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Abstract

The exclusion of high-motion participants can reduce the impact of motion in functional
Magnetic Resonance Imaging (fMRI) data. However, the exclusion of high-motion partici-
pants may change the distribution of clinically relevant variables in the study sample, and
the resulting sample may not be representative of the population. Our goals are two-fold:
1) to document the biases introduced by common motion exclusion practices in functional
connectivity research and 2) to introduce a framework to address these biases by treating
excluded scans as a missing data problem. We use a study of autism spectrum disorder to
illustrate the problem and the potential solution. We aggregated data from 545 children
(8-13 years old) who participated in resting-state fMRI studies at Kennedy Krieger Insti-
tute (173 autistic and 372 typically developing) between 2007 and 2020. We found that
autistic children were more likely to be excluded than typically developing children, with
29.1% and 16.1% of autistic and typically developing children excluded, respectively, using
a lenient criterion and 80.8% and 59.8% with a stricter criterion. The resulting sample of
autistic children with usable data tended to be older, have milder social deficits, better motor
control, and higher intellectual ability than the original sample. These measures were also
related to functional connectivity strength among children with usable data. This suggests
that the generalizability of previous studies reporting näıve analyses (i.e., based only on
participants with usable data) may be limited by the selection of older children with less
severe clinical profiles because these children are better able to remain still during an rs-fMRI
scan. We adapt doubly robust targeted minimum loss based estimation with an ensemble
of machine learning algorithms to address these data losses and the resulting biases. The
proposed approach selects more edges that differ in functional connectivity between autistic
and typically developing children than the näıve approach, supporting this as a promising
solution to improve the study of heterogeneous populations in which motion is common.
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1. Introduction1

Resting-state functional magnetic resonance imaging (rs-fMRI) relies on spontaneous,2

interregional correlations in blood-oxygen-level-dependent signal fluctuations, termed func-3

tional connectivity, to characterize brain organization (Biswal et al., 1995). A fundamental4

challenge in rs-fMRI-based research is to separate the signal reflecting neural activity from a5

combination of unstructured thermal noise and spatiotemporally structured signals of non-6

interest. Participant head motion is problematic because even sub-millimeter movements can7

introduce spatially variable artifacts that are challenging to correct during postprocessing8

(Power et al., 2012; van Dijk et al., 2012; Satterthwaite et al., 2012). Post-acquisition mo-9

tion quality control (QC) procedures involve two stages: 1) elimination of scans with gross10

motion (scan exclusion); and 2) minimization of artifacts due to subtle motion (de-noising).11

Guidelines for removing motion-corrupted rs-fMRI data have been proposed (Satterthwaite12

et al., 2013; Parkes et al., 2018; Power, 2017), and many post-acquisition cleaning procedures13

have been developed (Satterthwaite et al., 2013; Power et al., 2014; Muschelli et al., 2014;14

Pruim et al., 2015; Mejia et al., 2017; Power et al., 2020). However, this work has focused15

on maximizing rs-fMRI data quality. The impact of scan exclusion on the study sample16

composition and selection bias has been largely unexamined.17

Motion is particularly common in pediatric and clinical populations (Fassbender et al.,18

2017; Greene et al., 2018). The focus on maximizing rs-fMRI data quality has been driven19

by a concern that if motion artifacts are not rigorously cleaned from the data, they may20

introduce spurious functional connectivity differences between groups of interest. For exam-21

ple, autism spectrum disorder (ASD) is a neurodevelopmental condition affecting approxi-22

mately 1 in 44 children in the United States that is characterized by impairments in social23

and communicative abilities as well as restricted interests and repetitive behaviors (Maen-24

ner et al., 2021; American Psychiatric Association, 2013). The ‘connectivity hypothesis’ of25

autism claims that short-range connections are increased at the expense of long-range con-26

nections within the brain (for a review, see Vasa et al. (2016)). However, sub-millimeter27
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motion-related artifacts often mimic this pattern. High-motion participants show stronger28

correlations between nearby brain locations and weaker correlations between distant brain29

regions compared to low-motion participants, even after controlling for motion in multiple30

modeling steps Power et al. (2012); van Dijk et al. (2012); Satterthwaite et al. (2012). ASD31

functional connectivity studies have found conflicting patterns of widespread hypoconnec-32

tivity, hyperconnectivity, and mixtures of the two (Di Martino et al., 2011; Supekar et al.,33

2013; Keown et al., 2013; Dajani and Uddin, 2016; Lombardo et al., 2019). Moreover, studies34

using stricter motion QC have reported largely typical patterns of functional connectivity35

(Tyszka et al., 2014), suggesting that motion artifacts may have contributed to discrepancies36

in the literature (Deen and Pelphrey, 2012).37

Exclusion of high-motion participants may help alleviate motion artifacts in functional38

connectivity estimates but may also introduce a new problem by systematically altering the39

study population. Implementation of scan exclusion guidelines can lead to drastic reductions40

in sample size. For instance, in a study examining the impact of motion artifact de-noising41

procedures on predictions of brain maturity from rs-fMRI data, Nielsen et al. (2019) ex-42

cluded 365 of 487 participants between 6 and 35 years of age due to excessive head motion.43

Applying similarly stringent scan exclusion criteria to rs-fMRI data from the Adolescent44

Brain Cognitive Development (ABCD) study, Marek et al. (2019) excluded 40% of partic-45

ipants despite efforts by the ABCD study to track head motion in real-time (Dosenbach46

et al., 2017) to ensure a sufficient amount of motion-free data would be collected from each47

participant (Casey et al., 2018). One strategy for balancing the need to rigorously clean the48

data with the cost of excluding participants has been to use less stringent scan exclusion49

criteria and then examine the effect of diagnosis in a linear model controlling for age and50

summary measures of between-frame head motion (e.g., Di Martino et al. 2014). However,51

the possibility of introducing selection bias following scan exclusion remains.52

In studies with missing data, an estimate of an association may be biased if the data are53

not missing at random in the sense that the difference in the mean outcome between the54
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groups of interest in the observed data differs from the difference if all data were observed55

(Rubin, 1976). In rs-fMRI studies, if scan exclusion changes the distribution of participant56

characteristics related to functional connectivity, näıve estimators of group-level functional57

connectivity based only on participants with usable rs-fMRI data may be biased. In the case58

of ASD, studies excluding high-motion participants have reported functional connectivity59

differences between autistic and typically developing children, as well as associations between60

functional connectivity strength and the severity of motor and social skill deficits (Uddin61

et al., 2013; Lake et al., 2019; Wymbs et al., 2021; D’Souza et al., 2021), but these studies did62

not examine the impact of scan exclusion on the composition of the study sample with usable63

data. The graph in Figure 1 illustrates how excluding high-motion participants could obscure64

the relationship between a diagnosis of ASD (A) and functional connectivity (Y ) by changing65

the joint distribution of diagnosis and a covariate related to symptom severity (W ). If autistic66

children with usable rs-fMRI data are phenotypically more similar to typically developing67

children than those that were excluded, observed group differences may be reduced relative68

to group differences if we were able to collect usable rs-fMRI data from all participants.69

In this study, we first describe our motivating dataset, an aggregation of phenotypic and70

rs-fMRI data from 173 autistic children and 372 typically developing children who partici-71

pated in one of several neuroimaging studies at Kennedy Krieger Institute (KKI) between72

2007 and 2020. We then explore the impact of commonly used head motion exclusion crite-73

ria on the composition of the sample of participants with usable rs-fMRI data, so that we74

can better understand what part of the spectrum we are characterizing after accounting for75

motion. Next we introduce a method for estimating functional connectivity adjusting for the76

observed sampling bias following participant exclusion due to motion QC, which we call the77

deconfounded group difference (Figure 1, grey panel). We propose to treat the excluded rs-78

fMRI scans as a missing data problem. We use an ensemble of machine learning algorithms to79

estimate the relationship between behavioral phenotypes and rs-fMRI data usability, which80

is called the propensity model, and between behavioral phenotypes and functional connectiv-81
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Figure 1: Scan exclusion may induce confounding. A indicates diagnosis, where A = 0 (lighter shading)
represents the typically developing group and A = 1 (darker shading) represents the autism spectrum disorder
(ASD) group. W represents a covariate that reflects symptom severity; ∆ indicates resting-state fMRI
usability, where ∆=1 is usable and ∆=0 is unusable. Y is the functional connectivity between two brain
regions. Additional details are in Section 2.3.1. (Left panel) Children with usable resting-state fMRI data
(in purple) may systematically differ from all enrolled children (in green). If the distribution of W differs
between children with usable and unusable fMRI data (W ↔ ∆) and W is related to functional connectivity
(W ↔ Y ), then näıve estimators of group-level functional connectivity based only on participants with usable
data may be biased. (Right panel) We propose to address this confounding using doubly robust targeted
minimum loss based estimation (DRTMLE), which involves three steps. 1. Fit the propensity model. 2.
Fit the outcome model, which predicts functional connectivity from the covariates for participants with
usable rs-fMRI data. Then use this model to predict functional connectivity for both usable and unusable
participants. 3. Apply the DRTMLE algorithm, which uses the inverse probability of usability from step 1
and predictions of functional connectivity for all subjects (usable and unusable) from step 2.

