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Summary1

1. Diversification rates inferred from phylogenies are not identifiable. There are infinitely many2

combinations of speciation and extinction rate functions that have the exact same likelihood score3

for a given phylogeny, building a congruence class. The specific shape and characteristics of such4

congruence classes have not yet been studied. Whether speciation and extinction rate functions5

within a congruence class share common features is also not known.6

2. Instead of striving to make the diversification rates identifiable, we can embrace their inherent7

non-identifiable nature. We use two different approaches to explore a congruence class: (i) testing8

of specific alternative hypotheses, and (ii) randomly sampling alternative rate function within the9

congruence class.10

3. Our methods are implemented in the open-source R package ACDC11

(https://github.com/afmagee/ACDC). ACDC provides a flexible approach to explore the12

congruence class and provides summaries of rate functions within a congruence class. The13

summaries can highlight common trends, i.e. increasing, flat or decreasing rates.14

4. Although there are infinitely many equally likely diversification rate functions, these can share15

common features. ACDC can be used to assess if diversification rate patterns are robust despite16

non-identifiability. In our example, we clearly identify three phases of diversification rate changes17

that are common among all models in the congruence class. Thus, congruence classes are not18

necessarily a problem for studying historical patterns of biodiversity from phylogenies.19

Key-words: Birth-death models, macroevolution, diversification rates, identifiability, congruence20

class.21
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1 Introduction22

In macroevolution, one prominent avenue of research is to estimate macroevolutionary23

rates of diversification from molecular phylogenies (Ricklefs 2007; Morlon 2014). Specifically,24

many studies are interested in inferring time-varying diversification rates. Time-varying25

diversification rates are used to study monotonous slowdowns/increases using continuous26

functions (e.g., Rabosky 2006; Morlon et al. 2011; Höhna 2014), abrupt shifts in diversification27

rates (e.g., Stadler 2011; May et al. 2016; Magee et al. 2020), mass extinction (e.g., Höhna 2015;28

May et al. 2016; Culshaw et al. 2019; Magee & Höhna 2021) and correlations to environmental29

factors (e.g., Condamine et al. 2013; 2019; Palazzesi et al. 2022). Unfortunately, time-varying30

diversification rates are not identifiable when estimated from time-calibrated phylogenies, while31

allowing for any continuous diversification rate function (Kubo & Iwasa 1995; Louca & Pennell32

2020). That is, infinitely many combinations of speciation and extinction rate functions,33

summarized within a congruence class, result in the same likelihood given a phylogenetic tree34

(Kubo & Iwasa 1995; Louca & Pennell 2020).35

However, the existence of infinitely many equivalently likely rate functions does not imply36

that one cannot draw any general conclusions. We do not know yet which diversification rate37

functions are within a congruence class, and if these diversification rate function share some38

specific features (e.g., rate changes at the same time). If we obtained estimates of diversification39

rates for our study group, then we could be interested in exploring all or a sample of40

diversification rates included in the congruence class to identify shared features. Furthermore, we41

could test if different specific diversification rate scenarios are included within a congruence class,42

for example, if a model with exponentially increasing/decreasing diversification rates is included43

in the congruence class. Similarly, we could test if models with rate shifts at specific times,44

corresponding to alternative hypotheses, are included in the congruence class.45

Here we provide the R package ACDC (Analysis of Congruent Diversification Rates) that (1)46

converts between models within the same congruence class, (2) explores the full congruence class,47

and (3) shows common trends among models within the same congruence class. Conversion48

between congruent models is useful if a researcher wants to explore alternative hypotheses, for49

example, “what if the extinction rate was not constant but instead exponentially increased50

through time?” Full exploration of the congruence class can highlight general features of a51

congruence class, for example, if a researcher has estimated a given pattern of diversification rates52

and wants to know if all models within the congruence class show a certain trend (e.g., a rate53

shift at time t). Finally, all explored models can be analyzed to show common patterns of54

diversification rate increases and decreases. With our R package ACDC, researchers can test which55

patterns are robust to the congruence class.56
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2 Theory and Usage57

