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Abstract 14 

Local adaptation can lead to elevated genetic differentiation at the targeted genetic variant and 15 

nearby sites.  Selective sweeps come in different forms, and depending on the initial and final 16 

frequencies of a favored variant, very different patterns of genetic variation may be produced.  17 

If local selection favors an existing variant that had already recombined onto multiple genetic 18 

backgrounds, then the width of elevated genetic differentiation (high FST) may be too narrow to 19 

detect using a typical windowed genome scan, even if the targeted variant becomes highly 20 

differentiated.  We therefore used a simulation approach to investigate the power of SNP-level 21 

FST (specifically, the maximum SNP FST value within a window) to detect diverse scenarios of 22 

local adaptation, and compared it against whole-window FST and the Comparative Haplotype 23 

Identity statistic.  We found that SNP FST had superior power to detect complete or mostly 24 

complete soft sweeps, but lesser power than window-wide statistics to detect partial hard 25 

sweeps.  To investigate the relative enrichment and nature of SNP FST outliers from real data, we 26 

applied the two FST statistics to a panel of Drosophila melanogaster populations.  We found that 27 

SNP FST had a genome-wide enrichment of outliers compared to demographic expectations, and 28 

though it yielded a lesser enrichment than window FST, it detected mostly unique outlier genes 29 

and functional categories.  Our results suggest that SNP FST is highly complementary to typical 30 

window-based approaches for detecting local adaptation, and merits inclusion in future genome 31 

scans and methodologies. 32 

  33 
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 36 

Significance statement 37 

Studies that use genetic variation to search for genes evolving under population-specific natural 38 

selection tend to analyze data at the level of genomic windows that may each contain hundreds 39 

of variable sites.  However, some models of natural selection (e.g. favoring an existing genetic 40 

variant) may result in genetic signals of local adaptation that are too narrow to be detected by 41 

such approaches.  Here we use both simulations and empirical data analysis to show that 42 

searching for a site-specific signal of elevated genetic differentiation can find instances of local 43 

adaptation that other approaches miss, and therefore the integration of this signal into future 44 

studies may significantly improve our understanding of adaptive evolution and its genetic 45 

targets. 46 

  47 
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Introduction 48 

Geographically distinct populations are exposed to different selective pressures, which may 49 

result in local adaptation.  The detection of genomic regions under positive selection specific to 50 

one population is essential to uncovering the genetic basis of locally adaptive trait variation.  51 

Local adaptation can exist between populations with low genome-wide genetic differentiation, 52 

and comparing genetic variation between these closely-related populations can allow for much 53 

more powerful detection of positive selection than is possible from a single population. In light 54 

of that advantage, as well as the potential applicability of genetic mapping and functional 55 

approaches to locally adaptive traits, local adaptation has played a key role in our increasing 56 

understanding of adaptive evolution at the genetic level (Kawecki and Ebert 2004; Yeaman 57 

2015; Tigano and Friesen 2016).  In addition to its importance for evolutionary biology and 58 

ecology, the identification of regions under selection has implications for applied fields such as 59 

health sciences and agriculture because it can also pinpoint regions of the genome that hold 60 

functional diversity (Bamshad and Wooding 2003; Ross-Ibarra et al. 2007).  There has also been 61 

increasing recognition of the importance of local adaptation for a species’ future adaptive 62 

potential, with implications for conservation genetics and adaptation to climate change (Funk et 63 

al. 2012; Aitken and Whitlock 2013; Fitzpatrick and Keller 2015). 64 

Population genomic scans for local adaptation compare genetic variation between two 65 

populations, often searching for specific genomic windows that depart from genome-wide 66 

patterns of differentiation in a manner consistent with population-specific natural selection.  67 

Positive selection has traditionally been conceptualized and modeled as a selective sweep, 68 
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which traditionally involves a new beneficial mutation rising to fixation, with strong effects on 69 

genetic variation at linked sites (Maynard Smith and Haigh 1974; Kaplan et al. 1989).  However, 70 

there are different kinds of selective sweeps, depending on the initial and final frequencies of 71 

the favored variant, and different statistical tests for deviations from neutrality vary in their 72 

power to detect them. 73 

 First, selective sweeps can be classified as hard or soft sweeps.  In a hard sweep, only a 74 

single original haplotype carrying the advantageous allele is boosted by natural selection.  This 75 

situation might be expected if selection favors either a newly occurring mutation or else a 76 

variant at low enough frequency that only one copy contributes to the sweep by chance.  In a 77 

soft sweep, two or more distinct haplotypes carrying the beneficial variant increase in 78 

frequency.  In some cases, soft sweeps occur because the advantageous allele was present in 79 

the population, segregating neutrally, prior to the onset of selection (Hermisson and Pennings 80 

2005).  But they can also be the result of recurrent mutations or influx of new alleles through 81 

migration (Pennings and Hermisson 2006a, 2006b).   82 

Selective sweeps can also be classified as complete or partial sweeps.  In a complete 83 

sweep, the advantageous allele reaches fixation in the population.  In a partial sweep, the 84 

advantageous allele is at an intermediary frequency.  This may occur either because the sweep 85 

is still ongoing or because positive selection ended prior to fixation.  Situations in which a sweep 86 

might terminate prematurely include an environmental change, a polygenic trait reaching its 87 

new optimum or threshold value, or an allele reaching a balanced equilibrium in a scenario such 88 

as heterozygote advantage.   89 
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Different kinds of selective sweeps leave different signatures of local adaptation and our 90 

power to detect them will differ depending on which methods we use (Lange and Pool 2016).  91 

Some common approaches to scanning the genome for population-specific selective sweeps use 92 

FST (or FST-based) statistics to quantify genetic differentiation between populations.  Local 93 

adaptation is expected to create genomic regions with higher differentiation than what would 94 

be expected under neutrality, since allele frequencies in these regions will change faster as the 95 

beneficial allele increases in frequency (Lewontin and Krakauer 1973).  Neutral expectations can 96 

be inferred either with demographic simulations or an outlier approach.  Demographic 97 

simulations, based on a previously estimated model of population history, can be used to mimic 98 

the history of the populations being studied in the absence of natural selection.  Outlier 99 

approaches rely on the genome-wide distribution of FST as a proxy for the neutral distribution, 100 

since neutral forces (including those due to demographic history) can broadly be expected to 101 

affect the whole genome similarly.  Genome scans for regions under selection have typically 102 

focused on measuring FST or other statistics in windows of the genome of some predefined size 103 

to search for highly differentiated genomic regions.  104 

A motivating empirical example for the present study comes from an investigation of the 105 

genetic basis of locally adaptive melanism in high altitude Drosophila melanogaster populations.  106 

