
i
i

“main” — 2022/1/12 — 16:24 — page 1 — #1 i
i

i
i

i
i

XXXXXXXX
doi.xxxx/xxxxxxx/xxxxxx

Advance Access Publication Date: Day Month Year
Original Paper

Sequence analysis

Improving the time and space complexity of the
WFA algorithm and generalizing its scoring
Jordan M. Eizenga 1,∗ and Benedict Paten 1

1Genomics Institute, University of California Santa Cruz, Santa Cruz, 95064, United States of America.

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Modern genomic sequencing data is trending toward longer sequences with higher accuracy.
Many analyses using these data will center on alignments, but classical exact alignment algorithms are
infeasible for long sequences. The recently proposed WFA algorithm demonstrated how to perform exact
alignment for long, similar sequences in O(sN) time and O(s2) memory, where s is a score that is
low for similar sequences (Marco-Sola et al., 2021). However, this algorithm still has infeasible memory
requirements for longer sequences. Also, it uses an alternate scoring system that is unfamiliar to many
bioinformaticians.
Results: We describe variants of WFA that improve its asymptotic memory use from O(s2) to O(s3/2) and
its asymptotic run time from O(sN) to O(s2+N). We expect the reduction in memory use to be particularly
impactful, as it makes it practical to perform highly multithreaded megabase-scale exact alignments in
common compute environments. In addition, we show how to fold WFA’s alternate scoring into the broader
literature on alignment scores.
Availability: All code is publicly available for use and modification at https://github.com/jeizenga/wfalm.
Contact: jeizenga@ucsc.edu
Supplementary information: Supplementary data are available online.

1 Introduction
Pairwise sequence alignments are at the heart of many genomic
analyses, from read mapping to genome assembly to genome comparison.
Accordingly, these analyses fundamentally require efficient alignment
algorithms in order to be practical. This is particularly true for longer
sequences, such as assembled contigs or the long reads generated by the
modern sequencing platforms produced by PacBio and Oxford Nanopore
Technologies. Classical algorithms like Needleman-Wunsch (Needleman
and Wunsch, 1970) and Smith-Waterman-Gotoh (Smith and Waterman,
1981; Gotoh, 1982) require quadratic time and memory in the length of
the sequences. For longer sequences, this quickly becomes infeasible.

The recently proposed WFA algorithm (Marco-Sola et al., 2021)
represents a major step forward in pairwise alignment. Unlike previously
proposed acceleration techniques for long sequences, WFA guarantees
optimal alignments. However, its run time is bounded by O(sN), where
N is the length of the shorter sequence and s is a score that is smaller for
more similar sequences. This means that the alignment is feasible even
for very long sequences so long as they are highly similar, which is often
the case in the applications that interest genomics researchers. In addition,
sequences that are relatively high entropy will often require far less time
than than the asymptotic upper bound suggests.

Algorithmically, WFA is heavily based on the O(ND) difference
algorithm by Myers (1986). WFA consists mainly of an adaptation
of Gotoh’s affine gap technique (Gotoh, 1982) to Myers’ algorithm.
In addition, the inventors identified that WFA’s iteration structure
allowed modern compilers to automatically apply the SIMD vectorization
techniques that many earlier approaches leaned on for efficiency (Farrar,
2007; Suzuki and Kasahara, 2018). These techniques are otherwise highly
laborious and error prone to implement by hand.

Certain limitations still frustrate WFA’s applicability in some settings.
For one, with sufficiently long or divergent sequences, WFA’s O(s2)

memory requirements become a bottleneck before its time requirements.
Moreover, such sequences are now routinely produced by increasingly
long sequencing reads (>1 Mbp) (Jain et al., 2018) and the increasingly
contiguous genome assemblies (>10 Mbp) that these long reads have
enabled (Cheng et al., 2021; Shafin et al., 2020).

Another annoyance is that WFA uses an alignment scoring system that
is different than conventional algorithms. This makes it inaccessible by the
rich literature on probabilistic interpretations of alignments and alignment
scores, which is rooted in the conventional scoring scheme (Henikoff and
Henikoff, 1992; States et al., 1991; Durbin et al., 1998). Accordingly,
it lacks the capacity to use this literature to guide parameterization and
interpretation.