In this section we provide the theory and our approach as well as how to use ACDC. We58

start by explaining how ACDC processes any diversification rate function to construct the59

congruence class. Next, we explain how ACDC obtains alternative (congruent) matching pairs of60

speciation and extinction rates functions. Then, we show how specific hypotheses can be tested61

and how to explore the congruence class using diversification rate functions generated from a62

process or a distribution. Finally, we demonstrate how alternative diversification rate models63

within the congruence class can be summarized to assess for shared trends.64

2.1 Linear interpolation65

Figure 1: Schematic of the piecewise linear rate functions. The piecewise linear function shows how any continuous
function can be approximated if sufficiently many linear components are used. We use the index i = 0 for the present,
and increasing toward the past. The finite difference λi − λi−1 per time interval ∆t represents the slope of the rate
function. The finite difference is important to analytically compute the slope (i.e., the derivative) of the rate function
at any time.

Congruence classes are derived for arbitrary continuous functions of speciation and66

extinction rates (Louca & Pennell 2020). Unfortunately, it is not feasible to always work with67

arbitrary continuous functions because the derivative is unknown. Instead, we use a piecewise68

linear approximation of arbitrary user-defined rate functions to enable the exploration of69

congruence classes (Fig. 1). This approximation should be unproblematic for representing existing70

models, especially since piecewise constant diversification models are often used for diversification71

rate inference (Stadler 2011; May et al. 2016; Magee et al. 2020; Magee & Höhna 2021).72

Moreover, the piecewise linear approximation can become arbitrarily close to any continuous73

function if the number of pieces is sufficiently large. We show the effect of the number of pieces74

used on the accuracy of the approximation in the Supplementary Material.75
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We assume a grid of n+ 1 times, t0, t1, . . . , tn, with constant spacing ∆t. This grid76

typically spans between 0 and the root age of the phylogenetic tree. The piecewise linear77

speciation rate approximation is defined by linear interpolation of the vector λ = λ0, . . . , λn.78

Specifically, as depicted in Fig. 1, the (interpolated) speciation rate within the interval79

ti−1 < t ≤ ti is80

λ(t) = λi−1 +
λi − λi−1

∆t
(t− ti) . (1)81

The extinction rate approximation is defined analogously.82

As an empirical example, we estimated speciation and extinction rates for the primates83

phylogeny from Springer et al. (2012) using a horseshoe Markov random field (HSMRF) prior84

distribution (Carvalho et al. 2010; Magee et al. 2020) as implemented in RevBayes (Höhna et al.85

2016). The specific details about the data set and Markov chain Monte Carlo settings are not86

important for this study, but can be found at87

https://revbayes.github.io/tutorials/divrate/ebd.html. We include the samples from the posterior88

distribution in our package for convenience. We will use this example to showcase how to explore89

the congruence class with ACDC. In R, we can set up the piecewise linear rate functions as follows.90

library(ACDC)91

data(primates_ebd)92

lambda <- approxfun(primates_ebd$time, primates_ebd$lambda)93

mu <- approxfun(primates_ebd$time, primates_ebd$mu)94

2.2 Constructing the Congruence Class95

The central idea in ACDC is to construct the congruence class given a speciation and extinction96

rate function. A congruence class is fully specified by either the pulled net-diversification rate97

rp(t) and the speciation rate at the present (λ0), or the pulled speciation rate λp(t). That is, any98

combination of speciation and extinction rate function that result in the same pulled99

net-diversification rate rp(t) and speciation rate at the present (λ0), or pulled speciation rate100

λp(t), belong to the same congruence class (Louca & Pennell 2020). We can therefore set up the101

congruence class by constructing the pulled net-diversification rate rp(t). The pulled102

net-diversification rate is defined as (Louca & Pennell 2020)103

rp(t) = λ(t)− µ(t) +
1

λ(t)

dλ(t)

dt
. (2)104
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Since we are using piecewise linear speciation and extinction rates (Fig. 1), we obtain (at the105

interval times) the analytical solution for the pulled net-diversification rate as106

rp(ti) = λi − µi +
1

λi

λi − λi−1

∆t
. (3)107

The equation for the pulled speciation is (Louca & Pennell 2020):108

λp(t) = (1− E(t))λ(t) , (4)109

where E(t) is the probability that the lineage observed at time t goes extinct before the present.110