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2022. ; https://doi.org/10.1101/2022.01.12.476077doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.12.476077
http://creativecommons.org/licenses/by-nc-nd/4.0/


ity, which is called the outcome model. The propensity and outcome models are then used in82

the doubly robust targeted minimum loss based estimation (DRTMLE) of the deconfounded83

group difference (Benkeser et al., 2017; van der Laan and Rose, 2011; van der Laan et al.,84

2007). We apply this approach to estimate the deconfounded group difference between autis-85

tic and typically developing children in the KKI dataset and compare our findings to the86

näıve approach. Finally, we discuss the costs and benefits of motion quality control and our87

proposed solution.88

2. Methods89

2.1. Dataset90

2.1.1. Study Population91

Our initial cohort is an aggregate of 545 children between 8- and 13-years old who partic-92

ipated in one of several neuroimaging studies at Kennedy Krieger Institute (KKI) between93

2007 and 2020. Participants included 173 autistic children (148 boys) and 372 typically de-94

veloping children (258 boys); rs-fMRI scans and a limited set of phenotypic data from 266 of95

these children (78 with ASD) were previously shared with the Autism Brain Imaging Data96

Exchange (ABIDE) (Di Martino et al., 2014, 2017). Participants were recruited through97

local schools, community-wide advertisement, volunteer organizations, medical institutions,98

and word of mouth. The data collecting studies were all approved by the Johns Hopkins99

University School of Medicine Institutional Review Board. After providing a complete study100

description, informed consent was obtained from a parent/guardian prior to the initial phone101

screening; written informed consent and assent were obtained from the parent/guardian and102

the child, respectively, upon arrival at the initial laboratory visit.103

Children were ineligible to participate if their full scale intelligence quotient (FSIQ) from104

the Wechsler Intelligence Scale for Children, Fourth or Fifth Edition (WISC-IV or WISC-V;105

(Wechsler, 2003)) was less than 80 and they scored below 65 on 1) the Verbal Comprehen-106

sion Index and 2) the Perceptual Reasoning Index (WISC-IV) or the Visual Spatial Index107
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and the Fluid Reasoning Index (WISC-V), depending on which version of the WISC was108

administered. Children were also excluded if they had a) a history of a definitive neurological109

disorder, including seizures (except for uncomplicated brief febrile seizures), tumor, lesion,110

severe head injury, or stroke, based on parent responses during an initial phone screening;111

b) a major visual impairment; or c) conditions that contraindicate or make it challenging112

to obtain MRI data (e.g., cardiac pacemaker, surgical clips in the brain or blood vessels, or113

dental braces).114

A diagnosis of ASD was determined using the Autism Diagnostic Observation Schedule-115

Generic (Lord et al., 2000) or the Autism Diagnostic Observation Schedule, Second Edition116

(ADOS-2) (Lord and Jones, 2012), depending on the date of enrollment. Diagnosis was117

verified by a board-certified child neurologist (SHM) with more than 30 years of experience118

in the clinical assessment of autistic children. Autistic children were excluded if they had119

identifiable causes of autism (e.g., fragile X syndrome, Tuberous Sclerosis, phenylketonuria,120

congenital rubella), documented history of prenatal/perinatal insult, or showed evidence of121

meeting criteria for major depression, bipolar disorder, conduct disorder, or adjustment dis-122

order based on parent responses during an initial phone screening. Within the ASD group,123

a secondary diagnosis of attention deficit hyperactivity disorder (ADHD) was determined124

using the DSM-IV or DSM–5 (APA, 2000; APA, 2013) criteria and confirmed using a struc-125

tured parent interview, either the Diagnostic Interview for Children and Adolescents-IV126

(DICA-IV; Reich (2000)) or the Kiddie Schedule for Affective Disorders and Schizophrenia127

for School-Age Children (K-SADS; Kaufman et al. (2013)), as well as parent and teachers128

versions of the Conners-Revised (Conners, 1999) or the Conners-3 Rating Scale (Conners,129

2008), and parent and teacher versions of the DuPaul ADHD Rating Scale (DuPaul et al.,130

1998). To be classified as having comorbid ASD and ADHD (ASD+ADHD), a child with131

ASD had to receive one of the following: 1) a t-score of 60 or higher on the inattentive or132

hyperactive subscales of the Conners’ Parent or Teacher Rating Scale, or 2) a score of 2 or 3133

on at least 6 of 9 items on the Inattentive or Hyperactivity/Impulsivity scales of the ADHD134
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Rating Scale-IV (DuPaul et al., 1998). Diagnosis was verified by a board-certified child neu-135

rologist (SHM) or clinical psychologist with extensive experience in the clinical assessment136

of children with ADHD. Children taking stimulant medications were asked to withhold their137

medications the day prior to and the day of their study visit to avoid the effects of stimulants138

on cognitive, behavioral, and motor measures.139

Children were excluded from the typically developing group if they had a first-degree140

relative with ASD, if parent responses to either the DICA-IV or for more recent participants,141

the K-SADS, revealed a history of a developmental or psychiatric disorder, except for simple142

phobias, or if they scored above clinical cut-offs on the parent and teacher versions of the143

Conners’ and ADHD Rating Scales.144

The Hollingshead Four-Factor Index was used to generate a composite score of family so-145

cioeconomic status (SES) for each participant based on each parent’s education, occupation,146

and marital status (Hollingshead, 1975). Higher scores reflect higher SES.147

2.1.2. Phenotypic Assessment148

Available phenotypic data varied according to the study in which participants enrolled.149

The severity of core ASD symptoms was quantified within the ASD group using scores150

from the ADOS or the ADOS-2 calibrated to be comparable across instrument versions151

(Hus et al., 2014). Higher total scores indicate more severe ASD symptoms. These semi-152

structured ASD observation schedules are rarely administered to control participants; they153

were not designed to characterize meaningful variability in unaffected individuals, and scores154

are usually equal or close to zero in typically developing children. However, ASD-like traits155

vary among non-clinical individuals, with those meeting criteria for a diagnosis of ASD156

falling at one extreme of a spectrum encompassing the population at large. To supplement157

ADOS information, parent and teacher responses to the Social Responsiveness Scale (SRS)158

questionnaire (Constantino and Todd, 2003) or the SRS-2 (Constantino and Gruber, 2012)159

were also used. The SRS asks a respondent to rate a child’s motivation to engage in social160

interactions and their ability to recognize, interpret, and respond appropriately to emotional161
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and interpersonal cues. The SRS yields a total score ranging between 0 and 195, with a162

higher total score indicating more severe social deficits. Total raw scores were averaged163

across respondents.164

We also quantified the severity of ADHD symptoms using parent responses to the Du-165

Paul ADHD Rating Scale (DuPaul et al., 1998) due to the high comorbidity of ASD and166

ADHD (Simonoff et al., 2008) and previous reports associating in-scanner movement with167

ADHD-like traits (Kong et al., 2014). The DuPaul ADHD Rating Scale asks a caregiver168

to rate the severity of inattention and hyperactivity/impulsivity symptoms over the last six169

months and yields a total raw score as well as two domain scores: inattention and hyper-170

activity/impulsivity. Our analyses focus on the two domain scores; higher DuPaul scores171

indicate more severe symptoms.172

In addition to ASD and ADHD trait severity, basic motor control was examined using173

the Physical and Neurological Exam for Subtle Signs (PANESS), as the children were, in174

effect, asked to complete a motor task by remaining as still as possible during the scan.175

The PANESS assesses basic motor control through a detailed examination of subtle motor176

deficits, including overflow movements, involuntary movements, and dysrhythmia (Denckla,177

1985), which also allows for the observation of handedness. We focused on total motor over-178

flow as our primary measure of motor control derived from the PANESS. Motor overflow is179

a developmental phenomenon defined as unintentional movements that mimic the execution180

of intentional movements. Motor overflow is common in early childhood and typically de-181

creases as children age into adolescence. Excessive degree and abnormal persistence of motor182

overflow is thought to reflect an impaired capacity to inhibit unintentional movements and183

has been associated with a number of developmental and clinical conditions, in particular184

ADHD (Mostofsky et al., 2003). Higher total motor overflow scores indicate poorer basic185

motor control.186

Intellectual ability was quantified using the General Ability Index (GAI) derived from187

the WISC-IV or WISC-V (Wechsler, 2003). We used GAI because we wanted a measure188
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of intellectual ability that was independent of motor control. GAI discounts the impact of189

tasks involving working memory and processing speed, the latter of which is abnormal in190