Here, the authors used QTL mapping to identify genomic regions associated with derived dark 107 

pigmentation traits, and then used FST to scan these regions for signatures of selection (Bastide 108 

et al. 2016).  One very narrow and strong QTL for highland Ethiopian melanism contained the 109 

well-known pigmentation gene ebony, which also contributed to melanic evolution in a Uganda 110 
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population (Pool and Aquadro 2007; Rebeiz et al. 2009).  Assessing genetic differentiation 111 

between the Ethiopia and Zambia populations for the window containing ebony, although 112 

window-wide FST was only marginally elevated, it had a SNP with extremely high FST (0.85).  113 

Compared to demographic simulations, this window’s maximum SNP FST value was among the 114 

top 1% of all windows, while its window-wide FST was only among the 7% highest (Bastide et al. 115 

2016).  Simulated scenarios of soft sweeps from standing variation replicated this pattern of 116 

extremely high SNP FST and only moderately high window FST, suggesting that some kinds of 117 

selective sweeps that may not be detected using window-wide FST could potentially be detected 118 

with a SNP-level FST approach.  Further potential support for the use of SNP FST to detect 119 

adaptive events in this same species is demonstrated by much stronger parallel signatures of 120 

selection seen at the SNP level compared to the window level in populations that independently 121 

adapted to cold environments (Pool et al. 2017). 122 

Challenges of using SNP FST values include their variability due to random sampling 123 

effects (Weir et al. 2005) and the large number of tests that need to be made against a null 124 

distribution.  Therefore, larger sample sizes are needed than for window FST.  By using only the 125 

highest SNP FST value within a window, and comparing against null simulations with demography 126 

and recombination, we may somewhat improve the multiple testing issue, since here we are not 127 

treating all tightly linked SNPs as fully independent tests.  Another advantage of this approach is 128 

to make a SNP FST genome scan easier to compare to window-wide statistics.  If these metrics 129 

are able to detect different types of selective events, then a more comprehensive scan for 130 

signatures of selection could benefit from using both window and SNP-based methods.  The 131 
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genome-wide distribution of these statistics in natural populations, compared to their neutral 132 

expectations, might also shed light on the contribution of different kinds of selective sweeps to 133 

local adaptation. 134 

To understand the utility of using the highest FST value of any SNP within a window 135 

(herein FST_MaxSNP) as a local adaptation summary statistic, we performed power analyses based 136 

on extensive simulations, and then applied these results to empirical data from natural 137 

populations of D. melanogaster.  We calculated the power of FST_MaxSNP to detect signatures of 138 

local adaptation under a wide range of different selective scenarios and demographic histories.  139 

We performed demographic simulations and compared the power of FST_MaxSNP to both window-140 

wide FST (herein, FST_Window) and a comparative haplotype-based statistic (χMD).  Then, we 141 

investigated the genome-wide distribution of FST_MaxSNP and FST_Window among several natural 142 

populations of D. melanogaster, to determine whether either statistic was enriched genome-143 

wide in empirical data compared to neutral expectations.  Finally, we used an outlier approach 144 

to perform a genome scan for regions potentially under local adaptation between the Ethiopia 145 

and Zambia populations mentioned above, using FST_MaxSNP, FST_Window, and χMD, and we 146 

determined the extent of overlap between candidate regions identified according to these 147 

different methods.  These analyses allowed us to both identify the parameter space in which 148 

FST_MaxSNP outperforms other statistics, and to assess the utility and complementarity of applying 149 

these approaches to real data. 150 

 151 

 152 
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Results 153 

SNP-level FST and window-wide summaries have complementary power to detect local 154 

adaptation 155 

We performed power analyses of FST_MaxSNP, FST_Window, and χMD using population genetic 156 

simulations with and without natural selection.  We used msms (Ewing and Hermisson 2010) to 157 

simulate population-specific selective sweeps with constrained initial and final allele 158 

frequencies, as well as scenarios with population size bottlenecks or migration (simulation 159 

commands in Table S1).  For each scenario, we simulated populations with high effective 160 

population size (Ne) using a set of parameters based on D. melanogaster and populations with 161 

low Ne using parameters based on humans, following the design of a previous power analysis 162 

study that did not include FST_MaxSNP (Lange and Pool 2016).  Power was defined in a locus-163 

specific context, based on the proportion of selection simulations giving a more extreme value 164 

of the summary statistic than the 95th quantile of its distribution from neutral simulations. 165 

Unsurprisingly, all three statistics were found to have high power for the case of 166 

complete hard sweeps (Figure 1; Table S1).  These simulations were conditioned on fixation of a 167 

beneficial new mutation in one population that had not occurred in the other population.  In 168 

light of this fixed difference, FST_MaxSNP in all replicates had its maximum value (FST_MaxSNP = 1).  In 169 

such cases, the power of FST_MaxSNP was binary, either zero or one, depending on whether or not 170 

5% of the corresponding neutral replicates had an allele that reached fixation.  In our simple 171 

isolation model, the likelihood that a neutral allele can reach fixation increases with the split 172 

time (Table S1; Figure S1).  Stronger bottlenecks also boost the likelihood of having neutral 173 
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alleles reach fixation (Table S1; Figure S2, Figure S3).  Hence, power for FST_MaxSNP to detect 174 

complete hard sweeps goes from high, for recent splits and weaker bottlenecks, to zero for 175 

histories in which more than 5% of neutral replicates contain a fixed difference.  Similarly, 176 

FST_Window and χMD had higher power to detect signatures of local adaptation following recent 177 

splits and in weaker bottlenecks, but their change in power was gradual and continuous instead 178 

of binary. 179 
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 180 

Figure 1.  SNP-level FST and window-wide statistics show complementary power to detect local 181 

adaptation, depending on the type of selective sweep simulated.  Numbers and colors in each 182 

panel both depict statistical power to detect local adaptation, in high Ne populations (s=0.001, 183 
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left column) and low Ne populations (s=0.01, right column). In each panel, the x-axis illustrates 184 

the pre-selection frequency of a favored variant (with the left column indicating selection on 185 

newly-occurring mutations) and the y-axis illustrates the final frequency of the sweep (with the 186 

top row showing complete sweeps).  Detection power is shown for (A and D) FST_MaxSNP, (B and E) 187 

FST_Window, and (C and F) χMD.  These results are based on a demographic history of simple 188 

isolation between two populations without change in population size, with a split time of 0.2Ne 189 

generations. 190 

 191 

In the case of complete or nearly complete soft sweeps, FST_MaxSNP showed a clear power 192 

advantage over FST_Window and χMD.  Notably, for sweeps ending between 80% and 100% 193 

frequency, FST_MaxSNP had high power to detect local adaptation, even for cases with rather high 194 

initial frequencies of the beneficial allele (e.g. 10%; Figure 1; Figure 2).  In contrast, FST_Window and 195 

χMD showed rapidly diminishing performance as sweeps became softer (Figure 1; Figure 2).  196 