Currently we only use the pulled speciation rate for plotting purposes.111

We use the pulled net-diversification rate to construct the congruence class because it112

simplifies the equations. Continuing with the primates data example, we can construct the113

congruence class in ACDC as follows.114

times <- seq(0, max(primates_ebd$time, length.out = 1000)115

my_model <- create.model(lambda, mu, times)116
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Figure 2: Estimated diversification rates for the primates phylogeny by Springer et al. (2012) using an episodic
birth-death model with a horseshoe Markov random field prior (Magee et al. 2020) in RevBayes (Höhna et al. 2016).
The original rates define the reference model in ACDC (solid lines). ACDC automatically computes the pulled speciation
rate as well as the pulled net-diversification rate (dashed lines), which characterize the congruence class.

We use a fine grid of one thousand time points to improve the precision of the calculations. Then,117

we can plot the diversification rates together with their pulled counterparts in ACDC using118

plot(my_model) (Fig. 2). Studying the pulled speciation and pulled net-diversification rates itself119

can highlight aspects of the congruence class (Helmstetter et al. 2021).120
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2.3 Transforming speciation and extinction rates121

A researcher can either provide another speciation rate function (or extinction rate function) and122

ACDC computes the corresponding extinction rate function (or speciation rate function,123

respectively) so that the new pair also belongs to the same congruence class. If a user provides a124

new extinction rate function, and wishes to know the speciation rate, we can compute it as:125

λi =

√
4× λi−1 ×∆t+ (rp(ti)×∆t+ µi ×∆t− 1)2 + rp(ti)×∆t+ µi ×∆t− 1

2×∆t
. (5)126

We show in the Supplementary Material how Eq. (5) is derived from Eq. (3). We note that λ0 is127

equal for all models in the congruence class. Conversely, if a user provides a new speciation rate128

function, then we can solve Eq. (3) for µ and get129

µi = λi − rp(ti) +
1

λi

λi − λi−1

∆t
. (6)130

These two transformations allow us to explore the congruence class. We only need to propose an131

alternative speciation rate function, or an alternative extinction rate function, and then compute132

their counterpart for the new model to be within the congruence class.133

2.4 Exploring congruent models for specific hypotheses134

A first option to explore the congruence class is to test for specific alternative hypotheses.135

For example, one can test if a linearly or exponentially decreasing speciation rate function is136

contained within the congruence class. In principle, there are no limitations to the choice of137

specific hypotheses and we provide several examples in our vignette138

(https://afmagee.github.io/ACDC). This option is useful when a researcher has a specific139

hypothesis regarding when diversification rates could have changed and what shape the140

diversification rates function might have.141

In our primate HSMRF analysis, we inferred that the speciation rate changed abruptly in142

the last few million years, but the extinction rate remained comparably constant (Fig. 2). We143

note that the speciation rate appears to drive the changes in the “observed” net-diversification144

rate, i.e., in our originally inferred net-diversification rate. As an illustration, we explore here the145

alternative scenario if it instead was the extinction rate that drove the changes in the146

net-diversification rate. Because the net-diversification rate is defined as δ(t) = λ(t)− µ(t), we147

construct our new hypothesis for the extinction rate function as µ′(t) = µ0 − λ(t) where µ0 is any148

arbitrary value with µ0 ≥ sup(λ(t)) to ensure that µ′(t) ≥ 0. In ACDC, we only need to specify the149

alternative extinction rate functions µ′(t) and then call congruent.models.150
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mu_scaling <- c(1.1, 1.2, 1.5, 2.0)151

mu_0s <- max(lambda(my_model$times)) * mu_scaling152

153

mu_prime <- list()154

for (i in seq_along(mu_scaling)){155

mu_prime[[i]] <- local({156

mu_0 <- mu_0s[i]157

function(t) mu_0 - lambda(t)158

})159

}160

161

alt_models <- congruent.models(my_model, mus = mu_prime)162

plot(alt_models)163

Even though we constructed the extinction rate functions to be responsible for the changes in the164

net-diversification rates, we observe that the corresponding speciation rate functions of the same165

congruence class are never constant (Fig. 3). This results in somewhat different net-diversification
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Figure 3: Alternative models contained in the congruence class. The solid black line depicts the reference model (i.e.,
the model which we inferred and provided to ACDC). The four dashed lines in each plot show four different examples
where we assumed that the extinction rate function was driving the net-diversification rates. The speciation rate
functions, net-diversification rate functions and relative extinction rate functions are computed given the extinction
rate functions to enforce that the models remain in the congruence class.