In this work, we present results that attenuate these limitations. We
propose two alterations to the WFA algorithm that reduce the asymptotic

© The Author 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

.CC-BY 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted January 15, 2022. ; https://doi.org/10.1101/2022.01.12.476087doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.12.476087
http://creativecommons.org/licenses/by/4.0/

i
i

“main” — 2022/1/12 — 16:24 — page 2 — #2 i
i

i
i

i
i

2 Eizenga & Paten

Fig. 1. Diagram of the WFA algorithm. The dynamic programming data structure of WFA
(a) is juxtaposed with the dynamic programming matrix used in conventional alignment
(b). In this instance, the WFA parameters x, o, and e are all 1. Columns in (a) correspond
to diagonals in (b), and the matrix is rotated to highlight the correspondence. Rows in (a)
are wavefronts for a given score of s. The values stored in dynamic programming in (a)
correspond to antidiagonals in (b). WFA maintains three parallel dynamic programming
structures:M, I, andD. TheX values from Equation 2 are only needed temporarily and
are thus omitted.

complexity of both its space and its time requirements, respectively. These
alterations can be used together or separately. In addition, we prove
equivalence results for the WFA scoring system that connect it to classical
alignment algorithms. Finally, we demonstrate the improved practicality
of the new WFA variants on real genomic sequence data.

2 Algorithm

2.1 The WFA algorithm

WFA computes a global alignment of two sequences t and q of length M
and N , respectively. For any particular alignment, define the following
variables:

• X the total length of mismatches
• O the number of insertions and deletions
• E the total length of insertions and deletions

Then alignment computed by WFA minimizes the score function

s = xX + oO + eE, (1)

where x, o, and e are the mismatch, gap open, and gap extend penalties,
respectively.

To accomplish this, WFA uses dynamic programming over increasing
values of s until completing an alignment. In each iteration of s, it iterates
over a range of values d = −s, . . . , s that correspond to diagonals in
the dynamic programming matrix of conventional alignment algorithms
The set of dynamic programming entries for one value of s are called a
wavefront (Figure 1).

The dynamic programming recursions are as follows (but note that
this formulation differs in minor details from the original published
formulation, chiefly that we track antidiagonal indexes rather than row
indexes). Let µ(i, j) be the length of the longest matching prefix between
ti:M and qj:N , then

Is,d = max

{
Ms−o−e,d−1 + 1

Is−e,d−1 + 1

Ds,d = max

{
Ms−o−e,d+1 + 1

Ds−e,d+1 + 1

Xs,d = max

Ms−x,d + 2

Is,d
Ds,d

Ms,d = Xs,d + 2µ
(

1
2

(
Xs,d + d

)
, 1

2

(
Xs,d − d

))
.

(2)

This recurrence begins with the base case M0,0 = µ(1, 1), and it
continues untilMs,M−N = M +N .

2.1.1 Complexity analysis
The time complexity of WFA is O(sN), taking N = min{M,N}
without loss of generality. This time is dominated by computing the µ
function. Within each of theO(s) diagonals, it may need to performO(N)

character comparisons over the course of the algorithm. Also, the algorithm
requiresO(s2) additional space over and above theO(M +N) space of
the input data. This is driven by maintaining the dynamic programming
structure in memory so that the alignment can be identified by traceback.

2.2 A new variant of WFA with O(s3/2) memory use

With sufficiently long or sufficiently divergent sequences, it is entirely
possible that WFA’sO(sN) run time is practical in real world computing
environments while itsO(s2) memory footprint is not. In this section, we
present a variation on WFA that reduces its additional memory usage to
O(s3/2).

The strategy—inspired by WhatsHap (Patterson et al., 2015)—is to
retain only a subset of wavefronts in memory after computing them. This
subset will contain insufficient information to perform traceback after
completing dynamic programming. Thus, blocks of missing wavefronts
between the retained wavefronts will be recomputed as needed, used
for traceback, and then discarded. This results in each wavefront being
computed at most two times, and therefore the run time increases only
by a constant factor. The maximum memory usage can be split into two
components: 1) the memory of the retained wavefronts, and 2) the largest
block of recomputed wavefronts.