ASD and associated with poor motor control (Mayes and Calhoun, 2008). Higher GAI scores191

indicated greater intellectual ability.192

2.1.3. Study Sample193

The available phenotypic data varied according to the study in which participants en-194

rolled. The study sample for our application of the deconfounded group difference is defined195

as the subset of participants with a complete set of demographic information (sex, socioe-196

conomic status, and race) and the selected predictors along with nineteen children in which197

motor overflow is imputed as described in Section 2.3.2. The missingness of the data is de-198

picted in the Web Supplement Figure S.1. This subset contains 151 autistic and 353 typically199

developing children from the original 173 autistic and 373 typically developing children, and200

we refer to these 504 participants as the complete predictor cases. The socio-demographic201

characteristics of the complete predictor cases are summarized in Table 1. The impacts of202

motion exclusion criteria on this subset are discussed in Section 3.1.1.203

2.1.4. rs-fMRI Acquisition and Preprocessing204

All participants completed at least one mock scan training session to habituate to the MRI205

environment during a study visit prior to their MRI session. Rs-fMRI scans were acquired on206

a Phillips 3T scanner using an 8-channel or a 32-channel head coil and a single-shot, partially207

parallel, gradient-recalled echo planar sequence with sensitivity encoding (repetition time208

[TR]/echo time = 2500/30 ms, flip angle = 70◦, sensitivity encoding acceleration factor of 2,209

3-mm axial slices with no slice gap, in-plane resolution of 3.05 × 3.15 mm [84 × 81 acquisition210

matrix]). An ascending slice order was used, and the first 10 seconds were discarded at the211

time of acquisition to allow for magnetization stabilization. The duration of rs-fMRI scans212

varied between 5 min 20 seconds (128 timepoints) and 6.75 min (162 timepoints), depending213

on the date of enrollment.214
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Table 1: Socio-demographic characteristics of complete predictor cases. For continuous variables,
mean and standard deviation (SD) are indicated; Kruskal-Wallis rank-sum tests were used to assess diag-
nosis group differences. For binary and categorical variables, frequencies and percentages are summarized,
and differences between diagnosis groups were assessed using either the Chi-square test or Fisher’s exact
test. Despite aggregating data from several studies, age and handedness were balanced between diagnosis
groups. In contrast, sex, race, and socioeconomic status were imbalanced. ASD=autism spectrum disorder.
TD=typically developing. SD=standard deviation.

TD (N=353) ASD (N=151) p value

Sex <0.0011

Male 245 (69.4%) 127 (84.1%)
Female 108 (30.6%) 24 (15.9%)

Age 0.8262

Mean (SD) 10.363 (1.248) 10.324 (1.363)
Range 8.020 - 12.980 8.010 - 12.990
Race 0.0043

African American 36 (10.2%) 9 (6.0%)
Asian 27 (7.6%) 3 (2.0%)

Biracial 45 (12.7%) 12 (7.9%)
Caucasian 245 (69.4%) 127 (84.1%)

Socioeconomic Status 0.0062

Mean (SD) 54.135 (9.390) 51.964 (9.379)
Range 18.500 - 66.000 27.000 - 66.000

Handedness 0.3641

Right 317 (89.8%) 128 (84.8%)
Left 17 (4.8%) 12 (7.9%)

Mixed 19 (5.4%) 11 (7.3%)
Currently On Stimulants

No 353 (100.0%) 97 (64.2%)
Yes 0 (0.0%) 54 (35.8%)

1 Pearson Chi-Square test
2 Kruskal-Wallis rank sum test
3 Fisher’s exact test
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Rs-fMRI scans were either aborted or not attempted for seven participants in the complete215

predictor case set (3 ASD) due to noncompliance. Rs-fMRI scans for the remaining 497 par-216

ticipants in the complete predictor case set were visually inspected for artifacts and prepro-217

cessed using SPM12 (Wellcome Trust Centre for Neuroimaging, London, United Kingdom)218

and custom code written in MATLAB (The Mathworks, Inc., Natick Massahusetts), which219

is publicly available (https://github.com/KKI-CNIR/CNIR-fmri_preproc_toolbox). Rs-220

fMRI scans were slice-time adjusted using the slice acquired at the middle of the TR as a221

reference, and head motion was estimated using rigid body realignment. Framewise displace-222

ment was calculated from these realignment parameters (Power et al., 2012). The volume223

collected in the middle of the scan was spatially normalized using the Montreal Neurological224

Institute (MNI) EPI template with 2-mm isotropic resolution (Calhoun et al., 2017). The225

estimated rigid body and nonlinear spatial transformations were applied to the functional226

data in one step. Each rs-fMRI scan was linearly detrended on a voxel-wise basis to remove227

gradual trends in the data. Rs-fMRI data were spatially smoothed using a 6-mm FWHM228

Gaussian kernel.229

2.1.5. Motion QC230

We considered two levels of gross motion exclusion:231

1. In the lenient case, scans were excluded/deemed unusable if the participant had less232

than 5 minutes of continuous data after removing frames in which the participant233

moved more than the nominal size of a voxel between any two frames (3 mm) or their234

head rotated 3◦, where a 3◦ rotation corresponds to an arc length equal to 2.6 mm235

assuming a brain radius of 50 mm (Power et al., 2012) or 4.2 mm assuming 80 mm236

(Jenkinson et al., 2002; Yan et al., 2013). This procedure was modeled after common237

head motion exclusion criteria for task fMRI data, which rely on voxel size to determine238

thresholds for unacceptable motion (Johnstone et al., 2006; Fassbender et al., 2017).239

2. In the strict case, scans were excluded if mean FD exceeded .2 mm or they included240
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less than five minutes of data free from frames with FD exceeding .25 mm (Ciric et al.,241

2017).242

Eighty-five participants in the complete predictor case set (19 ASD) completed more than243

one rs-fMRI scan. For these participants, if more than one scan passed the lenient level of244

motion QC, we selected the scan with the lowest mean FD to include in our analyses.245

2.1.6. Group ICA and Partial Correlations246

Thirty components were estimated using group independent component analysis (Group247

ICA) with 85 principal components retained in the initial subject-level dimension reduction248

step from the scans that passed lenient motion QC (GIFT v3.0b: https://trendscenter.249

org/software/gift/; Medical Image Analysis Lab, Albuquerque, New Mexico) (Calhoun250

et al., 2001; Erhardt et al., 2011). Detailed methods for Group ICA can be found in Allen251

et al. (2011). We used the back-reconstructed subject-level timecourses for each independent252

component to construct subject-specific partial correlation matrices (30x30) using ridge re-253

gression (ρ = 1) (Lombardo et al., 2019; Mejia et al., 2018). After Fisher z-transforming the254

partial correlation matrices, we extracted the lower triangle for statistical analysis. Following255

the taxonomy for macro-scale functional brain networks in Uddin et al. (2019), we identified256

18 signal components from the 30 group components. A partial correlation is equal to zero257

if the two components are conditionally independent given the other components. By using258

the partial correlations, we control for correlations due to the twelve non-signal components,259

which include some motion artifacts, as well as components mainly composed of white mat-260

ter or cerebrospinal fluid, which capture other signals of non-interest that impact the brain261

globally (Bijsterbosch et al., 2020).262

2.2. Impact of motion QC on the sample size and composition263

2.2.1. Impact of motion QC on group sample size264

For each level of motion exclusion, Pearson’s chi-squared tests were used to assess whether265

the proportion of excluded children differed between the ASD and typically developing266
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groups.267

2.2.2. rs-fMRI exclusion probability as a function of phenotypes268

We used univariate generalized additive models (GAMs) to examine the relationship be-269

tween the log odds of exclusion and seven covariates: ADOS (ASD group), SRS, inattention,270

hyperactivity/impulsivity, motor overflow, age, and GAI. We used the subset of children271

included in the final study sample (Section 2.1.3) for the strict and lenient motion exclu-272

sion criteria. We used automatic smoothing determined using random effects with restricted273

maximum likelihood estimation (REML) (Wood, 2017). We used univariate models rather274

than a model with all covariates simultaneously because some of the variables are correlated,275

such that the impact of each variable on rs-fMRI usability may be difficult to estimate.276

These models are related to the propensity models that will be used in the estimation of the277

deconfounded group difference (Section 2.3.1). While the propensity models use an ensemble278

of machine learning models to predict usability from multiple predictors, our focus for this279

analysis is on interpretable models. We controlled for multiple comparisons using the false280

discovery rate (FDR) for the seven univariate models, in which FDR is applied separately281

to the lenient and strict criteria models (Benjamini and Hochberg, 1995). Although FDR282

correction was popularized by high-throughput studies conducted in computational biology,283

Benjamini and Hochberg (1995) originally illustrated the utility of their approach for con-284

trolling the expected number of falsely rejected null hypotheses using a study in which a285

moderate number of tests (15) were performed, which is comparable to our analysis.286

2.2.3. Impact of motion QC on distributions of phenotypes among children with usable data287

We examined how the distribution of ADOS (ASD group), SRS, inattention, hyperac-288

tivity/impulsivity, motor overflow, age, and GAI differed between included and excluded289

participants. For additional insight into how scan exclusion may differentially affect autistic290

versus typically developing children, we stratified this analysis by diagnosis. We visualized291

the densities using kernel density estimation with default bandwidths in ggplot2 (Wickham,292
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2016). We then used one-sided Mann-Whitney U tests to test for differences between in-293

cluded and excluded participants for each measure stratified by diagnosis. We hypothesized294

that 1) included children would have less severe social, inattentive, hyperactive/impulsive,295

and motor deficits than excluded children, and 2) included children would be older and have296

higher GAI. We controlled for multiple comparisons by applying the FDR separately to the297

thirteen tests (7 for the ASD group and 6 for the typically developing group) performed for298

the lenient and strict motion QC cases.299

2.2.4. Functional connectivity as a function of phenotypes300

We also characterized the relationship between phenotypes and functional connectivity.301