166

rate functions although both recent rate increases remain.167
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2.5 Exploring all congruent models, i.e., the congruence class168

A second option is to explore the full congruence class. However, because there are169

infinitely many rate functions contained within the congruence class, we cannot explore every170

single model within the congruence class. Instead, we can sample randomly from a distribution of171

rate functions within the congruence class. We only need to specify how to create a random172

sample. For example, we could sample from different exponentially decreasing rate functions, or173

we could sample from a (discretized) Brownian motion.174

In ACDC, we provide ways to randomly sample from several flexible rate distributions.175

These distributions can be specified using the function sample.basic.model, and Table 1176

provides an overview of the options for this function. A more detailed description is provided in177

our vignette (https://afmagee.github.io/ACDC).178

Table 1: Options for sampling basic models using sample.basic.model.

Argument Description

times the vector of time points that we wish to sample at
rate0 the rate at the present. If not specified, will draw a

random log-normally distributed rate at the present
rate0.median median rate at present
rate0.logsd standard deviation rate at present
model either “exponential”, “linear”, “episodic”, “MRF” for

Markov random field
direction increase or decrease for the deterministic trend
noisy whether or not to add stochastic noise (the “MRF”

component)
MRF.type one of “HSMRF”, for horseshoe-, or “GMRF” for

Gaussian Markov random field
monotonic whether to enforce that the rate always changes in the

same direction
fc.mean mean fold-change
min.rate minimum rate value used for rejection sampling
max.rate maximum rate value used for rejection sampling

179

As an example, we assume that an alternative extinction rate function corresponds to a180

Brownian motion. As a starting point for the Brownian motion at the present time t0 = 0, we181

sample µ′
0 from a lognormal distribution. The distribution is centered around the reference182

estimate µ0, and we select the variance such that the central 95%-quantile of µ′
0 spans two orders183

of magnitude on the rate scale. Each preceding µi is distributed as lognormal(µi−1, σ), where184

σ ∼ HalfCauchy(0, ζ), and ζ is chosen depending on the number of epochs, so that the expected185
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number of effective shifts in the rate is ln(2) (Magee et al. 2020). We repeat the entire procedure186

to draw each rate function.187

extinction_rate_samples <- function() {188

sample.basic.models(189

times = primates_ebd[["time"]],190

model = "MRF",191

MRF.type = "GMRF",192

max.rate = 1,193

rate0.median = mu(0.0))194

}195

Then, we use this function —which specifies how to generate new samples for the extinction rate196

function— to sample from the congruence class, which is done using the function197

sample.congruence.class. Here, we sample 20 new extinction rate functions and automatically198

compute the corresponding speciation rate functions.199

samples <- sample.congruence.class(200

my_model,201

num.samples=20,202

rate.type="extinction",203

sample.extinction.rates=extinction_rate_samples)204

We can plot the HSMRF-samples in ACDC, using plot(samples) (Fig. 4, left and middle columns).205

2.6 Summarizing trends over congruent models206

Once several models from the congruence class are obtained, we compute summaries of207

our sampled rate functions. Recall that we are primarily interested in changes in diversification208

rates over time for these models. Therefore, we compute the amount of rate change within a small209

interval ∆t (i.e., the slope of the rate functions)210

∆λi =
λi−1 − λi

∆t
. (7)211

Next, we extract at which times the change in diversification rate (∆λ) is larger than a212

pre-defined threshold ϵ: if ∆λ is larger than ϵ then we paint this time as a rate increase, and if213

∆λ is smaller than −ϵ then we paint this time as a rate decrease. Alternatively, we can compute214

the normalized slope of the rate function:215

∆λ̄i =
∆λi

λi
. (8)216

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2022. ; https://doi.org/10.1101/2022.01.12.476142doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.12.476142
http://creativecommons.org/licenses/by/4.0/