2.2.1 A schedule of subsampled wavefronts
In order to be able to recompute non-retained wavefronts, it is necessary to
have access to the previous p = max{x, o+e}wavefronts. Accordingly,
the wavefronts will be subsampled in units of p consecutive wavefronts,
which we refer to as a stripe. We propose a schedule that is divided into
epochs of increasing size, with the k-th epoch consisting of 4k stripes.
Within thek-th epoch, we retain every 2k-th stripe (Figure 2). This strategy
allows the schedule of retained wavefronts to be determined online without
knowing s in advance.

Theorem 1. For constant p, the proposed schedule of retained
wavefronts leads to O(s3/2) memory use.

Proof. We will separately consider the two sources of memory use: the
retained wavefronts and the largest block of recomputed wavefronts.

Retained wavefronts: At the end of the k-th epoch, the total number
of stripes is O(4k). Thus, if the WFA dynamic programming terminates
in the n-th epoch, then n = log4 s+O(1). We can use the memory that
would be consumed by the entirety of n full epochs as an upper bound on

.CC-BY 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted January 15, 2022. ; https://doi.org/10.1101/2022.01.12.476087doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.12.476087
http://creativecommons.org/licenses/by/4.0/

i
i

“main” — 2022/1/12 — 16:24 — page 3 — #3 i
i

i
i

i
i

Improving WFA 3

Fig. 2. Example of stripe sampling schedule. In this instance, the stripe width p is 2. The
schedule is divided into epochs. The k-th epoch consists of 4k stripes, of which we sample
every 2k-th stripe.

the realized memory usage. Since the largest of the 2k stripes in the k-th
epoch covers O(4k) diagonals, we obtain the upper bound

n∑
k=0

2k ·O(4k) = O(8n) = O(8log4 s) = O(s3/2). (3)

Largest block of recomputed wavefronts: The final block of recomputed
wavefronts is the largest one. As previously, it occurs in the n-th
epoch where n = log4 s+O(1). The block consists of 2n stripes, the
widest of which covers O(4n) diagonals. Thus, the total memory use is
O(8n) = O(s3/2).

2.2.2 Optimality of the wavefront sampling schedule
One might wonder if it possible to use the same strategy but choose a better
schedule of wavefronts to sample. As it turns out, the schedule we have
proposed is optimal up to factors of o(sε) for any ε > 0.

Theorem 2. In the proposed algorithm, there is no schedule of sampled
wavefronts that achieves O(s3/2−ε) memory usage for any ε > 0.

Proof. Suppose that the memory usage of the largest block of non-
retained stripes requires O(sα) memory to recompute. Further, let the
ordinal values of the stripe that ends the k-th block be denoted bk . The
memory usage of the k-th block is then Θ(b2k+1 − b

2
k). This gives the

recursion bk+1 = Θ
(√

b2k +O(sα)
)

with base case b0 = 0. By

induction, this implies bk = O(sα/2
√
k).

We turn now to the memory usage of the retained stripes, and our
goal will be to provide a lower bound. Accordingly, we consider the
selection of retained stripes that will minimize their memory usage. Since
the memory usage of the k-th stripe is strictly increasing in bk , the memory
usage is minimized by making each bk as small as possible. However,
this is subject to the constraint that Θ(b2k+1 − b

2
k) = O(sα). This yields

the recursion bk−1 ≥
√
b2k − Csα for some constant C with base case

bn = s, where n is the total number of retained stripes. By induction, this
implies bk = Ω(sα/2

√
k) and hence bk = Θ(sα/2

√
k).

Using the previous results, we obtain Θ(sα/2
√
n) = s, which gives

n = Θ(s2−α). Noting that the memory usage of the k-th stripe is Θ(bk),
the total memory of the retained stripes is then given by

Θ(s2−α)∑
k=0

Θ(sα/2
√
k) = Θ

(
sα/2

∫ Θ(s2−α)

0

√
x dx

)

= Θ(s3−α).

(4)

Thus, if α < 3
2

so that the memory required to recompute a non-
retained block is O(s3/2−ε), then the memory use of the retained stripes
is Ω(s3/2+ε).

2.3 Achieving O(s2 +M +N) run time in WFA

WFA’s run time is dominated by the time it takes to compute theµ function
from Equation 2. In the original implementation, it potentially needs to
make O(N) character comparisons over O(s) diagonals. In this section,
we describe an alternative method to compute the µ function in O(1)

time using O(M +N) preprocessing. This brings the total run time to
O(s2 +M +N).

