

by selecting the sequences of interest to modify their colors manually onto the model. 

 

Data availability 

All scripts were written in Python 3.8 and are available on the Gao lab website at 

http://pepchem.org:35091/blackjack/sequential_sned1/tree/master. 

Raw mass spectrometry data have been deposited to the ProteomeXchange Consortium [66] via 

the PRIDE partner repository [67] with the dataset identifier PXD030713. The raw data will be 

made publicly available upon acceptance of the manuscript.  
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Table 1. Average sequence coverage achieved using different digestion durations for the different 

matrisome protein categories.  

 
 Average % sequence coverage 

 
30 min 2h 4h 18h 

ECM Glycoproteins 21.5% 25.2% 22.9% 15.9% 

Collagens 9.7% 8.2% 10.0% 9.0% 

Proteoglycans 34.8% 35.1% 37.0% 26.5% 

ECM-affiliated  14.7% 14.7% 12.8% 8.0% 

ECM Regulators 18.0% 19.9% 19.4% 10.3% 

Secreted Factors 12.7% 11.2% 9.0% 11.2% 
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Table 2. Average sequence coverage achieved using an 18-hour or a time-lapsed tryptic digestion 

 

   

Matrisome 

Category

Gene 

Symbol UniProt ID

Average % 

coverage 

(18h)

Average % 

coverage 

(Seq_Aggre

gate)

Increase % 

coverage

Matrisome 

Category

Gene 

Symbol UniProt ID

Average % 

coverage 

(18h)

Average % 

coverage 

(Seq_Aggre

gate)