0.0

0.2

0.4

0.6

0.8

0204060

ra
te

Speciation

0.0

0.2

0.4

0.6

0.8

0204060

Extinction

−0.2

0.0

0.2

0.4

0.6

0204060

∆λ

Delta speciation

−0.2

0.0

0.2

0.4

0204060
time before present (Ma)

ra
te

Net−diversification

0.0

0.5

1.0

1.5

0204060
time before present (Ma)

Relative extinction

Decreasing

Flat

Increasing

B
ro

w
ni

an
 m

ot
io

n
*

0204060
time before present (Ma)

M
od

el
s

Speciation direction

Figure 4: Congruent models where the extinction rates were sampled from a Brownian motion. The speciation
rates were computed to match the extinction rates so that the models remain within the same congruence class. The
net-diversification rates and relative extinction rate functions result from the speciation and extinction rate functions.
The right column depicts the slope of the speciation rate (∆λ = (λi−1 −λi)/∆t), and a summary indicating whether
the speciation rate function is decreasing, flat or increasing assuming a threshold for ∆λ of ±ϵ = 0.02. The asterisk
(*), and the solid black lines represent the reference model.
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The absolute slope represents the change in the speciation rate per time, while the normalized217

slope represents the fold-change in the speciation rate per time. The absolute slope has the218

advantage that we can easily specify a comparable threshold over the entire diversification history,219

while the normalized slope has the advantage that we can easily specify a threshold that is220

comparable between analyses/datasets.221

Outliers can signal single rate changes detected by ∆λ but could also be noise. Therefore,222

we implemented an option to smooth trends (either increases or decreases) by removing singleton223

outliers. We define an outlier as a time interval where both neighbors share the same trend but224

the interval itself has a different trend. The outlier is then replaced with the same trend as both225

its neighbors. This smoothing can clarify the overall signal to detect the total number of226

directional changes. However, smoothing might delete sharp or instantaneous rate changes.227

In ACDC, we summarize the directional changes in the congruence class by specifying a228

threshold ϵ, in units of rate change per time.229

summarize.trends(samples, threshold = 0.02)230

The summary provides us with an overview of the trends: how many of the sampled models have231

speciation rate functions that were increasing or decreasing at a given time. For the example232

primate dataset, we observe that sampled models had two speciation rate increases very recently,233

and one additional speciation rate decrease at the present (Fig. 4). A more detailed description of234

how to summarize and interpret trends is provided in our vignette235

(https://afmagee.github.io/ACDC).236

2.7 Accommodating uncertainty in rates237

In the above example, we explored the congruence class for the posterior median238

diversification rates. We can also explore congruence classes for samples from posterior239

distributions. That is, as an example, we compute the congruence class for 20 samples from the240

posterior distribution and draw 20 alternative rate functions for each posterior sample. First, we241

load our posterior samples.242

data(primates_ebd_log)243

posterior <- read.RevBayes(244

primates_ebd_log,245

n_times = 1000,246

max_t = 65,247

n_samples = 20)248
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We plot the speciation rate functions from the posterior sample in the left panel of Fig. 5 (see249

Supplementary Scripts for information about plotting). Next, we generate congruent models for250

each of the samples from the posterior.251

samples <- sample.congruence.class.posterior(252

posterior,253

num.samples = 20,254

rate.type = "extinction",255

model="MRF",256

MRF.type = "GMRF",257

max.rate = 3.0,258

rate0.median = mu(0.0))259

This selection yields 20 samples from the posterior, which are not congruent, but for each 20260

samples we generated a subset of 20 additional congruent models. Next, we can summarize and261

plot the directions of change in the speciation rate function.262

summarize.posterior(samples, threshold = 0.02)263

Directional changes are summarized to show the number of models with an increase (or decrease,264

Fig. 5, right panel), rather than to keep results from the same model consistent across rows. In265

contrast to results based solely on the posterior median model (Fig. 4), the posterior samples show266

more disagreement between trends in direction of rate changes. Nevertheless, we observe general267

agreement among rate functions for the same three rate changes; two speciation rate increases in268

the last eight million years followed by one speciation rate decrease very close to the present.269
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Figure 5: Left column: twenty posterior samples from the primates analyses. Right column: summary of trends
over the posterior samples and congruence class samples for each posterior sample.
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2.8 Summary of available functions270

Finally, we present an overview of the most important functions available in ACDC271

(Table 2). We demonstrated the core functionality in the previous sections, and we also provide a272

vignette where we explore more detailed features of the package. We designed ACDC to have few,273

but generic functions, that allow for flexibility in exploration of the rate space in the congruence274

class.275

Table 2: A summary of the core functions used in ACDC.