The basic insight for this algorithmic technique was already present
in Myers’ O(ND) publication (1986). However, it was reported as
requiring O((M +N) log(M +N)) preprocessing time, which was
state-of-the-art when the paper was published. Since then, there have been
breakthroughs in data structures that allow linear time.

Theorem 3. The µ function can be computed in O(1) time given
O(M +N) preprocessing time and O(M +N) additional space.

Proof. We begin by building a suffix tree of the string q$1t$2, which
can be done in O(M +N) time and space (Ukkonen, 1995). In this tree,
µ(i, j) corresponds to the depth (measured in sequence characters) of the
lowest common ancestor of the leaves corresponding to ti:M and qj:N .
The internal nodes of the suffix tree can easily be annotated with their depth
after construction. Moreover, there exist techniques to compute lowest
common ancestor in a static rooted tree in O(1) time using O(M +N)

additional space and preprocessing time (Schieber and Vishkin, 1988).

This brings the total run time per cell in the dynamic programming
structure down to O(1). Thus, the overall run time of the algorithm
becomes O(s2 +M +N). The additional space required by the
algorithm increases from O(s2) to O(s2 +M +N). However, the
overall space was already O(s2 +M +N), because the sequences had
to be kept in memory to perform character comparisons.

2.4 Relationship between WFA scoring and conventional
alignment scores

The alignments produced by WFA can intuitively be recognized as
meaningful alignments. However, the relationship between their scoring
and the scoring of conventional alignment algorithms is less immediately
apparent. This is unfortunate, because there has been a large amount
of research into probabilistic interpretations of the conventional scores.
This research can aid in choosing appropriate parameters (Henikoff and
Henikoff, 1992; States et al., 1991) or in interpreting scores (Durbin et al.,
1998). For local alignments, there are also tractable tests of statistical
significance (Karlin and Altschul, 1990).

In this section, we will use a subscript of w to denote scores and
parameters of WFA and a subscript of c to denote scores and parameters of
conventional algorithms. We will also add a variable to the list of variables
used to describe an alignment in Section 2.1:

• L the total length of matches

The score of a conventional alignment can then be expressed

sc = `cL− xcX − ocO − ecE, (5)

where `c is the match bonus, and xc, oc, and ec are the mismatch, gap
open, and gap extend penalties, respectively. The objective of conventional
algorithms is to find the global or local alignment that maximizes sc.

.CC-BY 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted January 15, 2022. ; https://doi.org/10.1101/2022.01.12.476087doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.12.476087
http://creativecommons.org/licenses/by/4.0/

i
i

“main” — 2022/1/12 — 16:24 — page 4 — #4 i
i

i
i

i
i

4 Eizenga & Paten

2.4.1 Equivalence of conventional global alignment and WFA
The differences between the objective functions in conventional global
alignment and WFA are ultimately superficial. For a given set of
conventional global alignment parameters, let the WFA parameters be

xw = 2`c + 2xc

ow = 2oc

ew = 2ec + `c.

(6)

With these parameters and the identity 2L+ 2X +E = M +N , simple
algebraic manipulations give

sc = 1
2

(`c(M +N)− sw) . (7)

Accordingly, any global alignment that minimizes sw also maximizes
sc and vice versa. Further, it is possible to choose conventional alignment
parameters from a given set of WFA parameters with the converse property.

2.4.2 Optimal seeded local alignment using WFA
While WFA can readily replace the conventional global alignment
algorithm through reparameterization, the same is not true for conventional
local alignment. We identify and address three obstacles standing in the
way.

First, WFA cannot explore all possible pairs of initial characters for a
local alignment without losing its run time ofO(sN) orO(s2 +M +N)

(assuming N = min{M,N}, see Section 2.3). We address this obstacle
by considering a restricted problem: the optimal seeded local alignment.
In this variant, we seek the optimal alignment between prefixes of q and
t rather than arbitrary substrings. This problem is of practical importance
for alignment in the seed-and-extend methodology, which is widely used
in efficient alignment tools (Altschul et al., 1997; Li and Durbin, 2009).
We also note that a further variation using suffixes instead of prefixes is
trivially similar, so we omit it to streamline the presentation.