For each level of motion exclusion, we used univariate GAMs to examine the relationship302

between each phenotypic measure and the adjusted residuals for each edge of signal-to-303

signal components in the partial correlation matrix. The adjusted residuals are the same304

data inputted to the deconfounded group difference and are calculated from the residuals of305

a linear model with mean FD, max FD, the number of frames with FD< 0.25 mm, sex, race,306

socioeconomic status, and diagnosis with the effect of diagnosis added back in as described307

in Section 2.3.2. Smoothing was determined using the random effects formulation of spline308

coefficients with restricted maximum likelihood estimation (REML) (Wood, 2017).309

2.3. Addressing data loss and reducing sampling bias using the deconfounded group difference310

2.3.1. Theory: Deconfounded group difference311

Our goal is to estimate the difference in average functional connectivity between autistic312

and typically developing children. Let Y be a random variable denoting the functional313

connectivity between two locations (or nodes defined using independent component analysis)314

in the brain. In practice, these will be indexed by v and v′, but we suppress this notation for315

conciseness. Let A denote the diagnosis indicator variable equal to one if the participant has316

ASD and zero otherwise. We first consider the hypothetical case in which all participants317

have usable rs-fMRI data. We use the potential outcomes notation and let Y (1) denote the318
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functional connectivity in this hypothetical world (Hernan and Robins, 2020). Let W denote319

the covariates, which include measures that may be related to functional connectivity and320

ASD severity. Our parameter of interest is the difference in functional connectivity between321

autistic and typically developing children: ψ∗ = E∗(Y (1)|A = 1) − E∗(Y (1)|A = 0), where322

E∗() denotes an expectation with respect to the probability measure of {Y (1), A,W}. It is323

important to observe that W is not independent of A, as the distribution of some behavioral324

variables differ by diagnosis group. We rewrite ψ∗ using the law of iterated expectations to325

gain insight into our parameter of interest:326

ψ∗ = E∗(Y (1)|A = 1)− E∗(Y (1)|A = 0)

= E∗ {E∗ (Y (1)|A = 1,W ) |A = 1} − E∗ {E∗ (Y (1)|A = 0,W ) |A = 0} .

Here, the outer expectation integrates across the conditional distribution of the variables327

given diagnosis. This estimand differs from an average treatment effect (ATE) commonly328

considered in causal inference (Hernan and Robins, 2020), which integrates across the distri-329

bution of the covariates for the pooled population (autistic and typically developing children).330

In contrast to the hypothetical world, many children in the observed world move too331

much during their rs-fMRI scan for their data to be usable, but we are still able to collect332

important behavioral and socio-demographic covariates from them. We regard data that fail333

motion quality control as “missing data.” Let ∆ denote a binary random variable capturing334

the missing data mechanism that is equal to one if the data are usable and zero otherwise.335

Then data are realizations of the random vector {Y,A,W,∆}. Expectation with respect to336

their probability measure is denoted E() (no asterisk). Additionally, Y |(∆ = 0) is missing.337

Then the näıve difference is ψnaive = E(Y |∆ = 1, A = 1) − E(Y |∆ = 1, A = 0). We define338

confounding as ψ∗ 6= ψnaive (Greenland et al., 1999). Confounding can occur when a covariate339

is related to data usability/missingness, W ↔ ∆, and also related to functional connectivity,340

W ↔ Y . Then if the covariate is related to diagnosis, i.e., W ↔ A, we have ψ∗ 6= ψnaive.341
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If there are interactions between W and A, then we can also have ψ∗ 6= ψnaive. These342

relationships are summarized in the graph in Figure 1. We now define our target parameter343

as a function of usable data. We call this quantity the deconfounded group difference:344

ψ = E {E (Y |A = 1,∆ = 1,W ) |A = 1} − E {E (Y |A = 0,∆ = 1,W ) |A = 0} . (1)

The mathematical distinction between this and the näıve estimator is that in the näıve345

estimator, E(Y |∆ = 1, A = 1) = E {E(Y |∆ = 1, A = 1,W )|∆ = 1, A = 1}, which differs346

from E {E (Y |∆ = 1, A = 1,W ) |A = 1}, with a similar distinction for E(Y |∆ = 1, A = 0).347

In the deconfounded group difference, we integrate across the conditional distribution of348

phenotypic variables given diagnosis versus the näıve approach that integrates across the349

conditional distribution of phenotypic variables given diagnosis and data usability. We will350

show in Section 3.1.3 that the distribution of phenotypic variables given diagnosis differs351

from the distribution given diagnosis and data usabilty.352

Identifying the parameter of interest ψ∗ from the target parameter ψ requires three353

assumptions:354

(A1.1) Mean exchangeability :355

for a = 0, 1, E∗{Y (1) | A = a,W} = E∗{Y (1) | ∆ = 1, A = a,W}.356

(A1.2) Positivity : for a = 0, 1 and all possible w, P (∆ = 1 | A = a,W = w) > 0.357

(A1.3) Causal Consistency : for all i such that ∆i = 1, Yi(1) = Yi.358

Assumption (A1.1) implies that W is sufficiently rich as to contain all variables simultane-359

ously associated with mean functional connectivity and exclusion due to failed motion QC.360

This assumption is also called ignorability or the assumption of no unmeasured confounders.361

In the missing data literature, this is closely related to the assumption that data are missing362

at random: P (∆ = 1|Y,A = a,W ) = P (∆ = 1|A = a,W ) (van der Laan and Robins, 2003).363

Assumption (A1.2) implies that there are no phenotypes in the population who uniformly364
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fail motion QC. Assumption (A1.3) stipulates that Y from children with usable fMRI data365

is the same as the outcome that would have been observed under a hypothetical intervention366

that allows the child to pass motion control (Vander Weele, 2009). Under A1.1 and A1.3,367

we have E∗{Y (1) | A = a,W} = E{Y | ∆ = 1, A = a,W}, which allows us to identify the368

potential outcomes from the observable data.369

We estimate our target using doubly robust targeted minimum loss based estimation370

[DRTMLE, (Benkeser et al., 2017; van der Laan and Rose, 2011)], which involves three steps371

enumerated below and illustrated in Figure 1 .372

1. Fit the propensity model: P (∆|A,W ). This model characterizes the probability that373

the rs-fMRI data pass motion quality control. It uses all data to fit the model. Then374

the usable functional connectivity will be weighted by their inverse probabilities of375

usability (propensities) during step three.376

2. Fit the outcome model: E(Y |∆ = 1, A,W ). This step estimates functional connec-377

tivity from the covariates for participants with usable rs-fMRI data. It then predicts378

functional connectivity for both usable and unusable participants.379

3. Use DRTMLE to combine functional connectivity from the usable subjects weighted380

by the inverse probability of usability from step 1 with predictions of functional con-381

nectivity for all subjects (usable and unusable) from step 2. Here, DRTMLE is applied382

separately to each diagnosis group, which calculates mean functional connectivity by383

integrating across the diagnosis-specific distribution of the covariates from usable and384

non-usable participants.385

Steps 1 and 2 use super learner, an ensemble machine learning technique. The super learner386

fits multiple pre-specified regression models and selects a weight for each model by minimizing387

cross-validated risk (Polley et al., 2019). Step 3 combines the propensity and outcome models388

using DRTMLE. An appealing property of DRTMLE is that the estimate of the deconfounded389

group difference and its variance are statistically consistent even if either the propensity390
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Figure 2: An illustration of the improvement in functional connectivity from DRTMLE com-
pared to the naive approach from a single simulated dataset. The true mean ASD-TD difference
in functional connectivity is negative (green bar), with the true mean in the ASD group being negative and
the the true mean in the TD group being slightly positive. The estimate of the mean ASD-TD difference
from the näıve approach (red bar) is also negative but closer to zero due to confounding. Additionally, the
95% confidence interval includes zero. Using DRTMLE, the deconfounded group difference (purple bar) is
closer to the truth and the 95% confidence interval does not include zero. Code to reproduce this example
is available at thebrisklab github.

model or the outcome model is inconsistently estimated. See Benkeser et al. (2017). By391

statistical consistency, we mean that our estimate converges to the true difference as the392

sample size goes to infinity, which is different from the causal consistency assumption in393

A1.3. Here, we know that the missingness mechanism is deterministic based on motion,394

but we are replacing it with a stochastic model that estimates missingness based on the395

behavioral phenotypes. Details of our implementation are in Section 2.3.2. We simulate396

a dataset with confounding and estimate the deconfounded group difference in a tutorial397

available at https://github.com/thebrisklab/DeconfoundedFMRI, and the results from398

this simulation are included in Fig. 2.399

2.3.2. Application: Deconfounded group difference in the KKI Dataset400

Recall Step 1 involves fitting a propensity model and Step 2 involves fitting an outcome401

model (Section 2.3.1). We use the same predictors in the propensity and outcome models: age402

at scan, handedness (left, right, mixed), primary diagnosis, secondary diagnosis of ADHD,403
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indicator variable for a current prescription for stimulants (all participants were asked to404

withhold the use of stimulants the day prior to and on the day of the scan), motor overflow,405