Increase % 

coverage

Fbln7 Q501P1 1.70 9.55 460.00 Anxa1 P10107 3.61 19.22 432.00

Efemp1 Q8BPB5 1.32 6.29 376.92 Lgals3 P16110 5.49 17.80 224.14

Fbln5 Q9WVH9 2.12 9.38 342.11 Anxa5 P48036 7.52 24.29 222.92

Aebp1 Q640N1 3.32 13.83 316.00 Lman1 Q9D0F3 7.06 20.02 183.56

Lamb2 Q61292 4.45 15.20 241.88 Lgals9 O08573 13.03 29.89 129.35

Thbs2 Q03350 4.48 12.93 188.57 Anxa4 P97429 18.81 37.62 100.00

Matn2 O08746 5.54 14.85 167.92 Colec12 Q8K4Q8 10.38 20.15 94.16

Tinagl1 Q99JR5 21.24 53.22 150.51 Lgals1 P16045 29.63 48.15 62.50

Tgfbi P82198 22.18 55.05 148.18 Grem1 O70326 7.07 10.05 42.31

Dpt Q9QZZ6 4.23 10.45 147.06 Anxa2 P07356 21.09 23.89 13.29

Efemp2 Q9WVJ9 12.64 29.68 134.82 Anxa11 P97384 1.59 1.59 0.00

Lama5 Q61001 15.17 34.45 127.13 Lox P28301 6.93 24.82 257.89

Postn Q62009 22.43 50.42 124.73 Itih2 Q61703 12.32 30.07 144.21

Igsf10 Q3V1M1 8.21 17.14 108.69 Serpinh1 P19324 14.63 34.65 136.89

Vtn P29788 0.84 1.67 100.00 Ctsb P10605 17.11 36.14 111.21

Ltbp1 Q8CG19 17.38 34.05 95.97 Itih1 Q61702 0.39 0.77 100.00

Lamb1 P02469 9.13 16.80 84.05 Loxl4 Q924C6 9.58 18.23 90.34

Nid1 P10493 29.08 52.37 80.11 Loxl2 P58022 17.07 31.64 85.28

Fbn2 Q61555 16.48 29.12 76.72 P4ha1 Q60715 16.01 28.65 78.95

Ecm1 Q61508 6.89 11.36 64.94 Tgm2 P21981 27.55 49.13 78.31

Fbln1 Q08879 4.75 7.80 64.18 Htra1 Q9R118 9.90 16.77 69.47

Pcolce Q61398 16.03 25.00 56.00 Loxl1 P97873 10.46 13.01 24.41

Emilin2 Q8K482 24.58 37.20 51.33 Adamtsl4 Q80T21 10.47 11.63 11.06

Thbs1 P35441 27.52 41.62 51.24 Itih3 Q61704 7.09 6.86 -3.17

Nid2 O88322 31.75 47.15 48.48 S100a13 P97352 5.61 20.41 263.64

Mfap5 Q9QZJ6 14.02 20.73 47.83 S100a11 P50543 13.78 27.55 100.00

Tnc Q80YX1 36.16 53.22 47.18 S100a6 P14069 7.87 8.99 14.29

Emilin1 Q99K41 43.07 57.08 32.53

Mfap2 P55002 15.85 20.77 31.03

Fbn1 Q61554 48.69 60.08 23.37

Fbln2 P37889 48.12 58.44 21.45

Fn1 P11276 64.43 76.06 18.05

Col11a1 Q61245 0.25 1.88 655.56

Col16a1 Q8BLX7 0.60 4.53 652.63

Col4a3 Q9QZS0 0.30 0.60 100.00

Col4a1 P02463 2.43 4.16 71.60

Col6a2 Q02788 25.58 42.36 65.60

Col18a1 P39061 7.19 11.87 65.10

Col6a1 Q04857 29.71 48.39 62.89

Col5a1 O88207 4.35 6.88 58.13

Col3a1 P08121 18.44 28.04 52.04

Col1a2 Q01149 28.94 42.75 47.73

Col12a1 Q60847 24.28 35.37 45.68

Col1a1 P11087 30.18 41.05 36.03

Col5a2 Q3U962 13.89 17.03 22.60

Col4a2 P08122 5.77 6.30 9.14

Col8a1 Q00780 1.41 1.41 0.00

Col2a1 P28481 3.83 3.73 -2.63

Prelp Q9JK53 1.98 14.42 626.67

Aspn Q99MQ4 13.27 38.20 187.88

Bgn P28653 41.06 58.13 41.58

Hspg2 Q05793 43.15 60.83 40.98
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Table 3. Sequence coverage dissimilarity index 

 

  