These results make sense, in that beneficial alleles that drift to higher pre-selection frequencies 197 

have more time to recombine onto multiple haplotypes, and recombination events will have 198 

happened closer to the selected site on average.  Therefore, soft sweeps are generally narrower 199 

in width and may not substantially alter window-wide statistics (Catania et al. 2004; Schlenke 200 

and Begun 2004; Hermisson and Pennings 2005).  Although the two window-wide statistics 201 

maintained good power for lower initial frequencies, some of the replicates of those scenarios 202 

are actually generating hard sweeps due to the chance survival of a single haplotype carrying 203 

the favored variant (Jensen 2014), as shown by an average number of beneficial haplotypes 204 
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lower than two in these simulations (Figure 2).  Moreover, as the average number of haplotypes 205 

carrying the favored variant increased, the power of the window-wide statistics decreased 206 

(Figure 2), while the power of FST_MaxSNP was unchanged.  207 

 208 

 209 

Figure 2.  FST_MaxSNP shows an increasing power advantage as sweeps become softer.  For 210 

complete sweeps with a range of initial frequencies (x-axis), the two y-axes show detection 211 

power for each statistic (left axis, dots) and the average number of unique beneficial haplotypes 212 

present at the end of the simulation (right axis, dashed line).  Results are shown for (A) high Ne 213 

populations (s=0.001) and (B) low Ne populations (s=0.01), for the same demographic history as 214 

in Figure 1. 215 

 216 

Contrasting results were obtained for partial, harder sweep scenarios.  In cases where 217 

new mutations or rare standing variants were only boosted to intermediate frequencies, 218 

FST_Window and χMD had fairly strong power, whereas FST_MaxSNP declined sharply in effectiveness at 219 
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around 60% final frequency for hard sweeps (Figure 1).  These results are also intuitive, in that 220 

partial hard sweeps can meaningfully alter allele frequencies across a whole window and 221 

generate a class of identical haplotypes, even though no single SNP traverses an extreme range 222 

of frequencies.  The broadly similar power profiles of FST_Window and χMD are somewhat surprising 223 

in light of their distinct basis (albeit consistent with Lange and Pool, 2016).  Less surprising is 224 

that for the challenging scenario of partial soft sweeps, none of the three statistics showed 225 

strong power in the scenarios examined (Figure 1).   226 

Whereas the above simulations had no migration, we also wondered if FST_MaxSNP might 227 

prove useful in detecting targets of local adaptation for which genetic differentiation had been 228 

whittled down in width by recombination with migrant alleles over time.  We therefore 229 

simulated scenarios with varying combinations of migration rate and population split time, while 230 

assuming symmetric migration rates and equal but opposing selective pressures.  Overall, 231 

FST_MaxSNP and FST_Window performed very similarly to each other and better than χMD.  Particularly 232 

in the high Ne scenarios (which feature a higher ratio of recombination to mutation events) with 233 

intermediate migration rates, there was a narrow space of parameters in which FST_MaxSNP 234 

performed slightly better than FST_Window (Figure S4).  The split time between the populations 235 

greatly affected the power of χMD, which performed better on recent splits.  The power of the 236 

FST statistics showed a small improvement for more recent splits and intermediate migration 237 

rates.  Although small, the effect of split time also seemed more pronounced on FST_Window than 238 

FST_MaxSNP (Figure  S4).  Overall, these analyses provide only modest support for the notion that 239 
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FST_MaxSNP could help detect peaks of genetic differentiation driven by local adaptation that have 240 

been narrowed by migration and recombination. 241 

In the above simulations, we used a sample size of 50 chromosomes per population.  We 242 

generally expect statistical power to be correlated with sample size and understanding the 243 

effect of sample size on the power of each statistic is relevant when designing an experiment or 244 

choosing which statistics to use.  We analyzed the power of FST_MaxSNP, FST_Window, and χMD in 245 

three scenarios for high Ne and three for low Ne.  We chose scenarios in which FST_MaxSNP and the 246 

window wide statistics performed differently:  a mostly complete soft sweep, a complete soft 247 

sweep with a bottleneck, and a partial hard sweep.  We found that sample size had a stronger 248 

effect on FST_MaxSNP than on the window wide statistics (Figure 3).  FST_MaxSNP is based on allele 249 

frequencies at a single site, so it is more sensitive to the increased sampling variance at lower 250 

sample sizes than window wide statistics.  The sampling variance in each SNP in a window 251 

should fluctuate around the mean, so when information from each SNP is combined the 252 

window-wide statistic suffers less from the reduced sample size.  Demographic history also 253 

affected the effect of sample size on each statistic:  in scenarios with a population bottleneck, 254 

which also increases sampling variance, the power of FST_MaxSNP changed from near 1 at sample 255 

size 50 or higher to 0 at sample sizes smaller than 50 (Figure 3C, 3D).  More generally, FST_MaxSNP  256 

was found to perform much better with 50 chromosomes than with 20, but showed relatively 257 

less improvement for sample sizes larger than 50. 258 
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 259 

Figure 3.  The power of FST_MaxSNP is particularly sensitive to sample size.  Here, the power of 260 

each statistic (y-axis) is plotted as a function of sample size (x-axis; number of chromosomes per 261 

population).  We found that depending on sample size, FST_MaxSNP outperforms FST_Window and χMD 262 

for a simple isolation model, for:  (A) a high Ne population with initial beneficial allele frequency 263 
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of 0.005 and final frequency of 0.70,and (B) a low Ne population with initial frequency 0.05 and 264 

final frequency of 0.80.  Similar results were observed for a complete soft sweep with a 265 

population bottleneck of 0.05, except that the loss of power for FST_MaxSNP was more immediate 266 

at lower sample sizes, for:  (C) a high Ne population with initial frequency 0.05,  (D) a low Ne 267 

population with initial frequency 0.01.  For partial hard sweep scenarios where FST_Window and χMD 268 

outperform FST_MaxSNP, all three statistics show more gradual sample size effects, specifically for 269 

new mutations and:  (E) a final frequency of 0.40 in a high Ne population, and (F) a final 270 

frequency of 0.50 in a low Ne population. 271 

 272 

We also analyzed the effect of window size on the power of each statistic, with the aim 273 

of determining whether there would be a window size for which a single statistic would perform 274 

well in contrasting scenarios.  For example, one might hope that FST_Window for a narrower 275 

window might retain good performance for partial hard sweeps, while also capturing the 276 

advantages of FST_MaxSNP for complete soft sweeps.  We explored four scenarios of partial 277 

sweeps, two for the high Ne and two for the low Ne.  For each population size, we chose one 278 

scenario in which the power of FST_MaxSNP outperformed FST_Window and χMD, and one in which it 279 

underperformed.  In practice, a reduction in window size would result in an increase in the 280 

number of tests performed in a genome scan.  Therefore, we applied a Bonferroni correction to 281 

the p-value proportional to the reduction in size.  Our results showed that, for the two scenarios 282 

in which FST_MaxSNP outperformed FST_Window and χMD, the power of each statistic remained mostly 283 

constant (Figure 4).  For the scenarios in which FST_Window and χMD had an advantage, the power 284 
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of each statistic, as well as the difference among them, declined with smaller window sizes.  285 