GAI, DuPaul inattention, DuPaul hyperactivity/impulsivity, and ADOS. The ADOS is only406

administered to children in the ASD group, since it is usually equal or close to zero in typically407

developing children. We set ADOS equal to zero for all typically developing children. Social408

responsiveness score was not included due to missing values in 19.5% of observations.409

Since motor overflow was missing in 5.5% of children, we imputed its value using super410

learner from all variables above plus sex, SES, and race (details of the learners described411

below). This resulted in the imputation of motor overflow scores for nineteen children. Thus412

the study sample for our application of the deconfounded group difference is the subset of413

participants with a complete set of predictors after the imputation of motor overflow for414

these nineteen children (Section 2.1.3) as depicted in Web Supplement Figure S.1.415

We focus on the lenient motion QC case because too few participants have usable data416

following strict motion QC to accurately estimate the outcome model. Functional con-417

nectivity metrics based on partial correlations were recently shown to be less sensitive to418

motion artifacts than those based on full correlations (Mahadevan et al., 2021), but to guard419

against lingering impacts of motion on functional connectivity and to account for possible420

confounders due to sampling design, we adjust the partial correlations as follows. For each421

edge, we fit a linear model with mean FD, max FD, number of frames with FD< 0.25 mm,422

sex (reference: female), race (reference: African American), socioeconomic status, and pri-423

mary diagnosis (reference: Autism) as predictors. We include sex, race, and socioeconomic424

status in this model because they differed between autistic and typically developing children425

(see Section 3.1.1). We then extracted the residuals and added the estimated intercept and426

effect of primary diagnosis. Then the “näıve” approach is comparable to the approach used427

in Di Martino et al. (2014), who included diagnosis, sex, age, and mean FD in a linear model.428

See Section 4.4 for additional discussion.429

Steps 1 and 2 (see Section 2.3.1): We use the following learners and R packages when430
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using super learner: multivariate adaptive regression splines in the R package earth, lasso in431

glmnet, generalized additive models in gam, generalized linear models in glm, random forests432

with ranger, step-wise regression in step, step-wise regression with interactions, xgboost,433

and the intercept only (mean) model; for the outcome model (continuous response), we434

additionally used ridge from MASS and support vector machines in e1071. Parameters were435

set to their defaults except for the following: the family was equal to binomial (logistic436

link) in the propensity model with method set to minimize the negative log likelihood; in437

the motor overflow and outcome models, the method was set to minimize the squared error438

loss. Note the outcome model is fit separately for each of the 153 edges, whereas the same439

propensities are used for all edges. The propensity model is fit using the complete predictor440

cases. The outcome model is fit using the complete usable cases.441

Step 3: DRTMLE is applied to ASD for each edge, then to TD. This step uses both442

the propensities and the predicted outcomes to result in an estimate of the deconfounded443

mean for the ASD group, the deconfounded mean for the typically developing group, and444

their variances. We use the non-parametric regression option for both the reduced-dimension445

propensity and reduced-dimension outcome regression. A z-statistic is formed from their dif-446

ference under the assumption of independent groups, which is used to test the null hypothesis447

that functional connectivity is equal in autistic and typically developing children.448

Since super learner uses cross validation, its results differ for different random seeds. We449

ran the entire procedure (motor overflow imputation, propensity model, and 153 outcome450

models) for two hundred different seeds, calculated the DRTMLE-based z-statistic for the451

difference in functional connectivity, and averaged the z-statistics at each edge from the452

two hundred seeds. We calculated adjusted p-values using FDR=0.2, which means that we453

expect 20% of the rejected null hypotheses to be falsely rejected. This threshold has been454

used in recent papers on FDR (Barber and Candès, 2015). We also report edges that survive455

the more stringent FDR=0.05. We repeated this entire procedure a second time with a456

different set of 200 seeds. The correlation between the average z-statistics across the 153457
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edges was greater than 0.999. Eleven edges were selected at false discovery rate FDR=0.20458

in the first set of seeds and nine of these eleven edges in the second set. The same two edges459

were selected in both sets for FDR=0.05. For the final input to the figures, we pooled both460

sets of seeds and averaged their z-statistics, which resulted in eleven edges at FDR=0.20.461

We examined the stability of the propensity scores across the first five random seeds.462

Propensities near zero can increase the bias and variance of causal effects (Petersen et al.,463

2010) and indicate a possible violation of the positivity assumption (A1.2). The smallest464

propensity ranged from 0.30-0.36. This indicates that there is a reasonable probability of data465

inclusion across the range of {W,A} and that Assumption (A1.2) is likely to be adequately466

satisfied. The AUCs for predicting usability across the five seeds ranged from 0.75 to 0.92,467

whereas the AUC was 0.68 using logistic regression and 0.69 using a logistic additive model,468

which indicates that the super learner often improves the accuracy of the propensity model.469

For the näıve approach, we calculated the z-statistic of the average group differences470

between autistic and typically developing children from the complete usable cases for each of471

the 153 edges. This test statistic is nearly equivalent to the t-statistic from the linear model472

with motion variables, sex, socioeconomic status, and diagnosis.473

2.4. Data and code availability474

All data used for this study can be made available by written request through the study’s475

corresponding author under the guidance of a formal data-sharing agreement between in-476

stitutions that includes the following: 1) using the data only for research purposes and not477

attempting to identify any participant; 2) limiting analyses to those described in both insti-478

tutions IRB-approved protocols; and 3) no redistribution of any shared data without a data479

sharing agreement.480

The code for recreating all analyses, tables, and figures in this study is available at481

https://github.com/thebrisklab/DeconfoundedFMRI.482
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(a) (b)

Figure 3: Motion quality control leads to dramatic reductions in sample size. a) Flow chart of
inclusion criteria for this study showing the number of participants remaining after each exclusion step.
Lenient motion quality control (QC) excluded 20% of complete predictor cases, while strict motion QC
excluded 66% of complete predictor cases. b) The proportion of children in each diagnosis group whose
scans were included (yellow) and excluded (lavender) using the strict (left) and lenient (right panel) gross
motion QC. A larger proportion of children in the autism spectrum disorder (ASD) group were excluded
compared to typically developing (TD) children using lenient motion QC (χ2=10.3, df = 1, p=0.001) and
strict (p<0.001).

3. Results483

3.1. Impact of motion QC on the study sample and sample bias484

3.1.1. The impact of motion QC on sample size can be dramatic and differs by diagnosis485

group486

Figure 3 illustrates the inclusion criteria used for our analyses and the number of partic-487

ipants remaining after each exclusion step. Missing covariate data excluded 41 participants,488

or 7.5% of the total number of participants scanned. Lenient motion QC excluded 20.0% of489

complete predictor cases, while strict motion QC excluded 66.1% of complete predictor cases.490

In addition, we found the proportion of excluded children differed by diagnosis group using491

both levels of motion QC (Figure 3b). Using lenient motion QC, 16.1% of typically develop-492

ing children were excluded, compared to 29.1% of children in the ASD group (χ2=10.3, df =493

1, p=0.001). Using strict motion QC, 59.8% of typically developing children were excluded,494

compared to 80.8% of children in the ASD group (p<0.001). Thus, commonly used motion495

QC procedures resulted in large data losses that more severely impacted the size of the ASD496

group.497
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3.1.2. rs-fMRI exclusion probability changes with phenotype and age498

We observed that children with higher ADOS scores, SRS scores, inattentive symptoms,499

hyperactive/impulsive symptoms, or poorer motor control were more likely to be excluded,500

while older children and children with higher GAI were less likely to be excluded when the501

lenient motion QC was used (all FDR-adjusted p<0.01) as well as the strict motion QC502

(all FDR-adjusted p<0.03) (Figure 4). In particular, there is a sharp increase in exclusion503

probability using the lenient motion QC for children with higher ADOS scores (lavender504

line, left-most panel). The bottom panel of Figure 4 illustrates the covariate distribution505

for each diagnosis group (pooling included and excluded participants). Interestingly, using506

the lenient motion QC, the relationship between SRS and exclusion appears flatter over the507

range of values in the typically developing group and steeper over the range of values in the508

ASD group (lavender line). In contrast, the relationship between hyperactivity/impulsivity509

and exclusion appears linear over the range of values present in the typically developing510

group but fairly flat over the range of values in the ASD group.511

3.1.3. Phenotype representations differ between included and excluded children512

Figure 5 illustrates distributions of the covariates for included and excluded participants513

stratified by diagnosis group and motion QC level. For the lenient motion QC, median514

values for included and excluded participants, U statistics, and FDR-adjusted p values for515

each measure and diagnosis group are summarized in Web Supplement Table S.1. Using the516

lenient motion QC, we observed biases in both the ASD and typically developing groups517

toward the selection of older children (FDR-adjusted p=0.04, 0.04 for the ASD and typically518

developing groups, respectively) with higher GAI (FDR-adjusted p=0.03, 0.04 for ASD and519

typically developing groups, respectively). In the ASD group, we also observed biases toward520

the selection of children who had lower total ADOS, SRS, or motor overflow scores (FDR-521

adjusted p=0.03, 0.03, and 0.01, respectively), but we did not observe differences in terms of522

inattentive or hyperactive/impulsive symptoms between included and excluded participants523