Function Description

congruent.models constructs models that are congruent with
a reference model

create.model creates an ACDC model object
model2df converts an ACDC model object to a data

frame, e.g. for plotting
plot.ACDC plots a birth-death model
plot.ACDCset plots a set of congruent models
sample.basic.models samples rate functions from various distri-

butions (see Table 1)
sample.congruence.class samples models from the congruence class
sample.congruence.class.posterior sample congruence class from the poste-

rior
sample.rates samples custom rate functions
summarize.posterior plots a summary of the directional trends

in the posterior
summarize.trends plots a summary of the directional trends

in the congruence class
read.RevBayes reads a RevBayes log file

276

We designed ACDC to use standard ggplot objects (Wickham 2016) so that plots can277

easily be manipulated as any other ggplot objects. For example, it is possible to change the axis278

limits, axis labels, or the time scale. This allows for flexibility in visualizing the congruence class279

for other data sets than we have exemplified here.280
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3 Discussion and conclusions281

In this paper we present the R package ACDC, Analysis of Congruent Diversification282

Classes. ACDC is available on CRAN and the source code is available from GitHub283

(https://github.com/afmagee/ACDC). ACDC enables easy testing of the impact of non-identifiable284

diversification rates. Specifically, with ACDC anyone can test specific alternative diversification285

rate hypotheses (Morlon et al. 2020), or explore equally probable diversification rate models for286

shared characteristics. Thus, non-identifiability of diversification rates can be incorporated into287

conclusions about the process shaping historical biodiversity.288

In our main example of exploring a congruence class, we sampled alternative rate289

functions from a Brownian motion process. This choice reflects our belief that Brownian motion290

might be a good approximation of how diversification rates have changed over time, but other291

approaches should be considered (see Condamine et al. 2018, Magee et al. 2020 and Palazzesi292

et al. 2022 for comparisons of diversification rate models through time). To assist with this, ACDC293

provides functions to generate alternative rate functions with stochastic changes, as well as294

diversification rate functions with deterministic trends (e.g., exponential and linear). The existing295

functions to explore the congruence class can accept any type of rate functions. It remains296

unclear what the best approach to sample alternative rate functions is, and we leave the decision297

to the researcher for the specific study.298

The primary output of ACDC is the congruence class and models belonging to this299

congruence class. Since changes in diversification rates are generally of interest, rather than the300

rates themselves, we focus on summaries of the congruence class showing directional trends in301

diversification rates (increasing, decreasing or flat). However, these summaries strongly depend on302

the chosen threshold for assessing whether the diversification rate was changing or not. We chose303

an arbitrary threshold of ϵ = 0.02, which signifies that any rate change of ±0.02 per million years304

is a significant trend. We recommend in practice testing summaries using a variety of thresholds.305

We strongly recommend researchers begin by exploring and visualizing specific models (as in306

Section 2.4), before examining broader sections of the congruence class (as in Sections 2.5307

and 2.6).308

Finally, non-identifiability of diversification rates extends to diversification rates inferred309

from phylogenies with fossil taxa (Louca et al. 2021). In ACDC, we only focus on speciation and310

extinction rate functions and omit fossilization rates. However, it is possible to analyze a311

congruence class obtained from a phylogeny with fossil taxa using an approach analogous to what312

we described here. If a specific new extinction rate function was chosen, then both the speciation313

rate function and fossilization rate function can be computed given the congruence class. The314
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results with ACDC are still valid for speciation and extinction rates, and could be considered as if315

the fossilization was simply not shown.316

Non-identifiability of diversification rates has questioned the reliability and interpretation317

of diversification rate estimates from current approaches. Non-identifiability is a very real318

problem and should not be neglected. ACDC provides a new tool to assess if the conclusions drawn319

about patterns of diversification rates are robust despite the existence of infinitely many320

alternative diversification models.321
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