Overall, there was no window size in which a single statistic performed well for all scenarios, 286 

and hence it may be preferable to apply FST_MaxSNP and window-wide statistics separately to 287 

empirical data. 288 

 289 

 290 

Figure 4.  Varying window size does not reveal a single statistic with broad detection power.  291 

The top panels show partial hard sweeps for which FST_Window and χMD outperform FST_MaxSNP:  (A) 292 

a high Ne population with a final beneficial allele frequency of 0.40, And (B) a low Ne population 293 

with a final frequency of 0.50. The bottom panels show mostly complete soft sweeps for which 294 

FST_MaxSNP outperforms FST_Window and χMD:  (C) a high Ne population with an initial beneficial allele 295 
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frequency of 0.005 and final frequency of 0.70, and (D) a low Ne population with initial 296 

frequency 0.05 and final frequency 0.80.  These power values reflect a Bonferroni-corrected 297 

significance threshold to reflect the relatively larger number of smaller windows needed.  298 

Results do not suggest that any statistic in a smaller window size captures the advantages of 299 

both FST_MaxSNP and the window-wide statistics. 300 

 301 

Outliers for FST_MaxSNP and FST_Window are enriched in empirical data 302 

In light of the above results, we were interested in applying both FST_MaxSNP and FST_Window to an 303 

empirical data set, in part with an interest in quantifying the relative enrichment of outliers for 304 

each statistic, and what that might suggest about the modes of selection active in these 305 

populations.  We chose to focus on data from the Drosophila Genome Nexus (Lack et al. 2015, 306 

2016), because it contained several populations of D. melanogaster that were linked by an 307 

estimated model of population history (Sprengelmeyer et al. 2020) and had at least minimal 308 

sample sizes available for studying genome-wide patterns of FST (Table S2).  We included six 309 

natural populations of flies.  From the ancestral range in Zambia, we included one town 310 

population (Siavonga) and one wilderness population (Kafue).  We also included four additional 311 

town populations:  from Rwanda, South Africa, Ethiopia, and France (the latter three having 312 

independently colonized colder environments; Pool et al. 2017). 313 

We calculated a p-value for each empirical window in each pairwise population 314 

comparison, based on neutral distributions of FST_MaxSNP or FST_Window generated using coalescent 315 

simulations of the estimated demographic history (Sprengelmeyer et al. 2020; simulation 316 
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commands in Table S2).  Under neutrality, a uniform distribution of p-values is expected.  In 317 

general, for most population pairs, the distribution of p-values for FST_MaxSNP and FST_Window 318 

showed a U-shape instead of an uniform distribution (e.g. Figure 5A).  Nonetheless, the 319 

enrichment of high FST (defined as p-values from 0 to 0.05) and low FST (p-values from 0.95 to 1) 320 

varied for each statistic and across the population comparisons (Figure 5B-C). 321 
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Figure 5.  FST_MaxSNP and FST_Window both show outlier enrichment between natural populations of 323 

D. melanogaster. (A) Ethiopia-Zambia FST_MaxSNP and FST_Window values on chromosome X show 324 

enrichment of low (right) and especially high values (left), based on the distribution of p-values 325 

obtained from neutral demographic simulations. (B and C) FST_MaxSNP (lower diagonal) and 326 

FST_Window (upper diagonal) both show enrichment of high outliers on (B) chromosome X and (C) 327 

combined autosome arms.  FST_Window shows a greater enrichment in nearly all cases.  328 

Populations:  SD = South Africa. ZI = Zambia. KF = Kafue, Zambia. RG = Rwanda. EF = Ethiopia.  329 

Population pairs not present in the same demographic model were not evaluated.  Color scale 330 

ranges from the minimum to maximum value within each panel. 331 

 332 

 All population pair comparisons showed an enrichment for windows with high FST_Window.  333 

The smallest enrichment was found between the Zambia (town) and France populations, for 334 

which there were 3.29 more windows with high FST_Window than expected by chance.  The highest 335 

enrichment was found in the comparison between the South Africa and Kafue (Zambia 336 

wilderness) populations, with an enrichment factor of 9.06.  For FST_MaxSNP, eight population pairs 337 

had an enrichment value > 2, the highest being 5.41 (between the Zambian town and wilderness 338 

populations, and between South Africa and Rwanda).  On the other hand, one population pair 339 

was slightly depleted of windows with high FST_MaxSNP (enrichment to 0.87 between France and 340 

Ethiopia).  In most comparisons, FST_Window showed higher enrichment than FST_MaxSNP.  The only 341 

exception was the comparison between South Africa and Zambia (town population), in which 342 

both enrichments were very similar: FST_MaxSNP enrichment was 4.48 and FST_Window enrichment 343 
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4.32 (Figure 5).  This large variation in enrichment between populations suggests that the kind 344 

and prevalence of selective sweeps unique to each population may vary among populations.   345 

The almost universally greater enrichment of FST_Window relative to FST_MaxSNP could hint 346 

that sweeps in the unique detection parameter space of FST_Window (i.e. partial harder sweeps) 347 

are more common among these populations than sweeps in the unique space of FST_MaxSNP (i.e. 348 

more complete softer sweeps).  However, the above enrichments may be influenced by locally 349 

adaptive sweeps that create multiple linked outlier windows.  We therefore pursued a 350 

complementary analysis in which nearby outlier windows were merged into “outlier regions”, 351 

which were then removed one at a time until the observed enrichment was erased (see 352 

Materials and Methods).  For almost every population pair, we had to remove a larger number 353 

of regions to erase the signal of enrichment of FST_Window than the signal of FST_MaxSNP (Figure 6).  354 

Hence, the greater enrichment of FST_Window relative to FST_MaxSNP does not appear to be a product 355 

of broader linkage signals of FST_Window outliers alone. 356 

 357 
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Figure 6.  Number of outlier regions that were removed to erase the signature of enrichment for 358 

high FST_MaxSNP (lower diagonal) and FST_Window (upper diagonal) for each population on (A) 359 

chromosome X and (B) the combined autosome arms.  FST_Window was associated with a greater 360 

outlier region enrichment for most population pairs, reinforcing the window-level patterns 361 

shown in Figure 5.  Populations: SD = South Africa. ZI = Zambia. KF = Kafue, Zambia. RG = 362 

Rwanda. EF = Ethiopia.  Population pairs not present in the same demographic model were not 363 

evaluated. Color scale ranges from the minimum to maximum value within each panel. 364 