(FDR-adjusted p>0.6 for both covariates). In the typically developing group, we did not524
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Figure 4: rs-fMRI exclusion probability changes with phenotype and age. Univariate analysis of rs-
fMRI exclusion probability as a function of participant characteristics. From left to right: Autism Diagnostic
Observation Schedule (ADOS) total scores, social responsiveness scale (SRS) scores, inattentive symptoms,
hyperactive/impulsive symptoms, total motor overflow, age, and general ability index (GAI) using the lenient
(lavender lines, all FDR-adjusted p<0.01), and strict (red lines) motion quality control (all FDR-adjusted
p<0.03). Variable distributions for each diagnosis group (included and excluded scans) are displayed across
the bottom panel (TD=typically developing, green; ASD=autism spectrum disorder, yellow).
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observe a bias in terms of SRS or inattention (FDR-adjusted p=0.5, 0.4), while there was525

some evidence of bias for motor overflow (p=0.08). We did observe a bias towards the526

selection of typically developing children with lower hyperactive/impulsive scores (FDR-527

adjusted p=0.04).528

Differences between included and excluded children also tended to occur using the strict529

criteria, although in general significance was reduced, owing in part to the reduced sample530

size in the included group. Typically developing children who were included were less hy-531

peractive/impulsive than typically developing children who were excluded (FDR-adjusted532

p=0.02). Median values for included and excluded participants, U statistics, and FDR-533

adjusted p values for each measure and diagnosis group are summarized in Web Supplement534

Table S.2.535

3.1.4. Phenotypes are also related to functional connectivity536

The relationships we observed between rs-fMRI data usability and the covariates exam-537

ined in the preceding analyses may impact our parameter of interest if those measures are also538

related to functional connectivity. Figure 6 illustrates histograms of p values for GAMs of539

the relationship between edgewise functional connectivity (adjusted for sex, SES, race, and540

motion, see Section 2.3.2) and ADOS, SRS, inattentive symptoms, hyperactive/impulsive541

symptoms, total motor overflow, age, and GAI across participants with usable rs-fMRI data542

using the lenient motion QC (lavender bins) and the strict motion QC (red bins). This543

analysis is related to the outcome model used in the deconfounded group difference, as it544

provides insight into whether the sampling bias will lead to confounding. Here, we focus on545

a single phenotype in each GAM for interpretability. For a given phenotype, a clustering of546

p values near zero suggests that a covariate is associated with functional connectivity for a547

greater number of edges. If there is no association between the covariate and functional con-548

nectivity, we expect the p values to be more uniformly distributed. We see strong clustering549

of p values near zero for total ADOS across participants with usable rs-fMRI data under550

lenient and strict motion QC. For SRS, we see clustering using participants who pass strict551
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Figure 5: Participants with usable rs-fMRI data differed from participants with unusable rs-
fMRI data. Comparison of Autism Diagnostic Observation Schedule (ADOS) scores, social responsiveness
scale (SRS) scores, inattentive symptoms, hyperactive/impulsive symptoms, motor overflow, age, and general
ability index (GAI) for included (yellow) and excluded (lavender) participants stratified by diagnosis group
and motion exclusion level. The deconfounded mean integrates across the diagnosis-specific distribution of
usable and unusable covariates for the variables described in Section 2.3.2, which here is labeled as “None.”
We controlled for 13 comparisons performed for the lenient and strict motion QC cases using the false
discovery rate (FDR). ** indicate differences between included and excluded participants with an FDR-
adjusted p value <0.05; * indicate FDR-adjusted p values <0.1; ˆ indicate FDR-adjusted p values <0.2. A
larger number of significant differences are observed using the lenient motion QC than the strict motion
QC, but very few participants pass strict motion QC. autism spectrum disorder (ASD), typically developing
(TD). The R code to produce these split violin plots was adapted from DeBruine (2018).
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Figure 6: Some covariates related to rs-fMRI exclusion probability are also related to functional
connectivity. Histograms of p values for generalized additive models of the relationship between edgewise
functional connectivity in participants with usable rs-fMRI data and (from left to right) ADOS, social respon-
siveness scale (SRS) scores, inattentive symptoms, hyperactive/impulsive symptoms, total motor overflow as
assessed during the Physical and Neurological Exam for Subtle Signs, age, and general ability index (GAI).
For a given covariate, a clustering of p values near zero suggests that covariate is associated with functional
connectivity for a greater number of edges. Several covariates appear to be related to functional connectivity
using both the lenient motion quality control (lavender bins) and the strict motion quality control (red bins).

motion QC, but this pattern is less apparent for participants who pass lenient motion QC.552

For inattentive symptoms, we see a clustering of p values near zero using participants who553

pass lenient motion QC. For hyperactive/impulsive symptoms, we see a clustering of p values554

near zero following both levels of motion QC. For motor overflow, we see some clustering555

of p values near zero using participants who pass strict motion QC, but this pattern is less556

clear in participants passing lenient motion QC. For age, we see a clustering of p values near557

zero using participants who pass the lenient motion QC but not strict. For GAI, we see a558

clustering of p values near zero using participants who pass the strict motion QC but not559

lenient.560

3.2. Application: Deconfounded group difference in the KKI Dataset561

The deconfounded group difference estimated using DRTMLE revealed more extensive562

differences between the ASD and typically developing groups than the näıve approach (Fig. 7,563

Web Supplement Table S.3). At FDR=0.20, the näıve approach indicated three edges show-564

ing a negative difference in functional connectivity between the ASD and typically developing565
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groups (blue lines) and three edges showing a positive difference (red lines). The DRTMLE566

approach also indicated these six edges, with five having smaller p values relative to those for567

the näıve approach. The DRTMLE approach also indicated an additional two edges showing568

negative group differences and three additional edges showing a positive group difference.569

Network nodes that gained edges from the DRTMLE versus the näıve method (FDR=0.2)570

included the default mode network (DMN) (+3), executive control (+3), somatomotor (+1),571

visual (+1), ventral attention (+1), and dorsal attention (+1). At FDR=0.05 (Web Supple-572

ment Figure S.2), the näıve approach only indicated one edge showing a negative difference573

in functional connectivity between the ASD and typically developing groups (primary visual574

IC-02 to bilateral control IC-27). The DRTMLE approach indicated this edge, while also575

indicating one other edge showing a negative difference in functional connectivity (postero-576

lateral cerebellum IC-14 to dorsal attention IC-19).577

Functional connectivity scores further from zero reflect stronger functional connectivity578

regardless of sign; positive scores reflect stronger positive partial correlations, or more inte-579

grated intrinsic activity between nodes. Negative scores reflect negative partial correlations,580

or more segregated intrinsic activity between nodes. The sign of average group effects re-581

mained consistent, as did the direction of group differences (Web Supplement Table S.3).582

Edges showing positive group differences in functional connectivity included edges for which583

positive correlations were strengthened in the ASD group compared to the typically devel-584

oping group, as well as connections in which negative correlations were weaker in the ASD585

group compared to the typically developing group. Similarly, the edges showing negative586

group differences included connections for which negative correlations were strengthened in587

the ASD group compared to the typically developing group, as well as connections for which588

positive correlations were weaker in the ASD group compared to the typically developing589

group.590

In this application, the deconfounded means were very similar to the naive means (Web591

Supplement Figure S.3). Additionally, partial correlations were highly variable, with the592
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range of partial correlations in the ASD and typically developing groups broadly overlapping.593

This indicates that the more extensive differences indicated by DRTMLE Fig. 7 are largely594

driven by smaller standard errors, rather than by extensive confounding following lenient595

motion QC, which is discussed in Section 4.2.596

4. Discussion597

We set out to understand what part of the autism spectrum we are characterizing in rs-598

fMRI analyses: Does excluding high-motion participants allow us to draw conclusions about599

average brain function/connectivity that are representative of 8-to-13-year-old children across600

the entire autism spectrum, or does it introduce bias? The primary message that emerges601

from our findings is that ignoring confounding due to motion exclusion can be problematic602

scientifically. Using data from a large sample of autistic children without an intellectual603

disability and typically developing children, we demonstrated that motion exclusion changes604

the distribution of behavioral and sociodemographic traits in the study sample that are605

related to functional connectivity. This finding suggests that the generalizability of previous606

studies reporting näıve analyses may be limited by the selection of older children with less607

severe clinical profiles because these children are better able to remain still during an rs-fMRI608

scan. We further propose a statistical approach for addressing the data loss and possible609

confounding following motion QC using DRTMLE; our findings indicate more extensive610

differences between autistic and typically developing children using DRTMLE as compared611

with conventional approaches.612

In our study, the impact of motion QC on sample size was dramatic and differed by613

diagnosis group. Additionally, rs-fMRI exclusion probability changed with symptom sever-614

ity and age. Detailed reporting of the number of participants excluded for excessive head615

motion is far from standard practice, but we found that motion QC removed a larger pro-616

portion of autistic children compared to typically developing children, which is consistent617

with the patterns reported in Redcay et al. (2013) and Jones et al. (2010). Across diagnosis618
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(a) Näıve Z-Statistic