The second obstacle is that reducing the number of parameters from
four to three (Equation 6) obscures the relative balance between the match
bonus and the penalty parameters. This makes it more challenging to
differentiate between positive and negative scores, which in turn makes it
more challenging to decide when an alignment is optimal during dynamic
programming. However, it is still possible to recover the score of aligned
prefixes using Equation 7. Note that this equation still holds if we takeM
and N to be the length of two prefixes. Moreover, M + N is precisely
the antidiagonal index, which is what is stored in the WFA dynamic
programming structure M. Thus, the score of the corresponding local
alignment is sc = 1

2

(
`cMs,d − s

)
, and we begin traceback at the s and

d that maximize this score.
The third and final obstacle is that WFA’s time and memory

requirements are bounded by the global alignment score sw . This score
can be large even when there is a high quality local alignment. We provide
a technique to partially address this problem. Without loss of generality,
we assumeN = min{M,N}, in which case a trivial upper bound on the
seeded local alignment score is `cN . If during the course of WFA, we have
computed a dynamic programming valueMs0,d, then the trivial bound
implies that the optimal seeded local alignment corresponds to a WFA
alignment score sw where sw ≤ s0 + `c(2N −Ms0,d). This can be
used to limit the total number of iterations in WFA’s outer loop over s.
This bound is of particular interest whenMs,d ≈ 2N , i.e. when there is
a nearly full-length local alignment. Accordingly, we expect this condition
to be most useful in read mapping, where it is often met.

3 Implementation
We have implemented all of the algorithms described in this publication
in C++. The code is publicly available for use and modification at
https://github.com/jeizenga/wfalm. The implementation depends on SDSL
(Gog et al., 2014) for its implementation of a suffix tree. This dependency
can be easily omitted if the O(s2 +M +N) algorithms are not
required. This repository also includes the script used for producing the
benchmarking results that follow.

4 Methods
We evaluated the run time and memory usage of the standard WFA
algorithm and our proposed alterations on two data sets, both generated by
the Human Pangenome Reference Consortium (Miga and Wang, 2021).
The first set consists of long reads sequenced on the Oxford Nanopore
Technologies (ONT) PromethION platform. The second consists of
assembled contigs. In both cases, the data are derived from the human
individual HG002, and they are subsetted to chromosome 12. For the long
reads, the target sequences for the alignment were retrieved by mapping the
reads to the assembled contigs with Winnowmap (Jain et al., 2020) and then
retrieving the contig sequences. For the contigs, the target sequences were
retrieved by mapping the contigs to the T2T Consortium’s v1.1 genome
assembly of the haploid CHM13 cell line (Nurk et al., 2021), once again
using Winnowmap. Alignment parameters were derived using the method
of States et al. (1991), assuming sequence identity of 95% for ONT data
and 99.9% for the assembled contigs.

We performed all evaluations on AWS r6i.2xlarge instances, which
have 64 GB of RAM. Peak memory use was measured with the Unix time
utility. Time was measured within the benchmarking script using timing
functions from the C++ standard library.

5 Results
In both the ONT and contig data, we found that the suffix tree-
based algorithm required significantly more time than the direct
comparison algorithm. This contrasts with the suffix tree algorithm’s
favorable asymptotic time complexity, suggesting that these sequences are
insufficiently long or insufficiently divergent for the asymptotic behavior
to set in. We exclude the suffix tree algorithm from results figures to make
visual comparison easier. Figures that include the suffix tree algorithm are
included as Supplementary Figures 1 and 2.

The low memory variant required starkly less memory than standard
WFA (Figure 3). In both data sets, a few sequences caused the standard
WFA algorithm to exhaust the 64 GB of available RAM. The low memory
WFA algorithm used a maximum of 3.7 GB of RAM on any sequence. In
88% of the sequences, it used less than 0.5 GB of RAM.

Consistent with expectations, our low memory variant of WFA
requires a similar but somewhat greater amount of time to standard WFA,
presumably driven by the need to recompute some wavefronts (Figure 4).
The ratio between their running times was 1.76 on average. Both algorithms
were able to align most ONT reads > 100 kbp and assembled contigs > 1
Mbp in a few minutes.