 365 

Genome Scan for Signatures of Selection 366 

We chose to complement the above multi-population analysis of genome-wide patterns with a 367 

closer analysis of a single population pair.  We chose to compare the Ethiopia and Zambia town 368 

populations because (1) Their relatively large sample sizes of 129-181 and 60-76 respectively for 369 

each chromosome arm (Table S2) are more conducive to the analysis of specific FST_MaxSNP 370 

outliers, (2) These populations showed enrichments of both FST_MaxSNP and FST_Window (Figure 4), 371 

and (3) Past results from these populations helped motivate the present study (e.g. Bastide et 372 

al. 2016).  We performed genome scans for regions potentially under population-specific 373 

selection between these populations using FST_MaxSNP, FST_Window, and χMD.  For each statistic, we 374 

obtained a list of outlier windows (top 1%), and as above, we merged nearby outlier windows 375 

into regions (Materials and Methods).  We obtained 138 outlier regions for FST_MaxSNP, 138 for 376 

FST_Window , and 155 for χMD.  Our results showed an overlap of just 39% between the outlier 377 

regions detected with FST_MaxSNP and FST_Window.  Perhaps surprisingly in light of the above power 378 
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results, there was a smaller overlap of either FST metric with χMD (Figure 7A), although the 379 

overlap of the haplotype statistic with FST_Window was indeed slightly greater.  In regions that 380 

were outliers for FST_MaxSNP but not FST_Window, the distribution of individual SNP FST values often 381 

had a narrow sharp FST peak, with most of the other SNPs having low FST values. On the contrary, 382 

in regions there were outliers for FST_Window but not FST_MaxSNP, often no single SNP had a large FST 383 

value, but there was a broad moderate FST plateau with many SNPs showing intermediate FST 384 

values (Figure 8). 385 

 386 

Figure 7.  The three statistics detect mostly unique genomic regions and functional categories.  387 

(A) Overlap between the top 1% outlier regions detected with FST_MaxSNP, FST_Window, and χMD.  * 388 

indicates the average number of outlier regions between the two statistics: 15 FST_Window outlier 389 

regions exclusively overlap χMD outliers and 13 χMD outlier regions exclusively overlap FST_Window 390 

outliers.  (B) Overlap between enriched GO terms with raw p-value <= 0.01 based on the outlier 391 

regions detected with FST_MaxSNP, FST_Window, and χMD. 392 
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 393 

 394 

Figure 8. Examples of the distinct SNP-level FST landscapes associated with FST_MaxSNP versus 395 

FST_Window outliers.  Each plot shows an outlier window for an Ethiopia-Zambia FST statistic, plus 396 

its adjacent windows.  Dashed vertical lines delimit the boundaries of the windows.  Numbers 397 

under each window are the empirical quantiles of that window’s statistic (FST_MaxSNP, FST_Window, 398 

and χMD) in relation to the chromosome arm-wide distribution of the same statistic, with  the 399 

outlier (quantile < 0.01) value in red.  (A) An outlier window for FST_MaxSNP (center) shows a peak-400 

like FST landscape with one particularly differentiated SNP.  (B) An outlier window for FST_Window 401 

(center) shows a broad plateau of fairly high FST values.  Gene names and structures are shown 402 

at the top of each plot.  Protein-coding exons are in yellow, while 5’ and 3’ untranslated regions 403 

are in dark blue and light blue, respectively. 404 
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 405 

We then performed GO term enrichment analysis separately for each statistic’s list of 406 

outlier regions.  Considering only GO terms with raw p-value < 0.01 from each list, we found 407 

mostly lower overlaps between enriched GO terms compared to the spatial overlap between 408 

outlier regions (Figure 7B; Table S3).  The three statistics differed substantially in the number of 409 

enriched GO terms by this criterion:  357 for FST_Window, 133 for FST_MaxSNP, and 71 for χMD 410 

(although we emphasize that these terms are not independent and any given list of enriched GO 411 

terms will contain overlapping categories).  The relative overlap between GO terms enriched for 412 

each statistic largely followed the relative numbers of enriched GO terms for each (Figure 7B).  413 

Mirroring the outlier region results, most enriched GO terms were detected for only one of the 414 

three statistics, consistent with their complementary detection powers described above. 415 

 416 

Discussion 417 

FST_MaxSNP complements other statistics by detecting soft sweeps 418 

Identifying regions under selection can help us answer further questions about the evolution of 419 

local adaptation, such as which biological functions are under selective pressure, the number of 420 

loci underlying adaptive events, the source of the adaptive variation, and the kinds of genetic 421 

changes that might be under selection.  Our results underscore the importance of deploying 422 

methods capable of capturing different kinds of selective sweeps when the aim of the study is to 423 

identify as many genes potentially under local adaptation as possible.  424 
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FST_MaxSNP in particular, seems to be especially useful to detect soft sweeps with relatively 425 

large initial and final frequencies of the beneficial allele.  Instances of mostly complete soft 426 

sweeps, as simulated here, represent regions in which a beneficial allele was present in several 427 

different haplotypes that might have increased in frequency along with the beneficial allele.  428 

While the selected SNP itself changed in frequency drastically, resulting in a large FST_MaxSNP, the 429 

alleles around it must have changed in frequency to a lesser degree because many background 430 

haplotypes were hitchhiking along with the beneficial allele.  Therefore, while the beneficial 431 

variant can have an extreme FST value, the lower allele frequency changes in the other SNPs in 432 

that window would result in a FST_Window that is not statistically significant, and thus a low power 433 

to detect a selective sweep under these conditions.  434 

The window-wide metrics, FST_Window and χMD, had greater power than FST_MaxSNP to detect 435 

relatively harder, partial sweeps that had intermediate final allele frequencies.  In these sweeps, 436 

no individual SNP changed dramatically in frequency, so none have FST values higher than what 437 

could be obtained randomly in the genome.  However, the increase in frequency of one or a few 438 

haplotypes resulted in many SNPs in the same region with intermediate FST, producing a 439 

window-wide pattern that is too extreme to be generated by chance - even if each single marker 440 

individually did not have an extreme FST value. 441 

 There was little difference in the power of FST_MaxSNP and FST_Window to detect regions 442 

under selection in scenarios with varying migration rates.  We had expected that FST_MaxSNP 443 

would outperform FST_Window in scenarios with older splits, as selection might only maintain a 444 

narrow window of differentiation between the two populations in the presence of long-term 445 
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recombination with migrant haplotypes.  Nonetheless, differences in split time between the two 446 

populations only had a small effect in a very narrow space of parameters (intermediate 447 

migration rates for high Ne populations, Figure S1), suggesting that even in scenarios with recent 448 

divergence, the populations had already reached a state of equilibrium and the balance 449 

between migration, selection, and recombination did not result in distinguishable signatures of 450 

selection between FST_MaxSNP and FST_Window.  However, both metrics outperformed χMD on the 451 

simulated scenarios, indicating that selection could not maintain long shared haplotypes in the 452 

presence of migration. 453 

In light of the complementary performance of FST_MaxSNP and FST_Window for the non-454 

migration cases, we tested whether FST_Window across shorter windows could yield a balance of 455 

reasonable power to detect both complete soft sweeps and partial hard sweeps.  However, the 456 

relationship between window size and the power - while accounting for the increase in the 457 

number of tests in smaller windows - did not follow this prediction.  Our results suggest that 458 

applying both FST_MaxSNP and FST_Window to conventionally-sized windows is preferable to shrinking 459 

the window size in an effort to identify narrower soft sweeps.  More generally, we suggest that 460 

genetic differentiation on both SNP and broader scales should be incorporated into scans for 461 

local adaptation, whether using the specific summary statistics described here, or attempting to 462 

develop a single statistic or integrated analysis framework that encompasses the advantages of 463 

both. 464 

In this study, we have used neutral demographic simulations to estimate statistical 465 

power at the single window level, only penalizing multiple tests when comparing between 466 
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window sizes.  Clearly, our results do not imply the power to identify genome-wide significant 467 

loci, which is only rarely attainable for population genomic scans.  Instead, most genome scans 468 

aim to identify good candidates for downstream study, and our results are best interpreted in 469 

terms of the relative utility of these summary statistics to identify local adaptation candidates.   470 