(b) DRTMLE Z-Statistic

Figure 7: The DRTMLE deconfounded group difference revealed more extensive differences
than the näıve approach. Z-statistics for autism spectrum disorder (ASD) versus typically developing
(TD) using a) the näıve test and b) using DRTMLE. Connections are thresholded using a false discovery
rate (FDR) of 0.20. Blue lines indicate ASD>TD (3 in näıve, 6 in DRTMLE). Red lines indicate ASD<TD
(3 in näıve, 5 in DRTMLE). Brain regions contributing to each independent component are illustrated and
components are grouped by functional assignment. Navy nodes: control. Blue violet: default mode. Purple:
salience/ventral attention. Magenta: pontomedullary/cerebellar. Coral: somatomotor. Orange: visual.
Yellow: dorsal attention. FDR=0.05 is plotted in Web Supplement Figure S.2. These plots were generated
using the circlize package in R (Gu et al., 2014) and the tutorial provided by Mowinckel (2018).
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groups, children with more severe social deficits, more inattentive symptoms, more hyperac-619

tive/impulsive symptoms, or poorer motor control were more likely to have unusable rs-fMRI620

data and be excluded, while older children or children with higher intellectual ability were621

less likely to be excluded for both levels of motion QC. Similarly, Simhal et al. (2021) found622

that children with ASD and children with ADHD who failed a mock MRI training protocol623

were younger, had lower verbal and non-verbal intelligence scores, and more severe ADOS624

scores than children with ASD and children with ADHD who passed the training protocol.625

These findings suggest that the mechanisms driving missingess in rs-fMRI studies may be626

related to scientifically relevant participant characteristics.627

The estimate of mean functional connectivity should be representative of all children en-628

rolled in the study, but we observed that participants with usable rs-fMRI data differed from629

participants with unusable rs-fMRI data that would have been excluded using conventional630

approaches. Autistic children who were excluded following lenient motion QC tended to631

be younger, displayed more severe social deficits (both observed by the experimenter using632

the ADOS and reported by parents/teachers using the SRS), more motor overflow, or lower633

intellectual ability than autistic children who were included. We observed similar differences634

between included and excluded autistic children following strict motion QC, although in635

general power was reduced due to the reduced sample size. Moreover, these characteristics636

are exactly those that showed relationships with functional connectivity among children with637

usable data following one or both levels of motion QC. The strength of these relationships638

between clinically relevant measures and functional connectivity among children with usable639

data appeared to depend on the level of motion QC used. For instance, evidence of a relation-640

ship between SRS and functional connectivity was stronger among participants who passed641

strict motion QC than among participants who passed lenient motion QC (Figure Fig. 6).642

Given that the criteria used to define usability varies widely among rs-fMRI studies, our643

findings suggest that differences in the representation of symptom severity among children644

with usable data following motion QC may have partially contributed to discrepancies in the645
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literature regarding ASD-associated functional connectivity findings. To improve our abil-646

ity to compare findings across studies, it is critical for rs-fMRI researchers to transparently647

assess the amount of information lost following motion QC, to consider whether participant648

characteristics related to usability are also related to the effect of interest, and to try to649

address the loss of power and potential confounding if they are.650

Here, we have made progress on this issue using techniques from the missing data and651

causal inference literature combined with an ensemble of machine learning algorithms. Our652

approach results in more extensive differences between autistic and typically developing chil-653

dren than indicated using the näıve approach (Fig. 7). Our framework explicitly treats654

missingness due to motion QC as a source of confounding, and we define a target param-655

eter called the deconfounded group difference. The general concept of this framework is656

to recognize that children with usable data are not representative of all enrolled children657

within each diagnosis group. DRTMLE combines the results of inverse propensity weighting658

and G-computation, which improves robustness relative to either approach alone. Inverse659

propensity weighting gives more weight to children with more severe symptoms who have660

usable functional connectivity data because a) they are more likely to be missing and b)661

functional connectivity is related to symptom severity so we need them to stand in for all662

children with more severe symptoms who are excluded due to data quality concerns. The663

outcome model estimates functional connectivity for all children, including those with greater664

symptom severity, and in this sense accounts for children with unusable data. We use an665

ensemble of machine learning methods to flexibly model possible non-linear relationships666

between phenotypic traits and data usability (the propensity model) and between pheno-667

typic traits and functional connectivity (the outcome model). For both the propensity and668

outcome models, we include a rich collection of variables that we expect to be associated669

with rs-fMRI usability, functional connectivity, or both. Including variables that contribute670

to both rs-fMRI usability and functional connectivity represents an opportunity to decrease671

bias. Including variables that contribute to functional connectivity but not necessarily to672
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rs-fMRI usability represents an opportunity to decrease the variance of our estimate without673

increasing bias. The propensity and outcome models are then combined using DRTMLE,674

which results in statistically consistent estimation of the deconfounded group difference and675

its variances under the assumptions in Section 2.3.1 and discussed in Section 4.3.676

4.1. Possible scientific insights gained from DRTMLE677

Collectively, the findings suggest that group differences in functional connectivity are678

more robust using the DRTMLE approach as compared to the näıve approach. What evi-679

dence do we have to support the validity of these findings? First, the sign of average group680

effects remained consistent across methods, as did the direction of group differences (Web681

Supplement Table S.3). In this study, DRTMLE appears to have a larger effect on the vari-682

ance than on the group means, and we discuss the implications of this and effect size in683

Section 4.2. Second, the pattern of group differences observed using DRTMLE is consistent684

with knowledge of DMN-DAN interactions, such that the DMN shows task-induced deactiva-685

tion, whereas the DAN shows task-induced activation (Padmanabhan et al., 2017). Findings686

from task-based fMRI studies suggest that individuals with ASD show lower deactivation of687

the DMN during self-referential processing tasks as compared to typically developing controls688

(Kennedy et al., 2006; Padmanabhan et al., 2017). Recent findings also suggest a crucial689

role of the posterolateral cerebellum, a region functionally connected to the DMN (Buckner690

et al., 2011), in both social mentalizing (Van Overwalle et al., 2020) and behaviors central691

to a diagnosis of ASD (Lidstone et al., 2021; Stoodley et al., 2017). The cerebellum is also692

believed to form and update internal models of the world for predictive control in both social693

and nonsocial contexts (Blakemore et al., 2001). Functional connectivity between the DMN,694

DAN, and cerebellum networks should be a focus of future research to better understand695

the neural mechanisms contributing to autism diagnosis.696

34

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2022. ; https://doi.org/10.1101/2022.01.12.476077doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.12.476077
http://creativecommons.org/licenses/by-nc-nd/4.0/


4.2. Sample size limitations, inference, and effect size697

In this study, the differences between the edges selected using DRTMLE versus the näıve698

approach appear to be largely driven by decreases in the standard error of the estimates699

rather than by changes in the mean difference (Web Supplement Figure S.3). DRTMLE can700

be used to address data loss by improving efficiency, which can result in smaller standard701

errors relative to the näıve approach. The TMLE framework leverages all available covariate702

data, and when the covariate data are predictive of the outcome, this can improve statistical703

power (Moore and van der Laan, 2009). One potential limitation is that DRTMLE underes-704

timates the variance of group estimates for small sample sizes, resulting in anti-conservative705

p-values (Benkeser et al., 2017). We cannot disentangle the possible gains in efficiency from706

the possibly anti-conservative p-values (due to a finite sample). This limitation would be707

more of a concern following strict motion QC; in that case, only 29 autistic children were708

labeled as having usable scans. However, using the lenient motion QC, more than 100 partic-709

ipants in each diagnosis group had usable scans. In addition, the FDR corrected p-values we710

use are conservative in the sense that they do not leverage the positive correlations between711

some edges. An important avenue for future research is to use permutation tests for inference712

(Winkler et al., 2014) with DRTMLE. Permutation tests can result in finite sample inference713

while improving power using max statistics, but they create computational challenges.714

As in many other rs-fMRI studies, we observed extensive variability among participants715

in the modified partial correlations used as input to DRTMLE (Web Supplement Figure716

S.3). This variability resulted in generally small effect sizes from the näıve approach. The717

maximum Cohen’s D across 153 edges was 0.47 at IC02-IC27, which is a medium effect size,718

and the average näıve effect size among the eleven edges indicated by DRTMLE as significant719

was 0.32. Unfortunately, calculating effect sizes in DRTMLE is an open problem.720

Another limitation of the current study is that machine learning algorithms typically re-721

quire a relatively large sample size compared to classic approaches. We use cross-validation722

to guard against overfitting, which has been shown to be effective even without having an in-723
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dependent test dataset (Benkeser et al., 2019). One drawback of cross-validation approaches724

is that they can be sensitive to the random seed. We addressed this limitation by repeating725

the cross-validation hundreds of times. Each estimation routine takes approximately 6 hours726

on a single core (2.60 GHz), which includes fitting the propensity model and the outcomes727

models at the 153 edges. We used a high performance cluster and 100 cores, and conducted728

two sets of 200 seeds, such that the full estimation routine took approximately 24 hours.729