6 Discussion
Future sequencing data present a challenge to current algorithmic methods.
The technology is trending toward producing longer reads at higher quality.
This in turn is enabling highly contiguous genome assemblies, which are
driving developments in pangenomics, metagenomics, and comparative
genomics. Accordingly, we expect that both long read resequencing and
whole genome comparison will be increasingly important methodologies

.CC-BY 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted January 15, 2022. ; https://doi.org/10.1101/2022.01.12.476087doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.12.476087
http://creativecommons.org/licenses/by/4.0/

i
i

“main” — 2022/1/12 — 16:24 — page 5 — #5 i
i

i
i

i
i

Improving WFA 5

Fig. 3. Memory used by the standard O(s2) WFA algorithm and the low memory
O(s3/2) WFA variant. Memory is plotted against the sum of the length of the sequences
being aligned. Panels show results for ONT reads (a) and assembled contigs (b). If an
alignment problem did not complete because it exhausted the 64 GB RAM available, it is
shown as an empty circle.

Fig. 4. Time used by the standardO(s2) WFA algorithm and the low memoryO(s3/2)

WFA variant. Time is plotted against the sum of the length of the sequences being aligned.
Panels show results for ONT reads (a) and assembled contigs (b). If an alignment problem
did not complete because it exhausted the 64 GB RAM available, it is shown as an empty
circle.

moving forward. The scale and characteristics of these data tax current
methods, and algorithms must adapt.

In this paper, we have described extensions to the recently introduced
WFA algorithm, which can efficiently compute optimal alignments for
highly similar sequences. Two of our extensions reduce its asymptotic
complexity. The first reduces the space from O(s2) to O(s3/2). The
second reduces the time from O(sN) to O(s2 +M +N). In addition,
we describe techniques to fold WFA into the broader literature on
alignment scoring.

For the time being, the improvements to asymptotic run time have
not translated into improvements in actual run time. This concords
with conventional wisdom about algorithms based on suffix trees. They
frequently have very attractive asymptotic complexity, but the asymptotic
analysis conceals large constants in memory and time. In this instance,
the memory use was not prohibitive, but the time was. Yet, the suffix tree
algorithm may become advantageous in the future with longer sequence
lengths. It also may show advantages in sequences that have high levels
of internal repetition, such as satellite arrays. In these sequences, the
higher rate of spuriously matching sequence makes the direct comparison
approach comparatively more costly.

In the case of the low memory WFA variant, we expect that our
proposed algorithm will be immediately useful. For the first time, it makes
it feasible to compute optimal alignments of megabase long sequencing
reads (or similarly diverged sequences) in a couple of GB of RAM. This
will make it possible to perform many of these alignments simultaneously
in a multithreaded compute server with typical specifications. Nearly all
modern tools for efficient sequence analysis require such multithreading
to be practical. With the benchmarking data, we can coarsely estimate that,
using 16 threads, the low memory WFA can align about 50 kbp/s of ONT
data or 727 kbp/s of assembly contig data using a maximum of about 20
GB of RAM (although our data selection procedures probably bias this
estimate somewhat). Contrast this to the standard WFA algorithm, which
could not align the benchmarking data with 64 GB of RAM using a single
thread.

Alignment is a core component of many analyses in genomics, but it
is rarely sufficient to perform a complete analysis in itself. The algorithms
we have described will need to be integrated into more fully-featured
tools to have their full impact. Further, WFA natively produces global
alignments, but in many use cases global alignment is not what is
required. Resequencing experiments typically perform local or semiglobal
alignments. Whole genome comparisons must additionally contend with
noncollinear sequence relationships arising from translocation, inversion,
gene conversion, and segmental duplication. In this work, we do describe a
method to use WFA as an engine for computing local alignments, but these
results come with more caveats than other areas of this paper. For these
reasons, we fully expect that it will continue to be necessary to use some
approximate methods in these tools. Nevertheless, our improvements to
WFA will make it possible lean on approximate alignment to a much lesser
extent while remaining efficient at the frontiers of genome-scale data.

Acknowledgements
We would like to thank the Human Pangenome Reference Consortium for
sharing a subset of the data they have generated with us for the purpose of
benchmarking.