An important caveat of using FST_MaxSNP is that it requires a greater sample size than 471 

FST_Window.  With smaller samples, it is easy to get a large FST_MaxSNP at one of the many analyzed 472 

SNPs through sampling variance alone, whereas an extreme FST_Window value is less likely in this 473 

scenario.  It is difficult to provide any universal advice regarding sample size, because the 474 

neutral variance of FST_MaxSNP also depends strongly on demographic history, as shown above.  475 

Nonetheless, we have shown that in two scenarios in which FST_MaxSNP outperformed FST_Window its 476 

power declined considerably when we decreased the sample size from 50 to 20 chromosomes. 477 

Although the relationship between sample size and power will depend on the specific 478 

populations being studied, the utility of FST_MaxSNP seems most promising when sample sizes are 479 

around 100 alleles per population or more.  However, it would be advisable to conduct neutral 480 

simulations based on estimated or suspected demography, in order to identify sample sizes for 481 

which it is very unlikely to get extreme SNP FST values in the absence of local adaptation. 482 

  483 

Both FST_Window and FST_MaxSNP outliers are enriched among Drosophila populations 484 

When we applied FST_Window and FST_MaxSNP to empirical data from D. melanogaster populations, 485 

we found that enrichment patterns of FST_Window and FST_MaxSNP varied among population pairs, 486 

both for high and low FST values.  The excess of windows with high FST observed could be 487 
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explained by local adaptation: unique selective sweeps in one population increase the 488 

differentiation between two populations in that region.  Not all population pairs showed the 489 

same degree of enrichment for high FST.  A larger enrichment could be due to a higher number 490 

of selective sweeps between two populations, stronger selective events that impacted a larger 491 

region of the genome, or a neutral history more conducive to outlier detection.  The populations 492 

we studied cover a large geographical scale, most are located in sub-Saharan Africa and one in 493 

Europe.  These populations are exposed to a variety of environments, ranging from warm 494 

tropical lowlands to cool high latitude and high altitude regions, in addition to commensal 495 

versus wilderness settings (Sprengelmeyer et al. 2020).  Hence, they are most likely exposed to 496 

several unique selective pressures that could be underlying local adaptation and an enrichment 497 

of high FST values.   498 

Alternatively, enrichment for high FST could also be explained by background selection, 499 

which is expected to reduce genetic diversity and therefore result in lower effective population 500 

sizes in that genomic region.  Genetic drift is stronger in regions of low Ne, which could increase 501 

the differentiation between two populations and produce high FST (Charlesworth et al. 1993). 502 

However, a simulation study of background selection targeting stickleback exons found no 503 

evidence for background selection increasing FST outliers (Matthey-Doret and Whitlock 2019).  504 

On the other extreme, the existence of enrichment for low values of FST suggests that 505 

many regions of the genome maintained unexpectedly similar allele frequencies between two 506 

populations.  Following a population split, neutral evolutionary forces such as genetic drift are 507 

expected to increase the genetic differences between two populations.  The fact that many 508 
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regions seemed to have changed less than what was expected due to neutral forces could also 509 

be explained by the action of natural selection.  This could be the product of shared selective 510 

sweeps (i.e. similar selective pressures) taking place in both populations, instead of local 511 

adaptation.  Shared balancing selection could also be acting at some loci to maintain allele 512 

frequencies constant between two populations, perhaps even from before their split time.   513 

We should also acknowledge that the demographic models applied here are simply the 514 

best available estimates of population history, and no demographic model fully accounts for the 515 

complexity of natural populations.  Demographic model misspecification could result in some 516 

enrichment of high and/or low FST values.  One potential source of error in demographic 517 

estimation is natural selection.  The demographic models were estimated based on tentatively 518 

neutral regions of the genome (Sprengelmeyer et al. 2020).  However, these regions could be 519 

under the influence of linked positive and negative selection, with the potential to bias 520 

demographic estimation.  For example, if the presumed neutral data was substantially affected 521 

by either local adaptation or shared sweeps, it could bias the neutral distribution of FST towards 522 

higher or lower values, respectively, making it more difficult to detect FST outliers in that 523 

direction. Nonetheless, previous work suggests that this effect might be weak on demographic 524 

inference in D. melanogaster (Lange and Pool 2018).   525 

 In nearly all population pairs, FST_Window showed a larger enrichment than FST_MaxSNP.  The 526 

greater enrichment of FST_Window persisted when we instead pursued an outlier region removal 527 

strategy.  In light of the complementary zones of power shown in Figure 1, these results suggest 528 

that roughly speaking,there might be a larger contribution of partial hard sweeps than complete 529 
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soft sweeps to local adaptation among these populations.  Furthermore, the fairly low levels of 530 

outlier overlap between FST_Window and FST_MaxSNP may suggest that the sweeps both statistics can 531 

reliably detect (i.e. more complete harder sweeps) are not the primary drivers of local 532 

adaptation in this data set.  Overall, these results suggest that partial sweeps might have played 533 

a large role in the adaptation of fly populations to diverse environments.  The importance of 534 

partial sweeps in populations of D. melanogaster has been proposed previously, including for 535 

some of the populations studied here (Pool and Aquadro 2007; Bastide et al. 2016; Garud and 536 

Petrov 2016; Vy et al. 2017). 537 

 Here, we have shown that SNP-level FST (FST_MaxSNP) offers strong power to detect soft 538 

sweeps, and is highly complementary to window-wide frequency and haplotype statistics for 539 

detecting local adaptation.  These results stress the importance of taking into account the 540 

different signatures left by different kinds of selective sweeps in the genome when deciding 541 

how to perform a genome scan. The raw summary statistics evaluated here can either be 542 

applied in parallel, or their signals can be integrated into frameworks such as approximate 543 

Bayesian computation and machine learning.  Thus far, the latter methodologies have been 544 

used more extensively to detect and classify selective sweeps within a single population (Peter 545 

et al. 2012; Sheehan and Song 2016; Schrider and Kern 2016, 2017).  However, such approaches 546 

are equally applicable to the study of local adaptation (Key et al. 2014).  Future work could 547 

investigate whether methods that combine multiple statistics would benefit from including 548 