The average z-statistic from the two sets were nearly equivalent.730

4.3. Model assumptions and possible violations731

Estimating the difference in functional connectivity between autistic and typically devel-732

oping children in the counterfactual world in which all data are usable from the observable733

data involves three assumptions: mean exchangeability, positivity, and consistency of the734

counterfactual and the observed outcome (causal consistency) (Section 2.3.1).735

With respect to mean exchangeability or the assumption of no unmeasured confounders,736

we assume that functional connectivity is independent of the missingness mechanism given737

our variables {W,A}. As noted, the missingness mechanism is deterministic based on head738

motion, but we are replacing it with a stochastic model that estimates missingness from739

{W,A}. In our application, it is important that summary measures of head motion were not740

included in the propensity and outcome models. To understand the reason for this, consider741

that children who nearly fail motion QC may have some motion impacts in their functional742

connectivity signal. The deconfounded group difference assumes that Y reflects the signal of743

interest, i.e., neural sources of variation that are not corrupted by motion. We took several744

steps to account for potential motion impacts on functional connectivity in children who745

nearly fail; we used partial correlations from an ICA that includes some motion artifact746

components (which removes these sources of variance) and residuals from a linear model747

including motion, as described in Section 2.1.6 and Section 2.3.2, which results in a Y that748

more closely captures neural sources of variation. However, if we then included summary749

motion measures in our propensity and outcome models, the propensity model would up-750
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weight these children who nearly failed, and the outcome model, integrating over the full751

range of head motion, would potentially reintroduce the motion impacts we tried to carefully752

remove. Additionally, our statistical estimator has the double robustness property: if at753

least one of the propensity or outcome models is correctly specified, we obtain a statistically754

consistent estimator of the deconfounded group difference. We include a rich set of predictors755

and an ensemble of machine learning algorithms, which helps to address the assumption of756

no unmeasured confounding.757

Positivity assumes that there are no values of {W,A} such that the data will always be758

unusable. Violations of positivity assumptions lead to out-of-sample prediction of functional759

connectivity in the outcome model and instabilities in the propensity model, which can760

lead to greater variance and bias (Petersen et al., 2010). In Fig. 5, we see that for the761

lenient criteria, the range of the behavioral traits generally overlap between included and762

excluded participants, although the most severe ADOS score does not appear among the763

included children. The highest ADOS score among included children was 23; among all764

children, 26 (A change in the range also occurs for SRS, but SRS was not included in the765

propensity and outcome models due to a large proportion of missing values.). As reported766

in Section 2.3.2, all propensities were greater than 0.30 for the first five random seeds. The767

lack of propensities close to zero for children with usable or unusable data indicates that the768

assumption of positivity is reasonable in our application. Regarding the last assumption,769

causal consistency is a technical assumption that assumes that Y (1) is the same as Y when770

a child has usable data, which in general cannot be tested but seems reasonable.771

4.4. Accounting for variables that should be balanced between diagnosis groups772

A possible limitation of the current approach is that we account for covariate imbalance773

between the ASD and typically developing groups using linear regression prior to attempting774

to account for bias due to data usability, and it may be desirable to pursue a statistical775

method that integrates covariate balancing into the deconfounded group difference. The776

deconfounded group difference estimates the marginal mean of each diagnosis group, where777
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integration is across the distribution of the behavioral variables given diagnosis (defined in778

Section 2.3.1). However, our typically developing sample was aggregated from multiple rs-779

fMRI studies conducted at KKI, not all of which involved a comparison sample of autistic780

children. As a result, sex, race, and socioeconomic status significantly differed between781

diagnosis groups (Table 1) for this secondary analysis. In an ideal prospective experiment782

using a random sampling design, these socio-demographic variables would not differ. The783

näıve approach estimated the difference between autistic and typically developing children784

while controlling for mean FD, max FD, number of frames with FD< 0.25 mm, sex, race, and785

socioeconomic status in a linear model, which is similar to the approach in Di Martino et al.786

(2014). Controlling for variables in a linear model corresponds to estimating the conditional787

mean of functional connectivity given these variables. The residuals of the linear model plus788

the effect of diagnosis are used as input to estimate the deconfounded group mean for each789

diagnosis group. If there is no sampling bias due to motion exclusion, then the deconfounded790

group difference is approximately equivalent to the näıve approach, which is a nice aspect of791

the present study in that it presents a method for evaluating whether confounding is likely to792

occur when group differences are estimated using the conventional approach. Our approach793

accounts for possible confounding due to the demographic and remaining motion imbalances794

in the ASD and typically developing samples, although it does so using the traditional linear795

model.796

We can define two sets of variables: 1) variables that we would like to be balanced in797

autistic and typically developing children in an ideal sample, and 2) variables whose distribu-798

tion is specific to diagnosis. The target parameter used in estimating an average treatment799

effect in causal inference marginalizes with respect to the distribution of variables pooled800

across treatments, which would address biases introduced by the first set of variables. Our801

deconfounded group difference addresses the second set of variables. Future work could de-802

fine a target parameter that marginalizes with respect to the desired distribution of variables803

that should be balanced and the desired distribution of variables whose distribution depends804
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on diagnosis.805

4.5. Other methods to account for missingness806

An experimental approach to improve the likelihood of collecting usable data from par-807

ticipants with more severe symptoms is to perform more extensive training in the mock808

scanner environment with the hope that this will allow children with more severe ASD to809

complete a scan session. Regarding statistical approaches, we use DRTMLE to estimate the810

deconfounded group difference. However, a host of other statistical methods could be ap-811

plied to the same end including covariate matching, propensity score matching (Stuart, 2010;812

Bridgeford et al., 2021), inverse propensity weighting (Lewinn et al., 2017), G-computation813

Robins (1986); Snowden et al. (2011), augmented inverse propensity weighting (Robins et al.,814

2012), and targeted maximum likelihood estimation. Comparing the performance of these815

approaches in the context of rs-fMRI studies is an important area for future work but is816

beyond the scope of this paper.817

4.6. Significance to other neurological disorders and developmental studies818

We used an rs-fMRI study of ASD to illustrate the unintended cost of motion QC on819

study generalizability, but the issue of data loss and selection bias due to motion QC is820

neither specific to ASD or to rs-fMRI. Head motion-induced artifacts are a notorious problem821

for all magnetic resonance-based neuroimaging modalities, and the relationship between822

motion and participant characteristics is problematic in studies of developmental and aging823

trajectories, as well as other neurological disorders. For instance, we found that younger824

children were more likely to be excluded. Recent studies investigating associations between825

functional brain organization and measures of maturity during the transition from childhood826

to adolescence have removed large proportions of data (Marek et al., 2019; Dong et al., 2021).827

Confounding could occur in analyses of rs-fMRI data collected from such developmental828

samples if the sample of included children that are able to lay motionless tend to be more829

mature than the full sample. Diffusion MRI and quantitative susceptibility mapping are830
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also susceptible to motion artifacts (Roalf et al., 2016; He et al., 2015), and as a result,831

studies using these modalities often exclude participants with gross motion. If quality control832

procedures in studies using these imaging methods result in a reduced sample in which a833

variable’s distribution differs from the original sample, and there is evidence that this variable834

is related to the outcome of interest, then we recommend adjusting means using DRTMLE.835
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6. Citation diversity statement846

Recent work in neuroscience (Dworkin et al., 2020) and other fields has identified a847

citation bias such that papers from women and other minority scholars are under-cited848

relative to the number of such papers in the field (Mitchell et al., 2013; Dion et al., 2018;849

Caplar et al., 2017; Maliniak et al., 2013; Bertolero et al., 2020; Wang et al., 2021; Chatterjee850

and Werner, 2021; Fulvio et al., 2021). We proactively attempted to choose references that851

reflect the diversity of the neuroscience and statistics fields in the form of contribution,852

gender, race, and ethnicity. First, we obtained predicted gender of the first and last authors of853

each reference using databases that store the probability of a name being carried by a woman854

or a man (Dworkin et al., 2020; Zhou et al., 2020), with possible combinations including855
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male/male, male/female, female/male, and female/female. Our references contain 15.2%856

woman(first)/woman(last), 13.0% man/woman, 16.7% woman/man, and 55.2% man/man.857

Relative to the expected proportions in the field of neuroscience, we over- or under-cited these858

categories by the following ratios: 8.1%, 3.6%, -9.8%, and -3.8%, respectively. Second, we859

obtained the predicted racial/ethnic category of the first and last author of each reference by860

databases that store the probability of a first and last name being carried by an author of color861

(Ambekar et al., 2009; Sood and Laohaprapanon, 2018). Our references contain 8.3% author862

of color (first)/author of color(last), 12.8% white author/author of color, 16.9% author of863

color/white author, and 62.0% white author/white author. Self citations for the first and last864

author of the current paper, as well as references for this diversity statement were excluded865

from these proportion calculations. These methods are limited by the databases they use866

for prediction, but we look forward to future work that could help us to better understand867

how to support equitable practices in science.868
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