Gene Symbol Matrisome Category

% Coverage 

Dissimilarity 

Index Gene Symbol Matrisome Category

% Coverage 

Dissimilarity 

Index

Anxa1 ECM-affiliated Proteins 31.98 Col18a1 Collagens -0.47

Anxa5 ECM-affiliated Proteins 30.66 Itih3 ECM Regulators -0.78

Nid2 ECM Glycoproteins 28.41 Angptl2 Secreted Factors -0.92

Tinagl1 ECM Glycoproteins 21.55 Cd109 ECM Regulators -0.96

Mgp ECM Glycoproteins 21.15 Ctsa ECM Regulators -1.99

Lgals9 ECM-affiliated Proteins 17.50 Fbln7 ECM Glycoproteins -2.21

Lamb2 ECM Glycoproteins 15.39 Col12a1 Collagens -2.34

Serpinh1 ECM Regulators 14.70 Lamb1 ECM Glycoproteins -2.61

Mfap2 ECM Glycoproteins 14.12 Ctsz ECM Regulators -2.61

S100a13 Secreted Factors 13.12 Col3a1 Collagens -2.64

Colec12 ECM-affiliated Proteins 12.99 Col11a1 Collagens -2.72

Ctsb ECM Regulators 12.80 Anxa2 ECM-affiliated Proteins -3.34

Tgm2 ECM Regulators 11.05 Col2a1 Collagens -3.37

Pcolce ECM Glycoproteins 8.03 Fbn1 ECM Glycoproteins -4.27

Lgals3 ECM-affiliated Proteins 7.99 Col6a2 Collagens -4.40

Emilin1 ECM Glycoproteins 7.86 Anxa11 ECM-affiliated Proteins -4.48

Col6a1 Collagens 7.47 Adamtsl4 ECM Regulators -4.54

Ltbp1 ECM Glycoproteins 7.08 Fbln2 ECM Glycoproteins -4.90

Itih2 ECM Regulators 6.38 Emilin2 ECM Glycoproteins -5.23

Loxl4 ECM Regulators 6.12 Col1a2 Collagens -6.16

Bgn Proteoglycans 5.84 Col5a1 Collagens -6.55

Lgals8 ECM-affiliated Proteins 5.11 Aebp1 ECM Glycoproteins -6.72

Matn2 ECM Glycoproteins 4.87 Col1a1 Collagens -6.79

Igsf10 ECM Glycoproteins 4.62 Lox ECM Regulators -7.95

Col4a2 Collagens 4.15 Col5a2 Collagens -8.72

Col4a1 Collagens 3.98 Lgals1 ECM-affiliated Proteins -9.02

Dpt ECM Glycoproteins 3.46 Tnc ECM Glycoproteins -10.02

Hspg2 Proteoglycans 3.38 S100a6 Secreted Factors -11.57

Anxa7 ECM-affiliated Proteins 3.34 P4ha1 ECM Regulators -11.68

Fn1 ECM Glycoproteins 3.06 P4ha2 ECM Regulators -11.92

Grem1 ECM-affiliated Proteins 3.02 Fbln1 ECM Glycoproteins -12.36

Ecm1 ECM Glycoproteins 2.68 S100a11 Secreted Factors -12.43

Lman1 ECM-affiliated Proteins 2.53 Nid1 ECM Glycoproteins -12.98

Gpc4 ECM-affiliated Proteins 2.39 Postn ECM Glycoproteins -14.23

Loxl2 ECM Regulators 2.31 Fbln5 ECM Glycoproteins -14.62

Prelp Proteoglycans 2.23 Aspn Proteoglycans -14.83

Col8a1 Collagens 2.02 Tgfbi ECM Glycoproteins -16.76

Lama5 ECM Glycoproteins 1.67 Anxa4 ECM-affiliated Proteins -16.88

Itih1 ECM Regulators 1.18 Loxl1 ECM Regulators -19.18

Col16a1 Collagens 1.10 Htra1 ECM Regulators -19.83

Loxl3 ECM Regulators 0.69 Fbn2 ECM Glycoproteins -20.10

Col4a3 Collagens 0.32 Efemp1 ECM Glycoproteins -21.94

Vtn ECM Glycoproteins 0.00 Thbs1 ECM Glycoproteins -23.27

Mfap5 ECM Glycoproteins 0.00 Efemp2 ECM Glycoproteins -25.50

Timp3 ECM Regulators 0.00 Thbs2 ECM Glycoproteins -29.27

Decreased coverage in 
SNED1-containing CDMs 

Increased coverage in 
SNED1-containing CDMs 
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FIGURE LEGENDS 

 

Figure 1. Identification of ECM proteins using time-restricted proteolysis protocol 

A. Schematic representation of the experimental pipeline including the production of cell-derived 

matrix (CDM) by immortalized mouse embryonic fibroblasts (MEFs) over the course of 8 days 

and the initial steps of sample preparation prior to LC-MS/MS analysis. 

B.  Schematic representation of the time-limited proteolysis protocol using single timepoint 

digestions of defined duration (30 minutes, 2 hours, 4 hours, or 18 hours).  

C. Bar graph depicts, for each matrisome category, the number of ECM proteins identified in two 

biological replicates (intersection), using single timepoint digestions (see also Supplementary 

Table 2). 

D. Venn diagram shows the overlap between the proteins identified using different trypsin 

digestion durations. For each timepoint, the protein set is defined as the intersection of proteins 

identified in two biological replicates.   

 

Figure 2. Identification of ECM proteins using time-lapsed trypsin digestion 

A. Schematic representation of the sequential trypsin digestion protocol to achieve time-lapsed 

proteolysis.  

B. Bar graph depicts, for each matrisome category, the number of ECM proteins identified in two 

biological replicates using a time-lapsed digestion protocol. Aggregation of the data from all 4 

timepoints of the time-lapsed digestion is also provided. For this, the average number of proteins 

identified across 2 biological replicates, is obtained first by defining proteins identified at any of 

the four digestion timepoints for each replicate, and then averaging these numbers (see also 

Supplementary Tables 2 and 3). 

C. Venn diagram shows the overlap between the proteins identified at each timepoint of the time-

lapsed digestion protocol. For each timepoint, the protein set is defined as the intersection of 

proteins identified in two biological replicates.  

D. Matrisome proteins identified at each of the four sequential timepoints or the standard 18-hour 

single timepoint digestions are compared, and the intersections are visualized using an UpSet plot 

(see also Supplementary Tables 2 and 3).   
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E. Venn Diagram illustrates the comparison between matrisome proteins identified using the 

standard 18-hour digestion protocol and upon aggregation of the data from the 4 sequential 

digestion timepoints, both lists being defined as the ensemble of matrisome proteins identified in 

two biological replicates. 