FST_MaxSNP, potentially increasing their power to detect soft sweeps and their accuracy in 549 

classifying different types of sweeps.  Because studies of genetic differentiation between 550 
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populations inherently control for evolutionary variance in the shared ancestral population, 551 

local adaptation may offer a better “signal to noise ratio” regarding the types of positive 552 

selection acting in natural populations, compared to single population studies.  Hence, our 553 

results may contribute toward not only an improved ability to detect local adaptation, but also a 554 

clearer understanding of adaptation in nature more generally. 555 

  556 

Methods 557 

Simulation Power Analysis 558 

To generate adaptive and neutral distributions of genetic diversity, we performed simulations of 559 

demographic history scenarios with and without natural selection using msms (Ewing and 560 

Hermisson 2010).  For each model, we obtained 10,000 replicates from which we calculated the 561 

statistics of interest.  Power was calculated as the proportion of replicates under selection with 562 

a statistical value larger than 95% of the values obtained in its corresponding replicates without 563 

selection.  We investigated the power of three different statistics: FST_MaxSNP, FST_Window and χMD 564 

(Lange and Pool 2016), which were calculated on windows of fixed size.  FST_MaxSNP is based on 565 

the SNP within a window with the highest FST value.  FST_Window was calculated as the weighted 566 

average of all SNPs in a window (Reynolds et al. 1983).  χMD stands for Comparative Haplotype 567 

Identity; it compares the average length of identical haplotypes in a window between two 568 

populations, and was calculated following Lange and Pool (2016).  The window size used was 569 

5,000 bp for simulations of populations with high effective population size (Ne) and 100,000 bp 570 

for simulations of populations with low Ne.  Except where otherwise stated, the sample size was 571 
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50 chromosomes.  The high Ne simulations used parameters similar to those from flies 572 

(Drosophila melanogaster) while the low Ne had parameters similar to humans (simulation 573 

parameters followed Lange and Pool, 2016). 574 

 We initially used scenarios of constant population size and a simple population split to 575 

simulate scenarios of selective sweeps with varying initial and final allele frequencies, 576 

representing hard and soft sweeps as well as complete and partial sweeps.  We also simulated 577 

scenarios of population bottlenecks and population splits for complete selective sweeps, and for 578 

scenarios with varying migration rates for hard sweeps (not constrained by ending allele 579 

frequency).  For bottlenecks, the population that will experience local adaptation underwent a 580 

period of reduced population size for the first 0.01 coalescent units after the population split 581 

(which in most scenarios including these, occurred 0.05 coalescent units ago; Table S1). 582 

The simulations of populations with high Ne were done for two different selection 583 

coefficients (s = 0.01 and s = 0.001) and simulations of populations with low Ne only included s = 584 

0.01 (Table S1).  Simulations of complete sweeps only used replicates in which the beneficial 585 

allele went to fixation.  Simulations of partial sweeps only accepted replicates in which the 586 

beneficial allele stayed within 4% of the targeted ending frequency.  Selection initiation time 587 

was adjusted in each case to maximize the proportion of accepted replicates.  Moreover, in the 588 

scenarios with initial allele frequencies larger than 1/2Ne, both the selected and non-selected 589 

populations had the same initial frequency.  590 

For models that included migration (gene flow), selection of equal magnitudes but in 591 

opposite directions was imposed on each population.  Per generation migration rates varied 592 
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from 0.0004 to 0.004 in simulations with high Ne populations and from 0.01 to 0.10 in 593 

simulations with low Ne populations.  For each migration rate, split times varied from 0.1 to 1 594 

coalescent unit. 595 

We calculated the effect of sample size on the power of each statistic in six different 596 

scenarios:  four models with demographic history of a simple isolation between two populations 597 

and two models with population size bottleneck.  Of the simple isolation models, two models for 598 

high Ne populations were considered:  one in which FST_Window outperformed FST_MaxSNP (initial 599 

allele frequency of 1/2Ne and final allele frequency of 0.4) and another where FST_MaxSNP 600 

outperformed FST_Window (initial frequency of 0.005 and final frequency of 0.7).  Two scenarios for 601 

low Ne populations were also considered:  one in which FST_Window outperformed FST_MaxSNP (initial 602 

allele frequency of 1/2Ne and final allele frequency of 0.5) and another where FST_MaxSNP 603 

outperformed FST_Window (initial frequency of 0.05 and final frequency of 0.8).  For the bottleneck 604 

models, we used models with a bottleneck of 5% (i.e. a reduction to 5% of the prior Ne for 0.01 605 

coalescent units in the adapting population immediately following the population split) and only 606 

models in which FST_MaxSNP outperformed the window wide statistics were considered:  one 607 

model for high Ne population (initial allele frequency from 0.5% to 100%) and one for low Ne 608 

populations (initial allele frequency from 1% to 100%).  For all the six scenarios, we used sample 609 

sizes of 10, 20, 50 (original sample size), 100, and 200 chromosomes. 610 

We calculated the effect of window sizes on the power of each statistic in four different 611 

scenarios, the same scenarios of simple isolation used to calculate the power of sample sizes 612 

above.  For the high Ne scenarios, we used window sizes of 5 kb (original size), 2 kb, 1 kb, 0.5 kb, 613 
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0.2 kb, and 0.1 kb.  For the low Ne scenarios, we used window sizes of 100 kb (original size), 50 614 

kb, 20 kb, 10 kb, 5 kb, and 1 kb.  To calculate χMD, we used a minimum haplotype threshold of 615 

10% of the window size (as was used for the original analyses).  For each window size smaller 616 

than the original, we applied a p-value Bonferroni multiple testing correction proportional to the 617 

reduction in size (or equivalently, the increased number of windows needed to cover a given 618 

genomic region) to calculate power.  That is, while for the standard window size power is the 619 

number of replicates with a p-value of 0.05 or lower, for a window half the size of the original 620 

the p-value would need to be 0.025 or lower. 621 

  622 

Empirical Enrichment of FST_MaxSNP and FST_Window - data and simulations 623 

Our data set consists of individual fly strain genomes from six natural populations of D. 624 

melanogaster:  one non-human commensal population from Kafue, Zambia (KF) and five human 625 

commensal populations from different countries: Zambia (ZI), South Africa (SD), Rwanda (RG), 626 

Ethiopia (EF) and France (FR), using data from Lack et al. (2016) and Sprengelmeyer et al. (2020).  627 

From each population, for each chromosome arm (ChrX, Chr2L, Chr2R, Chr3L, Chr3R), we 628 

excluded genomes from lines with a known inversion for that arm.  To boost the sample size of 629 

two populations with genomes from partially inbred lines (Ethiopia and France), instead of only 630 

using homozygous regions of the genome (as in the original filtering of the published data set) 631 

we also included heterozygous regions identified by Lack et al. (2016), and therefore counted 632 

two alleles at each site from these regions.  For any pair of lines with excess identity by descent 633 