Funding
This work was supported, in part, by the National Institutes of
Health (award numbers: R01HG010485, U01HG010961, OT2OD026682,
OT3HL142481, and U24HG011853).

.CC-BY 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted January 15, 2022. ; https://doi.org/10.1101/2022.01.12.476087doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.12.476087
http://creativecommons.org/licenses/by/4.0/

i
i

“main” — 2022/1/12 — 16:24 — page 6 — #6 i
i

i
i

i
i

6 Eizenga & Paten

References
Altschul, S. F. et al. (1997). Gapped BLAST and PSI-BLAST: a new

generation of protein database search programs. Nucleic acids research,
25(17), 3389–3402.

Cheng, H. et al. (2021). Haplotype-resolved de novo assembly using
phased assembly graphs with hifiasm. Nature Methods, 18(2), 170–175.

Durbin, R. et al. (1998). Biological sequence analysis: probabilistic
models of proteins and nucleic acids. Cambridge University Press.

Farrar, M. (2007). Striped Smith–Waterman speeds database searches six
times over other simd implementations. Bioinformatics, 23(2), 156–161.

Gog, S. et al. (2014). From theory to practice: Plug and play with
succinct data structures. In International Symposium on Experimental
Algorithms, pages 326–337. Springer.

Gotoh, O. (1982). An improved algorithm for matching biological
sequences. Journal of Molecular Biology, 162(3), 705–708.

Henikoff, S. and Henikoff, J. G. (1992). Amino acid substitution matrices
from protein blocks. Proceedings of the National Academy of Sciences,
89(22), 10915–10919.

Jain, C. et al. (2020). Weighted minimizer sampling improves long read
mapping. Bioinformatics, 36(Supplement_1), i111–i118.

Jain, M. et al. (2018). Nanopore sequencing and assembly of a human
genome with ultra-long reads. Nature Biotechnology, 36(4), 338–345.

Karlin, S. and Altschul, S. F. (1990). Methods for assessing the statistical
significance of molecular sequence features by using general scoring
schemes. Proceedings of the National Academy of Sciences, 87(6),
2264–2268.

Li, H. and Durbin, R. (2009). Fast and accurate short read alignment with
Burrows–Wheeler transform. Bioinformatics, 25(14), 1754–1760.

Marco-Sola, S. et al. (2021). Fast gap-affine pairwise alignment using the
wavefront algorithm. Bioinformatics, 37(4), 456–463.

Miga, K. H. and Wang, T. (2021). The need for a human pangenome
reference sequence. Annual Review of Genomics and Human Genetics,
22.

Myers, E. W. (1986). An O(ND) difference algorithm and its variations.
Algorithmica, 1(1-4), 251–266.

Needleman, S. B. and Wunsch, C. D. (1970). A general method applicable
to the search for similarities in the amino acid sequence of two proteins.
Journal of Molecular Biology, 48(3), 443–453.

Nurk, S. et al. (2021). The complete sequence of a human genome.
bioRxiv.

Patterson, M. et al. (2015). WhatsHap: weighted haplotype assembly for
future-generation sequencing reads. Journal of Computational Biology,
22(6), 498–509.

Schieber, B. and Vishkin, U. (1988). On finding lowest common ancestors:
Simplification and parallelization. SIAM Journal on Computing, 17(6),
1253–1262.

Shafin, K. et al. (2020). Nanopore sequencing and the Shasta toolkit
enable efficient de novo assembly of eleven human genomes. Nature
Biotechnology, 38(9), 1044–1053.

Smith, T. F. and Waterman, M. S. (1981). Comparison of biosequences.
Advances in Applied Mathematics, 2(4), 482–489.

States, D. J. et al. (1991). Improved sensitivity of nucleic acid database
searches using application-specific scoring matrices. Methods, 3(1),
66–70.

Suzuki, H. and Kasahara, M. (2018). Introducing difference recurrence
relations for faster semi-global alignment of long sequences. BMC
Bioinformatics, 19(1), 33–47.

Ukkonen, E. (1995). On-line construction of suffix trees. Algorithmica,
14(3), 249–260.

.CC-BY 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted January 15, 2022. ; https://doi.org/10.1101/2022.01.12.476087doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.12.476087
http://creativecommons.org/licenses/by/4.0/