F. Heatmap illustrates the normalized spectral abundance factor (NSAF) obtained for each 

matrisome protein using the time-lapse trypsin digestion protocol or the standard single timepoint 

(18-hour) digestion protocol.  

 

Figure 3. Aggregation of data from sequential tryptic digestion timepoints results in 

enhanced sequence coverage 

A. Each line illustrates the cumulative average sequence coverage percentage at each timepoint 

for a given matrisome protein (see also Supplementary Table 2).   

B. Violin plots compare, for each matrisome category, the distribution of average protein sequence 

coverage obtained with a standard 18-hour digestion protocol or by aggregating data from the 4 

timepoints of the time-lapsed digestion. Median and interquartile range are indicated by the white 

dots and grey bars, respectively. Wilcoxon signed-rank test was used to compare the distribution, 

and p-value was reported after Bonferroni adjustments were made (*p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001, ns: not significant). 

C. Scatter plot represents the average aggregated percentage of sequence coverage for each protein 

detected (y-axis) as a function of protein molecular weight (kDa, x-axis). The diameter of each dot 

represents the fold-change in coverage as compared to the standard 18-hour single timepoint 

digestion method, and the proteins with changes above 90th and below 10th percentile are annotated 

(see Table 2 and Supplementary Table 2). 

 

Figure 4. The ECM protein SNED1 modulates MEF matrisome composition and coverage 

A. Immunofluorescence images of decellularized CDMs produced by immortalized mouse 

embryonic fibroblasts overexpressing GFP alone (control, top panels) or SNED1_GFP (bottom 

panels) co-stained with anti-SNED1 (orange, left panels) and anti-GFP antibodies (light blue, 

middle panels), producing an overlay (right panels). Scale bars: 50 μm. 

B. Heatmap represents the aggregated normalized spectral abundance factor (NSAF) of proteins 

identified in CDMs produced by control or SNED1_GFP-overexpressing MEFs. Difference in 
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abundance is calculated by subtracting the relative abundance of proteins of control CDMs from 

those of SNED1-containing CDMs (see Supplementary Table 4). Proteins are sorted in descending 

order of differential abundance. 

C. A custom dissimilarity index was calculated to represent changes in protein sequence coverage 

in the aggregated dataset of the 4 timepoints of the time-lapsed digestion of control and SNED1-

containing CDMs. Proteins depicted by dots toward the top of the boxes show matrisome proteins 

whose sequence coverage is lower when SNED1 is present, while proteins depicted by dots toward 

the bottom show the opposite. 

D. Scatter plot represents the relation between the average sequence coverage of all matrisome 

proteins detected in both control and SNED1-containing CDMs. Proteins found above the diagonal 

(e.g., Thbs1, Thbs2, Efemp2) are proteins whose coverage increase in SNED1-containing CDMs, 

while proteins found below the diagonal (e.g., Nid2, Tinagl1) are proteins whose sequence 

coverage is decreased in SNED1-containing CDMs (see Table 3 and Supplementary Table 4). 

Proteins with dissimilarity index above 95th and below 5th percentile are annotated. 

 

Figure 5. Time-lapsed peptide mapping of SNED1  

A. Mapping of peptides detected at each of the timepoints of the time-lapsed digestion on 

schematic representation of the domain-based organization of SNED1 (UniProt Q8TER0). Each 

peptide is mapped using the start and end position of each peptide, based on information provided 

by the Simple Modular Architecture Research Tool (SMART, http://smart.embl-heidelberg.de/). 

The color scale from light to dark grey represents, for each domain, the number of peptide-

spectrum matches (PSMs). Peptide sequences depicted are the ones uniquely identified at a given 

timepoint. Bolded sequences correspond to peptides detected in two biological replicates. 

B. 3-D mapping of detected peptides on the AlphaFold-predicted model of SNED1 

(https://alphafold.ebi.ac.uk/entry/Q8TER0). Peptides are color-coded to indicate at which 

digestion timepoints they were detected. For the aggregate illustration the timepoint was assigned 

to the timepoint of first appearance. 

 

Figure 6. Nidogen-2 sequence coverage decreases upon SNED1 overexpression 

A. Representation of peptide mapping of nidogen-2 (Nid2, UniProt O88322). Upper panel 

represents the mapping of Nid2 peptides detected in control CDM samples; lower panel represents 
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the mapping of Nid2 peptides detected in SNED1-containing CDM samples. The color scale from 

light to dark grey represents, for each domain, the number of peptide-spectrum matches (PSMs). 