(IBD) between them (defined as more than 10 megabases of IBD outside previously defined 634 
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regions of low recombination; Lack et al., 2016), we excluded one member of the pair from this 635 

data set.  For each population sample and each chromosome arm, we chose a sample size to 636 

jointly maximize the number of analyzable sites and the sample size itself.  Our resulting sample 637 

sizes are shown on Table S2.  For sites with more than that number of alleles called, we 638 

downsampled to match the chosen sample size. 639 

We calculated pairwise FST_Window and FST_MaxSNP for all populations using diversity-scaled 640 

window sizes designed to contain 250 non-singleton SNPs in the ZI sample.  To compare 641 

empirical and null distributions for similar recombination rates, each window was assigned to 642 

one of five recombination rates bins based on estimates from Comeron et al. (2012); the bins 643 

corresponded to recombination rates from 0.5-1, 1-1.5, 1.5-2, 2-3, and greater than 3.  Windows 644 

with recombination rates lower than 0.5 were not used due to low spatial resolution for 645 

localizing signatures of selection in low recombination regions.  We obtained p-values for each 646 

window using neutral demographic simulations performed using ms (Hudson 2002).  647 

Demographic simulations were performed using parameters estimated for the evolutionary 648 

history of nine populations of D. melanogaster, including all the populations we analyzed 649 

(Sprengelmeyer et al. 2020).  The other three populations were lowland Ethiopia (EA), 650 

Cameroon (CO), and Egypt (EG).  We did not use those three populations in our empirical 651 

analyses due to their lower sample sizes.  Nonetheless, they were included in the simulations in 652 

order to accurately reflect the estimated patterns of migration.  653 

Each demographic model had been estimated based on tentatively neutral genetic 654 

markers (short introns and 4-fold synonymous sites from regions with sex-averaged 655 
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recombination rates of at least 1 cM/Mb) from inversion-free chromosome arms 656 

(Sprengelmeyer et al. 2020).  A model was estimated for each of three chromosome arms that 657 

had lower inversion frequencies (X, 2R, and 3L), and the history was inferred iteratively, such 658 

that not all population samples were present in the same model.  To better approximate genetic 659 

diversity in all populations, we used two sets of demographic models: Northern model 660 

(containing ZI, RG, CO, EF, FR, EG, EA) and Southern model (containing ZI, RG, CO, SD, and KF).  661 

The Northern model for the chromosome X was subdivided into two sub-models (one with ZI, 662 

RG, CO, EF, EA and another with ZI, RG, CO, FR, EG).  Hence, we simulated four Northern models 663 

and three Southern models (command lines in Table S2).  The models for the autosomal 664 

chromosome arms (2R and 3L) were simulated using the highest sample sizes for any autosomal 665 

arm of each population (Table S2).  Simulated sample sizes were downsampled to match the 666 

sample sizes of each specific arm when comparing empirical and simulated FST patterns for any 667 

given arm.  The window size and crossing over rate used in each replicate were based on a 668 

random sampling with replacement from the empirical windows, and the single gene conversion 669 

rate and mean tract length were based on the estimates of Comeron et al. (2012).  Therefore, a 670 

null distribution was generated for each model and each recombination bin (described above).  671 

For each model and each recombination bin, 50,000 replicates were simulated. 672 

 673 

Enrichment calculation 674 

FST_Window and FST_MaxSNP were calculated for each population pair and each chromosome arm.  FST 675 

was calculated for the simulated data using the same sample sizes as the empirical data (Table 676 
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S2).  For sites with more than two alleles, only the two most common alleles were kept. Sites 677 

with minor allele counts lower than two were discarded from empirical and simulated analyses.  678 

 P-values were calculated for each window based on the neutral distribution of its 679 

corresponding recombination group.  Windows from chromosome X were compared to neutral 680 

distributions based on the model for chromosome X.  For autosomal loci, we determined that 681 

simulations from the 3L model yielded somewhat milder outlier enrichments than the 2R model, 682 

and therefore we conservatively focused on results from the 3L model.  683 

 We calculated p-value enrichments for FST_Window and FST_MaxSNP using p-value bins of 684 

width equal to 0.05, resulting in 20 bins of p-value 0 to 1.  We counted how many windows had 685 

a given p-value for each bin and divided the observed number by how many windows we 686 

expected to have with a p-value in that bin based on simulated data.   687 

Neighboring windows with low p-value could be showing the effect of a single selective sweep.  688 

Therefore, we complemented this outlier window enrichment analysis with one based on 689 

“outlier regions”.  We intentionally defined outlier regions generously, preferring to falsely lump 690 

two sweeps versus splitting a single sweep into two or more regions.  Formally, starting with the 691 

window containing the lowest p-values, we extended the region surrounding it until we reached 692 

a stretch of five consecutive windows with p > 0.1 to create an outlier region.  We removed the 693 

outlier regions from our analysis and repeated the process until the signal of enrichment was 694 

erased (defined as the p < 0.05 bin having no more enrichment than the 0.05 < p < 0.1 bin).  For 695 

each of FST_MaxSNP and FST_Window, we recorded the total number of outlier regions that had to be 696 

removed for a given population pair. 697 
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 698 

Genome scan for regions under selection - Ethiopia vs. Zambia 699 

We performed a genome scan for candidate regions under selection between the Ethiopia (EF) 700 

and Zambia (ZI) populations.  We calculated FST_Window, FST_MaxSNP, and χMD for each window of the 701 

genome.  We used an outlier approach and considered windows in the top 1% of each statistic 702 

to be the candidate regions under selection.  Here, we combined multiple outlier windows into 703 

the same outlier region if they were separated by no more than five windows with p-value > 704 

0.01.  To investigate whether the candidate regions detected with each statistic were the same 705 

or unique, we calculated how many regions overlapped between the different statistics.  We 706 

considered that two regions were overlapping if at least 50% of the smaller region overlapped 707 

the larger one.  708 

 For each list of candidate regions under selection, we performed a GO term enrichment 709 

analysis using a method initially described by Pool et al. 2012.  For each gene within a candidate 710 

region, we obtained GO term annotations from FlyBase.  The GO terms for each gene also 711 

included all the parents of each term.  GO terms that appeared repeatedly in a candidate region 712 

were counted only once for that region.  We calculated the p-values for each GO term based on 713 

10,000 permutations of the genomic locations of the outlier regions.  This procedure allows 714 

genes to have different null probabilities of being outliers, particularly based on their length.  715 

We obtained a list of enriched GO terms for each statistic defined as the GO terms with raw p-716 

values less than or equal or to 0.01.  We then determined the overlap between the three lists of 717 

enriched GO terms.  718 
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 719 

Data Availability Statement 720 

No new empirical data were generated for this research.  Scripts used in the analyses presented 721 

can be found at https://github.com/ribeirots/fst_maxsnp.git. 722 
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