The line plot illustrates the difference in numbers of PSM detected in control or SNED1-containing 

CDMs and normalized by domain length. 

B. 3-D mapping of detected peptides on the AlphaFold-predicted model of nidogen-2 (Nid2; 

https://alphafold.ebi.ac.uk/entry/O88322). Upper panel represents the 3-D mapping of Nid2 

peptides detected in control CDMs; lower panel represents the 3-D mapping of Nid2 peptides 

detected in SNED1-containing CDMs. Each peptide color-coded to indicate the timepoint at which 

it was detected. For the aggregate illustration, the timepoint was assigned to the timepoint of first 

appearance. 

 

Figure 7. Thrombospondin-1 sequence coverage is increased upon SNED1 presence in the 

ECM 

A. Representation of peptide mapping of thrombospondin-1 (Thbs1, UniProt P35441). Upper 

panel represents the mapping of Thbs1 peptides detected in control CDM samples; lower panel 

represents the mapping of Thbs1 peptides detected in SNED1-containing CDM samples. The color 

scale from light to dark grey represents, for each domain, the number of peptide-spectrum matches 

(PSMs). The line plot illustrates the difference in numbers of PSM detected in control or SNED1-

containing CDMs normalized by domain length. 

B. 3-D mapping of detected peptides on the AlphaFold-predicted model of thrombospondin-1 

(Thbs1; https://alphafold.ebi.ac.uk/entry/P35441). Upper panel represents the 3-D mapping of 

Thbs1 peptides detected in control CDMs; lower panel represents the 3-D mapping of Thbs1 

peptides detected in SNED1-containing CDMs. Each peptide is color-coded to indicate the 

timepoint at which it was detected. For the aggregate illustration, the timepoint was assigned to 

the timepoint of first appearance. 

 

 

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2022. ; https://doi.org/10.1101/2022.01.13.476092doi: bioRxiv preprint 

https://alphafold.ebi.ac.uk/entry/O88322
https://www.uniprot.org/uniprot/P35441
https://alphafold.ebi.ac.uk/entry/P35441
https://doi.org/10.1101/2022.01.13.476092
http://creativecommons.org/licenses/by-nc/4.0/


 36 

SUPPLEMENTARY FIGURE LEGENDS 

 

Supplementary Figure 1. Time-lapsed tryptic digestion increases overall sequence coverage 

A. Each line of the line plots represents, for a given matrisome protein, the average sequence 

coverage calculated at each timepoint of the time-lapse digestion. Each graph represents the data 

for a given matrisome category. 

B. Violin plot represents the distribution of average sequence coverage between the standard 18-

hour digestion protocol (blue), the coverage obtained at the 2-hour timepoint of the time-lapsed 

digestion protocol (orange), and the coverage obtained by aggregating data from the 4 timepoints 

of the sequential digestion (grey). The median is represented by the dotted line and the interquartile 

range is indicated by the colored dotted lines. One-way ANOVA was performed to compare the 

groups, and the p-value was reported (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). 

C. To rule out that the increase in the sequence coverage percentages seen upon aggregation of 

data from the different digestion timepoints was due to the simple increase in the number of 

datasets collated, we aggregated four datasets obtained using the standard 18-hour digestion 

method (i.e., four files) and compared the average aggregated coverage (left violin plots) to the 

average aggregated coverage obtained by integrating data from the four distinct digestion 

timepoints (right violin plots). We confirm that the increased percentage of sequence coverage is 

indeed due to the benefit of the time-lapsed digestion method. 

 

Supplementary Figure 2. Time-lapsed tryptic digestion increases overall sequence coverage 

Histograms represent the distribution of average coverage percentage of all ECM proteins at each 

timepoint of the time-lapsed trypsin digestion. Scatter plots compare the log2-transformed average 

sequence coverage of all identified matrisome proteins at different timepoints of the time-lapsed 

digestion. Proteins aligned along the diagonal indicate a similar coverage between the two 

methods. 

 

Supplementary Figure 3. Proteomic profiling of the composition of the ECM produced by 

SNED1_GFP-overexpressing MEFs 

A. Bar graph depicts, for each matrisome category, the number of matrisome proteins identified in 

two biological replicates (intersection), in CDMs produced by MEFs overexpressing 
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SNED1_GFP, using different trypsin digestion durations either individually (left) or sequentially 

(right) (see also Supplementary Table 4). 

B. Venn diagram shows the overlap between matrisome proteins identified at each timepoints of 

the sequential digestion. For each timepoint, the protein set is defined as the ensemble of proteins 

identified in two biological replicates.  

C. Matrisome proteins identified at each of the four sequential timepoints or the standard 18-hour 

single timepoint digestions are compared, and the intersections are visualized using an UpSet plot 

(see also Supplementary Tables 4 and 5).   

D. Venn diagram illustrates the comparison between matrisome proteins identified using a 

standard 18-hour digestion protocol or by aggregating data from the 4 sequential digestion 

timepoints of the time-lapsed protocol. 

E. Each line illustrates, for a given matrisome protein, its cumulative average sequence coverage 

percentage at each timepoint of the time-lapsed digestion (see also Supplementary Table 3).   

F. Violin plots compare, for each matrisome category, the distribution of average protein sequence 

coverage obtained with a standard 18-hour digestion protocol or by aggregating data from the 4 

timepoints of the time-lapsed digestion. Median and interquartile range are indicated by the white 

dots and black bars, respectively. Wilcoxon signed-rank test was used to compare the distribution, 

and p-value was reported after Bonferroni adjustments were made (*p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001, ns: not significant). 

G. Heatmap represents the normalized spectral abundance factor (NSAF) obtained for each 

matrisome protein produced by SNED1-overexpressing MEFs and detected using the time-lapse 

trypsin digestion protocol or the standard single timepoint (18-hour) digestion protocol.  

H. Histogram represents the distribution of average coverage percentage of all matrisome proteins 

at each timepoint of the time-lapsed trypsin digestion detected in CDMs produced by SNED1-

overexpressing MEFs. Scatter plots compare the log2-transformed average sequence coverage of 

all identified matrisome proteins at different timepoints of the time-lapsed digestion. Proteins 

aligned along the diagonal indicate a similar coverage between the two methods. 

 

 

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2022. ; https://doi.org/10.1101/2022.01.13.476092doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.13.476092
http://creativecommons.org/licenses/by-nc/4.0/


 38 

SUPPLEMENTARY TABLES 

Supplementary Table 1. Sample list and MS metrics 

Supplementary Table 2. Proteomic profiling of cell-derived matrices produced by immortalized 

Sned1KO mouse embryonic fibroblasts (MEFs) overexpressing GFP alone 

Supplementary Table 3. Overview of matrisome proteins identified CDMs made by 

immortalized Sned1KO mouse embryonic fibroblasts overexpressing GFP alone 

Supplementary Table 4. Proteomic profiling of cell-derived matrices produced by immortalized 

Sned1KO mouse embryonic fibroblasts overexpressing GFP-tagged SNED1 

Supplementary Table 5. Overview of matrisome proteins identified CDMs made by 

immortalized Sned1KO mouse embryonic fibroblasts overexpressing GFP-tagged SNED1 

Supplementary Table 6. Comparison of matrisome proteins identified in CDMs lacking- and 

containing SNED1 

Supplementary Table 7. Semi-quantitative analysis using normalized spectral abundance factor 

(NSAF) 

Supplementary Table 8. Complete peptide report 

 

SUPPLEMENTARY FILES  

Supplementary File 1. Example of a peptide mapping heuristic (.xlsx) 

Supplementary File 2. Time-resolved peptide mapping on the 3-D AlphaFold model of SNED1. 

Video shows a full rotation around the y-axis (.mp4)  

Supplementary File 3. Time-resolved mapping of peptides identified in control CDMs on the 3-

D AlphaFold model of nidogen 2. Video shows a full rotation around the y-axis (.mp4)   

Supplementary File 4. Time-resolved mapping of peptides identified in SNED1_GFP-containing 

CDMs on the 3-D AlphaFold model of nidogen 2. Video shows a full rotation around the y-axis 

(.mp4) 

Supplementary File 5. Time-resolved mapping of peptides identified in control CDMs on the 3-

D AlphaFold model of thrombospondin 1. Video shows a full rotation around the y-axis (.mp4) 

Supplementary File 6. Time-resolved mapping of peptides identified in SNED1_GFP-containing 

CDMs on the 3-D AlphaFold model of thrombospondin 1. Video shows a full rotation around the 

y-axis (.mp4) 
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